
Procedural Terrain Generation for Medical Rehabilitation

Michael Andereck
The Ohio State University

CSE Department
395 Dreese Laboratories

2015 Neil Avenue
Columbus, Ohio 43210-1227

andereck.3@osu.edu

Alan Price
The Ohio State University

Advanced Computing Center
for the Arts and Design

1224 Kinnear Rd
Columbus, Ohio 43212

aprice@accad.osu.edu

Roger Crawfis
The Ohio State University

CSE Department
395 Dreese Laboratories

2015 Neil Avenue
Columbus, Ohio 43210-1227

crawfis.3@osu.edu

ABSTRACT
Virtual terrain generation has been a popular area of re-
search over the last thirty years. More recently the topic of
using video games to promote exercise and rehabilitation has
gained momentum. We propose a system which allows for
physical therapists to aid in the creation and management
of virtual environments for use in conjunction with walking
and balance exercises. Our system allows the therapist to
design a 3D path with challenges including hills and turns
suitable for the ability of the patient. After the path has
been designed, the system generates a terrain using an iter-
ative surface-matching quadtree algorithm, culminating in
an immersive, engaging environment for the patient.

Keywords
procedural terrain generation; user-defined paths; immersive
environments; video games

1. INTRODUCTION
Virtual environments are increasingly used in exercise-based
video games and rehabilitation systems. As users perform
exercises, they are able to receive real-time feedback and
are entertained, leading to more enjoyment and engagement
during the activity. In our rehabilitation scenario, the pa-
tient walks on a treadmill with the environment projected
in front of them, mimicking the speed and orientation of
the walker. This virtual environment is key to keeping the
patient engaged in the rehab process. Another key is the
ability of the rehabilitation operator to tune the exercise
regimen to the needs of the patient. If the patient is just be-
ginning to regain locomotion, they would not need to walk
up a steep hill. At the other extreme, a patient who is finish-
ing their rehabilitation would likely need a more strenuous
challenge than walking through a flat field. Needs vary from
patient to patient and even from week to week. We cannot
forsee all necessary path configurations ahead of time, so a
customizable solution is required.

One way to customize paths and environments is to hand
model everything. While this approach would work in the-
ory, in reality the cost of generating all the necessary en-
vironments by hand would be prohibitive. For example, a
sample terrain designed by hand took over 40 hours to model
and texture. In this paper we present a system which can be
used by a physical therapist with little knowledge of com-
puter graphics to design a path and virtual environment of
comparable scale and complexity in less than an hour.

Our system begins with a path definition. This path is used
to determine the exercise for the patient. The therapist
(operator) decides how long the path is as well as what shape
it has, with the ability to design inclines, declines, turns, and
cycles. These features are linked to a treadmill on a motion
platform which can rotate and tilt. As the path inclines, so
does the treadmill. This provides the patient with a realistic
physical challenge to match their visual experience.

Once the path is defined, an environment is procedurally
generated around the path. Rather than the real-world ap-
proach which encounters a hill and places a road to conform
to the hill, our system sees an inclined path and creates a
virtual hill to match it. While this would be a fairly triv-
ial task for a path which is linear, our paths can turn and
loop around, leaving interesting landscape features in their
wakes.

The rest of the paper is organized as follows. In Section
2 we look at work related to the idea of procedural ter-
rain generation and physical therapy. Section 3 introduces
and describes the process of designing paths. Section 4 de-
scribes the algorithm for conforming a landscape into the
shape prescribed by a path. The last sections show results,
conclusions, and future work.

2. RELATED WORK
Many techniques exist for synthesizing terrains. Procedural
terrain modelling has been an increasingly popular topic of
research for the last thirty years. The most common tech-
niques for synthesis include geometric modeling and physical
simulation. Geometric models are commonly based on frac-
tal designs such as those used by Mandelbrot [13], Fournier
[10], and Perlin [15]. Physical simulation techniques are
largely based on erosion methods such as thermal erosion
and fluvial erosion. Both are discussed by Musgrave et al
[14]. These techniques can produce realistic looking terrains,
but are often difficult to control.



One method for recreating realistic terrains is proposed by
Zhou et al [21] which applies real-world elevation data to
user-defined control paths. Thus a mountain range or canyon
can be conformed to follow any desired route. Several other
works allow users to sketch splines, rivers, mountains and
other features and then generate terrains to match [1, 11].
These techniques are designed for the user to define terrain
features such as ridges which are then directly built in to
the terrain shape. Our paths are not necessarily features of
the terrain and will not always be ridges or valleys.

