
Towards Challenge Balancing for Personalised Game
Spaces

Sander Bakkes
University of Amsterdam

Intelligent Systems Laboratory Amsterdam
The Netherlands

s.c.j.bakkes@uva.nl

Shimon Whiteson
University of Amsterdam

Intelligent Systems Laboratory Amsterdam
The Netherlands

s.a.whiteson@uva.nl

ABSTRACT
This article focuses on games that can tailor the pro-
vided game experience to the individual player (personalised
games), typically by effectively utilising player models. A
particular challenge in this regard, is utilising player mod-
els for assessing online (i.e., while the game is being played)
and unobtrusively which game adaptations are appropriate.
In this article, we propose an approach for personalising the
space in which a game is played (i.e., levels) – to the end of
tailoring the experienced challenge to the individual player
during actual play of the game. Our approach specifically
considers two persisting design challenges, namely implicit
user feedback and high risk of user abandonment. Our con-
tribution to this end is proposing a clear separation between
(intelligent) offline exploration and (safety-conscious) online
exploitation. We are presently assessing the effectiveness of
the developed approach in an actual video game: Infinite
Mario Bros. [18]. To this end, we have enhanced the game
such that its process for procedural-content generation al-
lows the game spaces (i.e., levels) to be personalised during
play of the game. We use data from intelligent offline explo-
ration to determine both a model of experienced challenge as
well as safe level design parameters for use on new players.
Online, we use a gradient ascent algorithm with designer-
specified domain knowledge to select the next set of level
design parameters.

Keywords
Personalisation, game spaces, challenge balancing, video
games, implicit user feedback, user abandonment

1. INTRODUCTION
Ideally, artificial intelligence (AI) in games would provide
satisfactory and effective game experiences for players re-
gardless of gender, age, capabilities, or experience [6]; ide-
ally, it would allow for the creation of personalised games,
where the game experience is continuously tailored to fit
the individual player. Indeed, it is argued that we are now

at a unique point where modern computer technology, sim-
ulation, and artificial intelligence (AI) have opened up the
possibility that more can be done with regard to on-demand
and just-in-time personalisation [20]. However, a prevail-
ing limitation in the context of game personalisation, is
that learning effective behaviour online (1) requires an in-
conveniently large number of trials, (2) is generally highly
resource-intensive, and (3) usually generates many inferior
solutions before coming up with a good one [2].

As such, achieving the ambition of creating personalised
games requires the development of novel techniques for as-
sessing online and unobtrusively which game adaptations are
required for optimizing the individual player’s experience.
To this end, this article proposes an approach for online
game personalisation that reasons about uncertainty about
the player probabilistically, specifically using Gaussian Pro-
cess optimisation. It considers game personalisation as an
optimisation problem, and details design considerations for
effectively personalising the space of a game, while the hu-
man user is interacting with it. Specifically, the proposed
approach considers two persisting design challenges, namely
implicit user feedback and high risk of user abandonment.
Our goal is to demonstrate how to personalise game spaces
during play of the game, such they that are appropriately
challenging to the individual user. To this end, our approach
is implemented in the actual video game Infinite Mario
Bros.

2. GAME PERSONALISATION
Concisely speaking, of main relevance to the motivation
for adopting personalised gaming methods, is its psycho-
logical foundation, concerning, among others, a significantly
increased involvement and extensive cognitive elaboration
when subjects are exposed to content of personal relevance
[19]; they will exhibit stronger emotional reactions [7]. Par-
ticularly, a positive effect on player satisfaction is indicated
- among others, research has shown that game personalisa-
tion raises player loyalty and enjoyment, which in turn can
steer the gaming experience towards a (commercial) success
[28]. Also, the contribution to game development practise
is evident, as the perspective of AI researchers to increase
the engagement and enjoyment of the player is one that is
consistent with the perspective of game designers [20]. Fi-
nally, personalisation methods are regarded as instrumental
for achieving industry ambitions [14].