A technique for constrained fractal terrains has been pro-
posed by Belhadj [2]. This idea was created to reconstruct
digital elevation maps by supersampling compressed eleva-
tion sets gathered by satellites or other means. They are
also able to account for user sketches as constraints for ter-
rain generation. They use a triangle-based Midpoint Dis-
placement Bottom-Up process (MDBU) to fill in the gaps
between known control points and those which require ad-
ditional constraint. This technique does a fine job in fill-
ing in the gaps between user-defined control points, but has
complicated parameter settings which would cause a steep
learning curve for a novice user. In an earlier work [3], they
allowed users to define mountain ridges and river valleys to
give an initial shape to the terrain. This technique produces
terrains by refining fractals between the constraints, but is
not suitable for our needs as the terrain always slopes down
from the ridges and up from the valleys. We want to use the
shape of the path to inform the terrain builder of the slope
of surrounding features without having the path designer
specify whether they are on a ridge or in a valley.

In our research we have found limited work which adapts the
shape of a terrain to a pre-defined path. One author pro-
posed the idea but in their actual work did not end up using
paths [5]. Another work by Smelik et al [18] uses an integra-
tion of manual editing and procedural generation to create
landscapes at low cost to the user but with more control than
purely procedural methods. They also point out that proce-
dural content is well-suited for large-scale operations while
manual editing works well with small details, but it is diffi-
cult to bridge the gap with medium levels of detail and con-
trol. Their design is meant to be edited continuously with
live updating of features such as cities, rivers, and roads.
Because of the interaction between these components, strict
manually-designed features are not well-preserved upon pro-
cedural generation.

Another paper by Stachniak and Stuerzlinger [19] presents
a method for conforming an existing terrain to the shape
of a constraint which could be defined as a path or road.
This method begins with a defined terrain and a path for
constraint, and then seeks to take steps toward an optimal
solution by deforming segments of the terrain under a gaus-
sian kernel. While this technique can come close to an op-
timal solution, there is no guarantee of convergence. This
technique involves manipulating an existing terrain, whereas
we are working from scratch. One more technique for apply-
ing local manipulation to an existing terrain is presented by
Bruneton et al [7]. They begin with large-scale Geographical
Information Systems (GIS) data and render is using a level
of detail (LOD) approach, focusing on local manipulation of
the terrain from user-defined roads and rivers. Once again

this system is designed for use with a pre-existing terrain.

Taking the opposite approach, there has been work done
related to finding a suitable path using the terrain as the
constraint [12]. Given a terrain with origin and destination
points, Galin et al are able to generate a road connecting the
two while considering obstacles including rivers and hills.
Our work seeks to do the reverse: we are designing a path
and then generating a terrain shape to conform to that path.
In our case, the path is the key component because of its link
to the therapy, while the environment is secondary.

Related to our motivation for immersing the patient in a
virtual environment, gameplay has been shown to motivate
physical activity [20]. Significant work has been done in re-
search on exergames, the design of video games used in con-
junction with exercise equipment. Considerations for these
games are discussed in [17]. Rewards for physical interaction
has been shown to increase phyical activity while playing
games without decreasing the enjoyment of the experience
[4]. In a smiliar vein, Bianchi et al [6] demonstrated that
body movement and physical activity not only increase the
level of engagement for players by motivating a sense of pres-
ence in the digital world, but the experience became more
rewarding for players as a result.

While it has been shown that games can serve to assist in
promoting physical activity, they cannot provide all the mo-
tivation on their own. Chandra et al [8] showed that while
patients enjoyed their individual exercise sessions more while
using motivation through entertainment, they still wanted
to see long-term progress numbers toward thier overall re-
habilitation.

Dimovska et al [9] demonstrate that adapting level difficulty
based on previous performance can positively impact reha-
bilitation goals. Using a Wii Balance Board, they developed
an adaptive skiing game which placed future gates based on
the player’s ability as shown through prior gate passing. By
adapting the difficulty to the patient ability, they are able to
maintain better engagement of subjects because they are less
prone to boredom in the case of easy levels, or frustration in
the case of levels which are too difficult. Our system allows
the physical therapist to create a path with an appropriate
level of challenge for each patient.

3. PATH GENERATION
In order to have a rehabilitation tuned to the specific needs
of a patient, we need to provide the operator control over the
shape of the path the patient has to traverse. The path is
defined by a set of control points which are user-placed. To
interpolate between control points we use Hermite splines for
a second-order continuity. Once the spline curve has been
defined, we determine the shape of path geometry, and in
Section 4 we use the path geometry to calculate the shape
of the terrain.

3.1 Control Points
The main control the operator has in shaping the path is in
the position of the control points. These points are shown as
white spheres as in Figure 1. The operator has freedom to
select a sphere and move it anywhere in the 3-dimensional
world space of the game. Points may be added to the end



Figure 1: Sample of a small path using spheres as
control points.

of a path, inserted into the middle of the path, moved, and
deleted. As points are manipulated, the path is updated for
real-time feedback. One element which can aid therapists in
tuning the rigor of the workout is the display of path statis-
tics such as the length of the path and the current slope.
These numbers can be seen when editing control points or
when walking along the path as seen on the right side of Fig-
ure 8. Additionally the operator can choose an open path
which can start and end at arbitrary locations, or a closed
loop path. There is no practical limit to the number of con-
trol points used in the path. The main limiting factor is the
time required by the operator to place the path points.

3.2 Hermite Splines
With our control points in place, we need to interpolate be-
tween them to give shape to the path. Linear and quadratic
interpolation do not provide the smoothness we require, so
we use a cubic Hermite spline. We need the interpolation
to be smooth because of the nature of the immersive envi-
ronment. With a large, immersive display, jerky motion can
cause disorientation of the user.

Our Hermite spline interpolates the path shape between each
consecutive pair of path control points. Segment k is defined
between control points pk and pk+1. To obtain the starting
tangent for pk, we use half the vector formed between the
surrounding control points: mk = (pk+1− pk−1)/2 and sim-
ilar for pk+1 our tangent is mk+1 = (pk+2 − pk)/2. The
automation of tangent vectors makes the system easier than
requiring explicit tangents as in some drawing programs.
Then for a given interval between control points, with inter-
polant tε[0, 1], we find the position p(t) using the following
equation:

p(t) = a ∗ pk + b ∗mk + c ∗ pk+1 + d ∗mk+1 (1)

where a = (2t3−3t2 +1), b = (t3−2t2 + t), c = (−2t3 +3t2),
and d = (t3 − t2).

3.3 Character Position
When traversing the path through the world, the position of
the viewer is constrained to the defined path. The position
is determined by the parameters of the Hermite spline as in
Equation 1, while the orientation of the character is based
on an approximate tangent of that curve. This tangent is
given as the normalized vector ~pt+ε− ~pt. Sampling the path
slightly ahead of the current position (at t+ ε) allows us to

Figure 2: The individual path segments (green) fol-
low the curve of the Hermite spline (red).

give the user a look-ahead anticipation of upcoming curves.
For this reason the path needs to be second-order contin-
uous. The first order ensures that the character’s position
does not jump from time to time, while the second order
continuity means that the character’s view direction does
not take an abrupt turn.

3.4 Distance Interpolation
In order to create a realistic experience for the user, they
must be able to move along the path at a consistent speed,
regardless of the underlying control system. With our pa-
rameterized splines, the primary definition of position along
the spline is consistent with the relative position between
control points. In this case it takes a constant change in
the parameter value t to interpolate from control point A to
control point B.

Under the default parameters, it would take one second to
move from point A to point B, and the same time to move
from point B to point C. This time would not change re-
gardless of the distance between each set of points.

Consider d as the distance along the curve, and say ~p is the
position in space. We would like the following to hold:

d~p

dd
= δ (2)

that is, the change in spatial position relative to the change
in the path distance parameter should be a constant (δ). We
can sample the curve through time to construct a mapping
from time to spatial distance. Now consider a function Φ :
R ⇒ R such that Φ(d) = t. We use the map to determine
the translation for Φ. The Hermite interpolation function we
will call H : R⇒ R3 which translates H(t) = ~p. Combining
those layers yields:

~p = H(t) = H(Φ(d)) (3)

which gives us the ability to increment d at a constant rate.
We are able to then apply the speed of the user on the tread-
mill to consistently determine the rate of the user through
the world, satisfying Equation 2.

3.5 Path Geometry
The geometry of the path is extruded along the path spline,
using normals from the spline to determine the vertices of
the geometry. Figure 2 illustrates how the shape of the
Hermite spline determines the shape of the corresponding
segment of path geometry. Note that by default there is no
roll to the path, that is the path is flat horizontally.