Tailoring the game experience to the individual player par-
ticularly benefits from the use of player models, and requires
components that use these models to adapt part of the game
[4]. Though by no means an exhaustive list, a set of com-
ponents that will allow the vast majority of video games to
be personalised are: (1) space adaptation, (2) mission/task
adaptation, (3) character adaptation, (4) game-mechanics
adaptation, (5) narrative adaptation, (6) music/sound adap-
tation, (7) and player matching (multi-player). Where de-
sired by the game designer, the components may be informed
by (8) challenge-balancing techniques for adjusting the chal-
lenge level to the individual player.

Our work follows the emerging trend of employing AI meth-
ods for adapting the game environment itself (as opposed
to, more typically, adapting behaviour of the characters that
operate in the game environment) [4]. In our investigation,
we choose to focus on personalising the game space to the
individual player with respect to experienced challenge1. Re-
lated work with regard to this scope is discussed below.

Challenge balancing
Challenge balancing concerns automatically adapting the
challenge that a game poses to the skills of a human player
[15, 26]. When applied to game dynamics, challenge balanc-
ing aims usually at achieving a ‘balanced game’, i.e., a game
wherein the human player is neither challenged too little, nor
challenged too much. In most games, the only implemented
means of challenge balancing is typically provided by a diffi-
culty setting, i.e., a discrete parameter that determines how
difficult the game will be. Because the challenge provided
by a game is typically multi-faceted, it is difficult for the
player to estimate reliably the particular challenge level that
is appropriate for herself. Furthermore, generally only a lim-
ited set of discrete difficulty settings is available (e.g., easy,
normal, and hard). This entails that the available difficulty
settings are not fine-tuned to be appropriate for each player.
In recent years, researchers have developed advanced tech-
niques for balancing the challenge level of games. Demasi
and Cruz [8] used coevolutionary algorithms to train game
characters that best fit the challenge level of a human player.
Hunicke and Chapman [12] explored challenge balancing by
controlling the game environment (i.e., controlling the num-
ber of weapons and power-ups available to a player). Spronck
et al. [26] investigated three methods to adapt the difficulty
of a game by automatically adjusting weights assigned to
possible game strategies. Indeed, knowledge on the effect of
certain game adaptations can be utilised to maintain a cer-
tain challenge level (e.g., [2]), and may be incorporated to
steer the procedural generation of game content (e.g., [9]).

In our research, we follow the insight that (1) the chal-
lenge provided by a game is multi-faceted (i.e., a multi-
dimensional action space), and (2) searching for an optimal
policy in this space can be effectively guided by expert do-
main knowledge.

1
Abstractly speaking, we consider the game space to be the represen-

tation of the game mechanics via which the user interacts with the
game. Typically, in a video game setting, the game space will be the
levels in which the game takes place. Game space personalisation, in
this context, generally concerns the online learning of the next set of
level design parameters.

Game space adaptation
Game space adaptation concerns allowing the space in which
the game is played to adapt, ideally in response to the user
experience [9]. Straightforward forms of game space adapta-
tion have been incorporated in games such as Rogue, Di-
ablo, Torchlight, Spore, and MineCraft. Game space
adaptation in response to the actual user experience, gen-
erally in the context of procedurally generated games, is an
active area of research [9, 16, 25, 30].

In our research, we will enhance a procedural process that
generates levels of the Infinite Mario Bros. game such,
that it is able to generate the upcoming parts of the
level (i.e., level segments) online, while the game is still in
progress. The idea here is to have assessments on the expe-
rienced player challenge impact the procedural process.

Player modelling
Player modelling is of increasing importance in modern
video games [10]. The main reason is that player modelling
is almost a necessity when the purpose of AI is ‘entertaining
the human player’ rather than ‘defeating the human player’
[31]. A challenge for player modelling in video games is that
models of the player have to be established (1) in game en-
vironments that generally are relatively complex, (2) with
typically little time for observation, and (3) often with only
partial observability of the environment [3]. A fairly recent
development with regard to player modelling, is to auto-
matically establish psychologically or sociologically verified
player profiles [3]. Such models provide motives or expla-
nations for observed behaviour. A solid profile can be used
to, for instance, predict a player’s affective state during play
of the game. One contributor to this line of work is Yan-
nakakis et al., who investigated modelling the experience of
game players, focusing particularly on utilising the models
for the purpose of optimizing player satisfaction [32].