Figure 3: The terrain has been modified to match
the desired path.

The resolution of the path segments is static from one con-
trol point to the next. Unlike the character position, the
path geometry does not need to be normalized based on
world space distances. This is because the importance of
the path segments is in the overall shape of the segment,
not in the individual details.

4. TERRAIN GENERATION
The main contribution of our work is the concept of moving
from the shape of a user-defined path to fitting an entire
terrain around that path. Our terrain is defined as a 2-
dimensional height map. This map is scaled in the X and Z
directions to account for the potential range of scales on the
user-defined path. We define the Y -axis as the vertical scale
along which the height values vary. We begin by matching
the terrain to the heights of the path segments. Next we
start an iterative plane-fitting process to bring the terrain
into alignment with the path.

4.1 Matching the Path
To begin the terrain defining process, we match the terrain
to the user-defined height of the path. One difficulty arises
due to the difference in definitions for the terrain and the
path segments. The terrain is defined as a grid-based height
map, while the path is a ribbon of 3D geometry. Our target
is the height map.

For each point in the height map we check for the presence
of path geometry at the same XZ coordinate. If there is
a collision with that geometry, we assign the corresponding
height (Y ) into the height map. We also mark that position
as a part of the path so that it is preserved as a terrain-path
point when we perform the plane fitting in the next section.

At this point we also modify the texture of the terrain to in-
dicate where the path is. When walking through the world,
it is helpful to have a visible path to follow, not just an invisi-
ble line to which you are anchored. To easily avoid z-fighting
issues or other problems caused by imperfect matching be-
tween the path height and the terrain height, we simply
apply the path texture to the terrain on the appropriate
terrain-path positions.

4.2 Shaping The Terrain
Once we have rasterized the path, we can begin the process
of matching the surrounding terrain to the shape modeled
by the terrain-path. We have a few criteria for the resulting
shape of the terrain:

1. Terrain adjacent to the path should match the height
of the path.

2. Terrain should naturally interpolate between path seg-
ments.

3. Terrain should have shape outside the confine of the
path. I.e. extrapolating the slopes.

We need to use a method to fit the terrain to the path at
multiple scales. Several prior techniques rely on local ma-
nipulation of existing terrain shapes [18, 19]. We do not
want to constrain our path generation process to be driven
by an existing terrain shape, but to be open for whatever the
physical therapist deems appropriate for the patient. Our
technique is to iteratively find a best-fit surface. By finding
the best fit at various scales via a quadtree [16], we are able
to provide slopes over the scale of the entire terrain as well as
refine local details to conform to the height adjacent to the
path. We describe the technique of matching a single quad
in Section 4.2.1 and then how to combine different levels of
the tree in Section 4.2.2.

4.2.1 Linear Least Squares
In general we want to solve the overdetermined system de-
fined by a set of m terrain-path points with n unknown
coefficients.

n∑
j=1

Xijβj = yi, (i = 1, 2, ...,m). (4)

Note that in the case of a planar equation, we will use 3
coefficients, giving us n = 3, but in general we may have
more coefficients, β1, β2, . . ., βn. In order to solve this
system, we need m ≥ n. As we use a different path or
change levels of the quadtree, m will change. We can write
Equation 4 in matrix form,

Xβ = y (5)

where

X =


X11 X12 · · · X1n

X21 X22 · · · X2n

...
...

. . .
...

Xm1 Xm2 · · · Xmn

 ,β =


β1
β2
...
βn

 ,y =


y1
y2
...
ym


(6)

Our objective is then to minimize the squared error term,

E(β) =

m∑
i=1

|yi −
n∑
j=1

Xijβj |2 = ‖y −Xβ‖2 (7)

Assuming the n columns of matrix x are linearly indepen-
dent, we can find a unique solution to the minimization prob-
lem, namely,

β̂ = (XTX)−1XTy (8)

This technique can be used to solve for the best fitting sur-
face of any polynomial or parabolic shape. We have imple-
mented the system to solve for the best fit plane. With a
planar system, Equation 4 becomes:

yi = β1xi + β2zi + β3 (9)



Figure 4: When the corners don’t match up, the
terrain loses its realism.