In our research, given these recent advances, we posit that
adequately generated player models can be employed to au-
tomatically personalise the space of a video game, such that
the experienced challenge is tailored to the individual player.

3. DOMAIN DESCRIPTION
In our research we consider a typical video game: Infinite
Mario Bros. [18]. The game is an open-source clone of the
classic video game Super Mario Bros., which can be re-
garded an archetypal platform game; despite its relatively
straightforward appearance it provides a diverse and chal-
lenging gameplay experience. The game and its mechanics
are extensively described in [13]. In our research, we build
upon a version of Infinite Mario Bros. that has been
extended to be able to procedurally generate entire Mario
levels. To our knowledge, these extensions have been made
by Pedersen et al. [16, 17], Shaker et al. [23, 24], and To-
gelius et al. [29]. The extended versions of Infinite Mario
Bros. have been been employed in several Mario AI Cham-
pionships, e.g., [13, 22, 29].

We have further enhanced the Infinite Mario Bros. ver-
sion that was used for the Mario AI Championship 2011, to
be able to procedurally generate segments of Mario levels
while the game is still in progress. One segment has a width
of 50 game objects, and generally takes a player approxi-



mately 15 seconds to complete. This enhancement enables
feedback on the observed player experience to rapidly im-
pact the procedural process that generates the upcoming
level segments. Specifically, in our enhanced version, the up-
coming level segments are generated seamlessly, such that no
screen tears occur when the user is transitioning from one
segment to the next (i.e., before the next segment can be
observed a short ‘gap’ block is injected in the game space).
This process is schematically illustrated in Figure 1.

Here, the AI challenge is to (a) solely on the basis of in-
game observations on the human player interacting with
game space of the current level segment, generate (b) the
next segment such that it is appropriately challenging to the
observed player. Specifically, the agent that personalises the
game space is input with a vector of 45 real-numbered fea-
tures values – the standard logging capability of the game’s
data recorder – that describe abstractly the observed player
behaviour (e.g., how many coins did the player pick up in
the segment, how many turtles did the player kill, how much
time did it take the player to complete the segment) [21].
The only action that the personalisation agent can take, is
output a vector of six integers {1..5} to the procedural pro-
cess which in turn generates the next level segment. The
output parameters reflect the probability of the game space
containing (1) flat surfaces, (2) hills, (3) tubes, (4) jumps
(of increasing difficulty), (5), cannons, and (6) enemies.

4. APPROACH
The goal of our approach is to online generate game spaces
such that the spaces optimise player challenge for the indi-
vidual player. Our contribution to this end – derived from
the design criteria discussed below – is proposing a clear sep-
aration between (intelligent) offline exploration and (safety-
conscious) online exploitation.

Our approach to challenge balancing for personalised game
spaces consists of three phases. In Phase 1, we learn a global
safe policy across users for initialising the game, while gen-
erating a set of training instances (offline). In Phase 2, we
learn a feedback model across users from the generated set
of training instances (offline). In Phase 3, we personalise the
game space to the individual player (online).

Design criteria
Two main challenges persist for the task of challenge bal-
ancing in personalised game spaces, namely (1) only im-
plicit feedback on the appropriateness of the personalisation
actions are available, and (2) there is a high risk of user
abandonment when inappropriate game personalisation ac-
tions are performed. We propose the following four design
criteria to address these challenges.

Intelligently generate a set of training instances
To provide an effective basis for online personalisation, it is
necessary to intelligently generate a set of training instances
(Phase 1). Indeed, given the employed six-dimensional pa-
rameter space, it is infeasible to acquire training instances
that cover the entire space of the investigated personalisa-
tion problem (particularly when employing human partic-
ipants to generate the instances). As such we propose to
sequentially acquire instance data from those data points
in the parameter space that maximise the upper-confidence

bound on the expected experienced challenge across users.
This is achieved via the Gaussian Process Upper Confidence
Bound (GP-UCB) algorithm [27], a Bayesian approach to
global optimization that captures its uncertainty about the
fitness function in the form of a distribution, represented
using a Gaussian process, over the space of possible fitness
functions. This distribution is used to select the next point to
evaluate based on the principle of Upper Confidence Bounds
[1], which focuses the search on points that are either highly
promising or highly uncertain. The result of evaluating the
selected point is then used to update the distribution using
Bayes rule, and the process repeats.

Learn feedback model
To address the problem of implicit feedback, we propose to
learn a feedback model from the intelligently generated set
of training instances (Phase 2). Recall that in our problem
domain, the only input which the personalisation agent re-
ceives, are observations on the player interacting with the
generated game space (e.g., how successful is the player in
killing enemies of a particular type). As a result, for game
personalisation, a mapping from gameplay observations to
player experience needs to be learned. To this end, while gen-
erating the set of training instances, we gather labels on the
player’s gameplay experience with regard to the dependent
variable (DV) ‘experienced challenge’2. On the basis the la-
belled training instances, we train a random forest decision-
tree classifier [11] for classifying the experienced challenge
of an observed gameplay observation O. The random forest
classifier consists of a combination of tree classifiers where
each classifier is generated using a random vector sampled
independently from the input vector, and each tree casts a
unit vote for the most popular class to classify an input vec-
tor [5]. The advantage of using random forest classification,
is that it does not solely output a classification, but returns
a probability distribution of the classification, which we will
employ as a reward signal for game-space personalisation
(Phase 3).

Smart cold-start initialisation
To address the problem of user abandonment in actual play
of the game, we propose to initialise a new game with a
challenge level that is most appropriate in expectation across
users. We achieve smart cold-start initialisation by learning
a global safe policy while intelligently generating the set of
training instances, with the GP-UCB algorithm. The learned
global safe policy is learned in Phase 1, and employed in
Phase 3.

Guided exploration
Also, to address the problem of user abandonment in ac-
tual play of the game, we propose to guide state-space ex-
ploration by using expert domain knowledge and a model
of user abandonment (Phase 3). With regard to a model of
user abandonment, we consider a personalisation action’s ex-
pected reward (derived from the feedback model’s classifica-
tion of appropriateness of the action to the individual user),
as inversely correlated to the probability of the player aban-
doning the game. This design decision has as consequence
that with a high probability of abandonment we will permit

2
In accordance with the work of Shaker et al. [21], we also gather

labels on the DV’s engagement and frustration. These DV’s will be
employed for multi-objective learning in future work.



Figure 1: Our version of Infinite Mario Bros. It is enhanced such that during play of the game, it generates short new level
segments of specific content on-the-fly, on the basis of an implicit reward signal (given by an off-line learned feedback model).

the algorithm to perform a relatively exploratory action (as-
suming that if the inappropriate state persists, the user will
abandon in any case). On the other hand, with a low proba-
bility of abandonment we will restrict the algorithm to per-
forming a relatively exploitative action (assuming that the
algorithm may be approaching a global maximum). With
regard to guiding the exploration process by domain know-
ledge, we acknowledge that if a priori it is known what effect
certain action features have on the overall player experience,
then this knowledge can be exploited intelligently. As such,
we will let expert domain knowledge guide the exploration of
the state-space so that it is much more effective. Specifically,
the domain knowledge dk is formalised as a set of rules that
define how, and under which conditions, a specific action
feature should be adapted. Here, we posit that such expert
domain knowledge is available by the designer of a game, or
can be computationally derived from gamelogs.