When we solve Equation 8 we have coefficients β1, β2, and β3
to determine values of y in Equation 4. This defines the slope
of the best fit plane required for one square of the terrain as
shown in Figure 7B. Clearly one plane cannot fit the entire
path unless that path is entirely flat. To accomodate this,
we need to iterate down to multiple levels of detail using
a quadtree approach, refining the shape of the terrain at
multiple resolutions. Figure 7 demonstrates the refinement
of a height map being fitted to a path. At each level, planes
are fit to the terrain-path points they contain. Part B fits
one plane over the full path. Part C fits four planes (one
per quadrant), part D 16 planes, and so on. At each level,
the area covered by each plane is reduced, creating a better
fit height map.

4.2.2 Diamond-Square
We want to refine the fitting of the terrain, starting at the
largest scale and moving to the smallest. Blending from one
level of quadtree planar matching to the next is tricky. If
we do not match the edges of the plane squares, we obtain
some clearly incorrect results as in Figure 4. We therefore
need to maintain some information of the points used from
one level to the next.

The first level or plane fitting is always done over the entire
terrain. This establishes the basic slope of the whole area.
If the defined path has an overall inclination, we want to
be able to maintain the feel that the terrain is on a hillside,
rather than having it flatten on the edges beyond the scope
of the defined path. This step is shown for a sample path
in Figure 7B. Next we divide the terrain into quadrants and
find the best fit planes for each of these based on the terrain-
path points contained in each as described in Section 4.2.1.

Beyond the first iteration of plane matching, there will be
a few issues to consider. One is that adjacent planes share
boundaries. If we do not match those boundaries, we obtain
a result as in Figure 4. On each level of iteration, we only
compute the heights on the corners of each square as indi-
cated in red in Figure 5. The heights of the corners applied
to the height map are determined by averaging heights con-
tributed by adjacent squares. Because of the contributions
from multiple squares to a single corner, each square is not
guaranteed to be planar. If the corner height shared by ad-

Figure 5: Four levels of the plane fitting method.
Red circles indicate new points on the current
quadtree level, while black circles show corners from
previous levels. First the full plane is fitted using the
full path, assigning four corner points (A). On the
second level (B), 16 corner points are calculated, but
several are averaged for continuity across segments.
On the third level (C) we consider 16 squares, but
not all squares contribute corner heights because the
corner squares do not contain part of the terrain-
path. In the fourth level (D), we do not need to
refine the four corner squares because we already
know they do not contain path points. Note that
they can still change because some of the shared
corners are still active.

jacent squares differ greatly, they will still be resolved on
further iterations. This in particular arises when the path
shape is not close to planar, such as the switchbacks found
on the side of a steep slope. We may find multiple levels of
a switchback path to be in the same square, meaning that
a single plane cannot be a good representative for that sec-
tion. This issue is resolved on further refinement as seen in
Figure 7F as compared to C.

We only apply the plane-fitting calculations on squares which
contain enough points m from the terrain-path to satistfy
the requirement from Section 4.2.1 that m ≥ n. This cre-
ates a natural stopping point for our iteration. Once we
have too few control points per square we will have an un-
derdetermined system. For example, in a system solving for
planes (n = 3) in a 1024x1024 height map, we would be able
to iterate 10 levels before we are down to 2x2 squares, giv-



ing a maximum number of control points at m = 4. Further
iterations would not allow for solving of a best-fit plane.

As in Figure 5C the corner squares (grayed out) of the ter-
rain do not contain any part of the path, so they are not
used to solve for a best-fit plane and no longer contribute to
surrounding control corners. This does not mean that the
square is held static, however. If that square is still adjacent
to any other active squares, its control corners may still be
affected, leading to a change in its shape.

4.3 Additional Elements
Apart from the shape of the terrain, we found that one of
the biggest factors for immersion in the virtual environment
were trees. Trees allow the subject to feel as if they are
walking through the woods, rather than walking on a bare
patch of grass. When moving, trees provide an easily per-
ceived reference point for motion, enhancing the subject’s
immersive experience.

Our trees were modeled by hand but placed randomly through
the terrain, although avoiding the path and area immedi-
ately surrounding the path. We found that placing enough
trees in the environment allowed us to limit the size of ter-
rain needed to surround the path, due to the visual occlusion
provided by the trunks, branches, and leaves. The trees are
maintained by Unity’s terrain structure which provides sup-
port for instancing, billboarding, and distance-culling.

One more element which can be added to the environment
is signs. These can provide the user with information such
as the distance covered, the distance remaining, or warning
them that a hill is just around the corner. They can also
be used for encouraging messages from the operator, letting
the user know he is doing a good job without removing him
from the virtual world.