Phase 1 – Learn the global safe policy across users,
while intelligently generating a set of training in-
stances (offline)
The procedure adopted for learning the global safe policy,
while intelligently generating a set of training instances, is
illustrated in Figure 2a. O indicates a gameplay observation
(a vector 45 real-numbered features values), P indicates the
parameters used for generating a level segment (a vector
of six integers {1..5}), L indicates the user-provided label of
the gameplay experience (one of five possible Likert classes),
and R indicates the reward signal that can be derived from
the the user-provided label L.

We employ the GP-UCB algorithm via the following general
procedure. First, we start at a heuristically determined prior
(the prior is represented by a Gaussian process, the Gaus-
sian process, in turn, is parametrised by a length scale; in
our six-dimensional parameter space of integers {1..5}, we
adopted a length scale of 1). Second, we query GP-UCB for
a new point P in the parameter space. Third, we procedu-
rally generate a level segment on the basis of the selected
parameter values P . Fourth, after a player has completed
the level segment, we query the player on a label L of the
experienced challenge, and use a label-to-reward mapping to
calculate a reward R on the basis of the label L. Fifth, we
store in the set of training instances the gameplay observa-
tions O, the parameters P that were used to generate the
observed level segment, the label L on the challenge experi-
enced by the user, and the reward R that was derived from
the label L. Sixth, we feed the parameters P (it being the
explored point in the parameter space) and the reward R

into the Gaussian process in order to compute the posterior
mean µ and standard deviation σ for some appropriately
chosen constant β (where β is chosen automatically by the
algorithm). Seventh, the posteriors are used to update the
global safe policy GSP ; it maximises the upper-confidence
bound on the expected experienced challenge of a level seg-
ment. Finally, we repeat from the second step. After the
desired number of iterations, we query the GP-UCB algo-
rithm to return the data point that maximizes the posterior
mean µ (i.e., the best result on average).

The user’s label L on the experienced challenge concerns a
5-point Likert questionnaire scheme. The adopted scale for
the DV challenge reads 1 = Extremely unchallenging for
me, 2 = Somewhat unchallenging for me, 3 = Appropriately
challenging for me, 4 = Somewhat challenging for me, and
5 = Extremely challenging for me. Given a user’s label L
on the experienced challenge, the reward R is calculated as
follows: label 3 yields a reward of 1.0, label 2 and 4 yield a
reward of 0.33, and label 1 and 5 yield a reward of 0.0.

Phase 2 – Learn the feedback model across users
from the generated set of training instances (offline)
The procedure adopted for learning the feedback model is il-
lustrated in Figure 2b. Given the intelligently generated set
of training instances (Phase 1), a random forest decision-
tree classifier [11] is built. The training instances concern
tuples of gameplay observations O, the procedural param-
eters P that were used to generate the observed level seg-
ment, and the labels L of the user’s experience when playing
the concerning segment. We refer to the built random forest
decision-tree classifier as a feedback model.

The feedback model can be queried to return a classifi-
cation C, in the form of a probability distribution of the
newly observed instance resulting from a challenging player-
experience. Given that the feedback model is trained over
five Likert-scale classes of challenge, the returned classifica-
tion C reflects the probability of observed behaviour result-
ing from these five classes. We will employ this classification
C as a reward signal when personalising the game space
online (in Phase 3). Specifically, given the classification C,
consisting of a vector p1..p5, the expectation of the reward
R is defined as:

E[R] =

5∑
c=1

rcpc (1)

where rc is the reward value for challenge class c (the heuris-
tic rewards defined in Phase 1, i.e., 0.0 for challenge class 1,



(a) Phase 1: Learn global safe policy, while
generating set of training instances (offline)

(b) Phase 2: Learn feedback model from
generated set of training instances (offline) (c) Phase 3: Personalise game space (online)

Figure 2: Approach to game-space personalisation (legenda explained in the text).

etc.), and pc is the probability of observed player behaviour
resulting from challenge class c.

Phase 3 – Personalise the game space to the indi-
vidual player (online)
The procedure adopted for game space personalisation is
illustrated in Figure 2c (and listed in Algorithm 1). GSP
indicates the global safe policy used for initialising the game
in online play (as learned by the GP-UCB algorithm, and
identical in structure to parameters P ), C indicates the clas-
sification of the player experience (a probability distribution
over the five Likert classes, as returned by the learned feed-
back model), and dk indicates the domain knowledge that
defines the effect of action features on the game experience
(as formalised in rules that mutate the parameter values).

The procedure is as follows. First, at the start of a game,
the global safe policy GSP learned in Phase 1 is employed
for generating the first level segment (it is appropriate in
expectation across users). Just before completion of a level
segment by the player (i.e., after having completed a seg-
ment length of 40 out of the total length of 50), gameplay
observations O are fed into the feedback model. The result-
ing classification C by the feedback model, is input to the
gradient ascent optimisation method, together with the ac-
tual gameplay observations O, the parameters GSP that
were used to generate the level segment, and the domain
knowledge dk on how to mutate which action feature. In the
gradient ascent method, the parameters GSP are mutated
into a direction that is more appropriate in expectation to
the challenge experienced by the player3. The resulting up-
dated GSP is fed into the procedural level segment genera-
tor. With a new level segment being generated, the process
now repeats.

3
In principle GP-UCB can be employed at this point too. However, in

light of user abandonment, exploring the state-space in online game-
play is unusually expensive. As such, we adopt gradient ascent opti-
misation as a practical method for representing and exploiting prior
domain knowledge for highly directed search in the action space.

We here discuss this procedure in some additional detail
(cf. Algorithm 1). Given the classification C of the feed-
back model (Line 7), the expected reward is calculated via
Equation 1 (Line 8). Using the expected reward R, together
with observations O and parameters GSP , the gradient as-
cent optimization routine is called (Line 9). Our gradient
ascent optimisation method is aimed at rapid convergence,
though acknowledging potential noise in the reward sig-
nal, it probabilistically re-evaluates the champion solution
(Line 17). Mutation of a solution takes place either via a
regular exploratory step (Line 38), or a guided exploratory
step (Line 34). Regular exploration employs a fixed step-size
δ, a uniform mutation probability for all vector elements,
and a uniformly randomised mutation direction. Guided ex-
ploration, however, adapts the step-size dependent on the
expected reward R, and utilises domain knowledge dk to
(1) specifically mutate certain vector elements more than
others, and (2) reason on which vector elements should be
mutated in which direction. For instance, in the case of Infi-
nite Mario Bros., it is known that ‘death by cannon bul-
let’ is correlated to the ‘number of cannons’. Consequently,
one particular rule in the domain knowledge defines that
when a player dies by a cannon bullet, the system should
with a high probability decrease the number of cannons in
the game space. As such, the guided exploration mechanism
is expected to result in more rapid convergence.

We are presently performing experiments that validate the
approach both in simulation studies and studies with human
game players.

Acknowledgements. The authors gratefully acknowledge
the contributions of George Viorel Vişniuc, Efstathios Char-
itos, Norbert Heijne, and Arjen Swellengrebel, who substan-
tially contributed to the codebase of the present research
project. Also, we would like to thank the following individ-
uals for their valuable input on diverse subjects: Masrour
Zoghi (GP-UCB), Anne Schuth (random forest classifiers),
and both Abdo El Ali and Frank Nack (setting up user stud-
ies).



Algorithm 1. Game space personalisation
Data: GSP ← Global safe policy; O ← Observations on the player interacting

with the game; α ← Exploitative gradient ascent step size; δ ←
Exploratory gradient ascent step size; re ← Probability of re-evaluating
champion; C ← Classification of user experience; E ← Expected reward
given classification C; dk ← Domain knowledge, i.e., rules for vector
mutation

1 function main()
2 begin
3 while running do
4 newLevelSegment ← generateNewLevelSegment(GSP);
5 play newLevelSegment;
6 if newLevelSegment has been played then
7 C ← queryFeedbackModel(O);
8 E ← getExpectedReward(C); (Equation 1)
9 GSP ← gradientAscent(O, GSP, E);