5. IMPLEMENTATION
We implemented the system using the Unity3D software
package (http://www.unity3d.com). All scripting was done
using C#.

Our basic scene begins with a set of control points for the
path that the user can move, add to, or delete. The path can
be toggled open or closed to form a loop. At any time the
user can decide to build the terrain which begins the process
described in Section 4. They can flatten the generated ter-
rain to start again or edit the path which has already been
built. Trees and signs can be added and deleted. The user
has options to save the terrain they are currently working
on or to load saved terrains. While modifying the path, a
moving border informs the user of the anticipated size of the
generated terrain.

Our scenes are able to run in real-time with interactive fram-
erates over 90fps on a single core Intel i7 processor using
under 750MB of memory for our largest terrain.

A part of the immersive system involves projecting the envi-
ronment onto a domed surface to immerse the user in their
environment. We developed a hemispherical projection sur-
face built of foamcore on which to display the environment.
With the projector behind the screen and a quarter-spherical

Figure 6: Testing the spherical projection system to
properly register the image.

front-surface mirror, we are able to show an image which en-
compasses the user’s full field of view without encumbering
motion.

6. RESULTS
We have used this system to generate large terrains much
more efficiently than can be done by hand. Our largest path
created to date involved 250 control points and a path length
of nearly 4km. The resulting terrain is over 1.5km square
with a resolution of 40962, and takes around 30 seconds to
iterate for its shape, paint the path texture, and populate
with trees. We based this path off of a terrain modeled
and textured by hand which took around 40 hours to design
including shaping, smoothing, texturing, adding trees and
other objects to the scene. The path itself, with 250 control
points, took around a half an hour to complete. The result-
ing terrain shapes are comparable, however the time savings
of 80x is very significant.

We also found that it is much easier to have a novice ther-
apist figure out how to use the path creation tool than to
learn all the modeling and texturing techniques required to
build a terrain and path system from the ground up. This
allows the system to be distributed to people with little 3D
graphics experience.

Figure 9: The terrain shape resulting from our large
mountain path. The path length is nearly 4km, and
the terrain is over 1.5km square with over 16 million
points in the height map.

7. CONCLUSION
We have presented a system for generating environments
based on user-defined paths. The path generation technique
allows for novice users to define a path shape to fit the needs



Figure 7: We begin the terrain fitting process by matching the terrain to the height of the path (A). Next we
start our iterative planar matching algorithm. First we find the best fit plane for the full scale of the terrain
(B). Next we iterate through different resolutions of planes and refine the fitting for each square (C-F) until
the final terrain takes shape.

Figure 8: A screenshot of the environment while walking along the user-defined path. On the right are a list
of statistics which can be used by the operator including the path length and slope.



of a physical therapy patient. The surrounding terrain is
automatically generated to conform to the shape of the given
path. Trees, signs, and textures are applied to the terrain
to create an immersive experience for the user.

In future work we would like to extend the capabilities of
the terrain system to include the ability to integrate hand-
designed elements into the terrain shape. This could include
features such as cliffs, creekbeds, lakes, and other physical
formations. These features would enhance the realism of the
experience for the user and could be applied to the scene in
locations determined by image matching techniques or sim-
ilar. We would also like to be able to provide interactive
terrain shaping as control points are added and manipu-
lated. We would also like to explore potential applications
with more complex terrains including those with tunnels and
multi-layered paths.

8. ACKNOWLEDGMENTS
I would like to thank Bertec for their funding and support of
the project. Thanks to Chloe Shi for her helpful comments
on the paper.

9. REFERENCES
[1] D. Adams, P. Egbert, and S. Brunner. Feature-based

interactively sketched terrain. In Proceedings of the
ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games, I3D ’12, pages 208–208, New
York, NY, USA, 2012. ACM.

[2] F. Belhadj. Terrain modeling: a constrained fractal
model. In Proceedings of the 5th international
conference on Computer graphics, virtual reality,
visualisation and interaction in Africa, AFRIGRAPH
’07, pages 197–204, New York, NY, USA, 2007. ACM.

[3] F. Belhadj and P. Audibert. Modeling landscapes with
ridges and rivers: bottom up approach. In Proceedings
of the 3rd international conference on Computer
graphics and interactive techniques in Australasia and
South East Asia, GRAPHITE ’05, pages 447–450,
New York, NY, USA, 2005. ACM.