10 end

11 end

12 end

13 function gradientAscent(GSP, E, O)
14 begin
15 history.addChild(GSP, E);
16 if re < random() && history.getParent() 6= null then
17 GSPupdated ← history.getChampion();

18 else
19 if history.getParent() 6= null then
20 if E < history.getParent.E then
21 GSP ← history.getParent.GSP;
22 else
23 GSP ← history.getParent.GSP + α·abs(GSP -

history.getParent.GSP);
24 history.updateChild(GSP);

25 end

26 end
27 GSPupdated ← mutate(GSP, dk, O, E, guidedExploration);

28 end
29 return GSPupdated;

30 end

31 function mutate(GSP, dk, O, E, guidedExploration)
32 begin
33 if guidedExploration then
34 m[] ← setSmartMutationProbabilityPerElement(dk, O);
35 direction[] ← setSmartDirectionPerElement(dk, O);
36 stepSize ← 1 - E;

37 else
38 m[] ← setUniformMutationProbability();
39 direction[] ← setUniformRandomDirection();
40 stepSize ← δ;

41 end
42 return GSP + step(m[], direction[]), stepSize;

43 end

5. REFERENCES
[1] P. Auer. Using confidence bounds for

exploitation-exploration trade-offs. The Journal of Machine
Learning Research, 3:397–422, 2003.

[2] S. C. J. Bakkes, P. H. M. Spronck, and H. J. Van den
Herik. Rapid and reliable adaptation of video game AI.
IEEE Transactions on Computational Intelligence and AI
in Games, 1(2):93–104, 2009.

[3] S. C. J. Bakkes, P. H. M. Spronck, and G. van Lankveld.
Player behavioural modelling for video games.
Entertainment Computing, 3(3):71–79, 2012.

[4] S. C. J. Bakkes, C. T. Tan, and Y. Pisan. Personalised
gaming. Journal: Creative Technologies, 3, 2012.

[5] L. Breiman. Random forests. Machine learning, 45(1):5–32,
2001.

[6] D. Charles, M. McNeill, M. McAlister, M. Black, A. Moore,
K. Stringer, J. Kucklich, and A. Kerr. Player-centered
design: Player modeling and adaptive digital games. In
DiGRA, pages 285–298, 2005.

[7] W. Darley and J. Lim. The effect of consumers’ emotional
reactions on behavioral intention: The moderating role of
personal relevance and self-monitoring. Psychology and
Marketing, 9(4):329–346, 1992.

[8] P. Demasi and A. J. de. O. Cruz. Online coevolution for
action games. International Journal of Intelligent Games
and Simulation, 2(3):80–88, 2002.

[9] J. Dormans and S. C. J. Bakkes. Generating missions and
spaces for adaptable play experiences. IEEE Transactions
on Computational Intelligence and AI in Games,
3(3):216–228, sep 2011. Special Issue on Procedural
Content Generation, DOI 10.1109/TCIAIG.2011.2149523.

[10] J. Fürnkranz. Recent advances in machine learning and

game playing. ÖGAI-Journal, 26(2):19–28, 2007.

[11] T. K. Ho. Random decision forests. In Document Analysis
and Recognition, 1995., Proceedings of the Third
International Conference on, volume 1, pages 278–282.
IEEE, 1995.

[12] R. Hunicke and V. Chapman. AI for dynamic difficulty
adjustment in games. In AAAI Workshop on Challenges in
Game Artificial Intelligence, pages 91–96. AAAI Press,
Menlo Park, California, USA, 2004.

[13] S. Karakovskiy and J. Togelius. The Mario AI benchmark
and competitions. Computational Intelligence and AI in
Games, IEEE Transactions on, 4(1):55–67, 2012.

[14] P. D. Molyneux. The future of game AI - Lecture. Imperial
College London, London, UK, 2006. October 4, 2006.

[15] J. K. Olesen, G. N. Yannakakis, and J. Hallam. Real-time
challenge balance in an RTS game using rtNEAT. In
P. Hingston and L. Barone, editors, Proceedings of the
IEEE 2008 Symposium on Computational Intelligence and
Games (CIG’08), pages 87–94, 2008.

[16] C. Pedersen, J. Togelius, and G. N. Yannakakis. Modeling
Player Experience for Content Creation. IEEE
Transactions on Computational Intelligence and AI in
Games, 1(2):121–133, 2009.

[17] C. Pedersen, J. Togelius, and G. N. Yannakakis. Modeling
player experience in super mario bros. In Computational
Intelligence and Games, 2009. CIG 2009. IEEE
Symposium on, pages 132–139. IEEE, 2009.

[18] M. Persson. Infinite mario, 2009. [Online] Available:
http://www.mojang.com/notch/mario.

[19] R. Petty and J. Cacioppo. Issue involvement can increase
or decrease persuasion by enhancing message-relevant
cognitive responses. Journal of personality and social
psychology, 37(10):1915, 1979.

[20] M. Riedl. Scalable personalization of interactive experiences
through creative automation. Computers in Entertainment
(CIE), 8(4):26, 2010.

[21] N. Shaker, S. Asteriadis, G. N. Yannakakis, and
K. Karpouzis. A game-based corpus for analysing the
interplay between game context and player experience. In
Affective Computing and Intelligent Interaction, pages
547–556. Springer, 2011.

[22] N. Shaker, J. Togelius, and S. Karakovskiy. 2010 Mario AI
competition, 2010. [Online] Available:
http://www.marioai.org/.

[23] N. Shaker, G. N. Yannakakis, and J. Togelius.
Crowd-sourcing the aesthetics of platform games. IEEE
Transactions on Computational Intelligence and AI in
Games, 2012.

[24] N. Shaker, G. N. Yannakakis, and J. Togelius. Digging
deeper into platform game level design: session size and
sequential features. In Applications of Evolutionary
Computation, pages 275–284. Springer, 2012.

[25] G. Smith, M. Treanor, J. Whitehead, and M. Mateas.
Rhythm-based level generation for 2D platformers. In
Proceedings of the 2009 International Conference on the
Foundations of Digital Games, Orlando, FL, pages
175–182, 2009.

[26] P. H. M. Spronck, I. G. Sprinkhuizen-Kuyper, and E. O.
Postma. Difficulty scaling of game AI. In A. E. Rhalibi and
D. Van Welden, editors, Proceedings of the 5th
International Conference on Intelligent Games and
Simulation (GAMEON’2004), pages 33–37. EUROSIS-ETI,
Ghent University, Ghent, Belgium, 2004.

[27] N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger.
Gaussian process optimization in the bandit setting: No
regret and experimental design. arXiv preprint
arXiv:0912.3995, 2009.

[28] C. Teng. Customization, immersion satisfaction, and online
gamer loyalty. Computers in Human Behavior,
26(6):1547–1554, 2010.



[29] J. Togelius, S. Karakovskiy, and R. Baumgarten. The 2009
mario ai competition. In Evolutionary Computation
(CEC), 2010 IEEE Congress on, pages 1–8. IEEE, 2010.

[30] J. Togelius, M. Preuss, and G. N. Yannakakis. Towards
multiobjective procedural map generation. In Proceedings
of the 2010 International Conference on the Foundations
of Digital Games, Monterey, CA, page #3, 2010.

[31] H. J. Van den Herik, H. H. L. M. Donkers, and P. H. M.
Spronck. Opponent modelling and commercial games. In
G. Kendall and S. Lucas, editors, Proceedings of the IEEE
2005 Symposium on Computational Intelligence and
Games (CIG’05), pages 15–25, 2005.

[32] G. N. Yannakakis, M. Maragoudakis, and J. Hallam.
Preference learning for cognitive modeling: a case study on
entertainment preferences. IEEE Transactions on Systems,
Man, and Cybernetics, Part A: Systems and Humans,
39(6):1165–1175, 2009.