[4] S. Berkovsky, M. Coombe, J. Freyne, D. Bhandari,
and N. Baghaei. Physical activity motivating games:
virtual rewards for real activity. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems, CHI ’10, pages 243–252, New York, NY,
USA, 2010. ACM.

[5] F. Bevilacqua, C. T. Pozzer, and M. C. d’Ornellas.
Charack: Tool for real-time generation of
pseudo-infinite virtual worlds for 3d games. In
Proceedings of the 2009 VIII Brazilian Symposium on
Games and Digital Entertainment, SBGAMES ’09,
pages 111–120, Washington, DC, USA, 2009. IEEE
Computer Society.

[6] N. Bianchi-Berthouze, W. W. Kim, and D. Patel.
Does body movement engage you more in digital game
play? and why? In Proceedings of the 2nd
international conference on Affective Computing and
Intelligent Interaction, ACII ’07, pages 102–113,
Berlin, Heidelberg, 2007. Springer-Verlag.

[7] E. Bruneton and F. Neyret. Real-time rendering and
editing of vector-based terrains. Computer Graphics
Forum, 27(2):311–320, 2008.

[8] H. Chandra, I. Oakley, and H. Silva. Designing to
support prescribed home exercises: understanding the
needs of physiotherapy patients. In Proceedings of the
7th Nordic Conference on Human-Computer
Interaction: Making Sense Through Design, NordiCHI
’12, pages 607–616, New York, NY, USA, 2012. ACM.

[9] D. Dimovska, P. Jarnfelt, S. Selvig, and G. N.
Yannakakis. Towards procedural level generation for
rehabilitation. In Proceedings of the 2010 Workshop on
Procedural Content Generation in Games, PCGames
’10, pages 7:1–7:4, New York, NY, USA, 2010. ACM.

[10] A. Fournier, D. Fussell, and L. Carpenter. Computer
rendering of stochastic models. Commun. ACM,
25(6):371–384, June 1982.

[11] J. Gain, P. Marais, and W. Straßer. Terrain sketching.
In Proceedings of the 2009 symposium on Interactive
3D graphics and games, I3D ’09, pages 31–38, New
York, NY, USA, 2009. ACM.

[12] E. Galin, A. Peytavie, N. Maréchal, and E. Guérin.
Procedural Generation of Roads. Computer Graphics
Forum (Proceedings of Eurographics), 29(2):429–438,
2010.

[13] B. B. Mandelbrot. The Fractal Geometry of Nature.
W. H. Freedman and Co., New York, 1983.

[14] F. K. Musgrave, C. E. Kolb, and R. S. Mace. The
synthesis and rendering of eroded fractal terrains. In
Proceedings of the 16th annual conference on
Computer graphics and interactive techniques,
SIGGRAPH ’89, pages 41–50, New York, NY, USA,
1989. ACM.

[15] K. Perlin. An image synthesizer. In Proceedings of the
12th annual conference on Computer graphics and
interactive techniques, SIGGRAPH ’85, pages
287–296, New York, NY, USA, 1985. ACM.

[16] H. Samet. The design and analysis of spatial data
structures. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1990.

[17] J. Sinclair, P. Hingston, and M. Masek.
Considerations for the design of exergames. In
Proceedings of the 5th international conference on
Computer graphics and interactive techniques in
Australia and Southeast Asia, GRAPHITE ’07, pages
289–295, New York, NY, USA, 2007. ACM.

[18] R. Smelik, T. Tutenel, K. J. de Kraker, and
R. Bidarra. Integrating procedural generation and
manual editing of virtual worlds. In Proceedings of the
2010 Workshop on Procedural Content Generation in
Games, PCGames ’10, pages 2:1–2:8, New York, NY,
USA, 2010. ACM.

[19] S. Stachniak and W. Stuerzlinger. An algorithm for
automated fractal terrain deformation. In In
Proceedings of Computer Graphics and Artificial
Intelligence, pages 64–76, 2005.

[20] J. Yim and T. C. N. Graham. Using games to increase
exercise motivation. In Proceedings of the 2007
conference on Future Play, Future Play ’07, pages
166–173, New York, NY, USA, 2007. ACM.

[21] H. Zhou, J. Sun, G. Turk, and J. M. Rehg. Terrain
synthesis from digital elevation models. IEEE
Transactions on Visualization and Computer
Graphics, 13(4):834–848, July 2007.


