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ABSTRACT
Mixed-initiative Procedural Content Generation uses algorithms to
assist human designers in the collaborative creation of game con-
tent. Different mixed-initiative approaches use different methods
to engage with the design material while supporting the designer’s
intentions. However, the designer runs the risk of misunderstand-
ing the system’s abilities and how to control them. In order to limit
miscommunication during the design process, heuristics could be
applied.

In this paper we present a mixed-initiative tool for evolving
dungeons with the aid of game design patterns as heuristics. The
tool, the Evolutionary Dungeon Designer, uses a genetic algorithm
that searches for levels containing game design patterns on two
hierarchical levels of abstraction to express more complex gameplay
in the game level.

We evaluate the tool through a series of lab experiments and
a user study conducted with professional game developers. Our
results demonstrate that we are able to control the generation of
the different patterns with the aid of design pattern-related input
parameters, as well as identifying a number of features a design
pattern-based mixed-initiative tool could benefit from.

CCS CONCEPTS
• Theory of computation → Evolutionary algorithms; • Ap-
plied computing → Computer games; • Software and its en-
gineering→ Interactive games; •Computingmethodologies
→ Search methodologies;

KEYWORDS
Procedural Content Generation, Evolutionary Algorithms, Game
Design Patterns, Mixed-Initiative Design.
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1 INTRODUCTION
Since its first implementations in the early 1980’s [6, 34], Proce-
dural Content Generation (PCG) has already become one of the
common techniques applied to the automatic generation of content
for games [28], such as weapons [16], maps [22], race tracks [32],
levels [13], and even game rules [7]. Cost reduction, in-game con-
tent generation, and user-tailored content can be found among its
main advantages [29]. Search-based PCG is defined as the family
of PCG methods using a search-based approach that is guided to-
wards a predefined set of goals specified by a fitness or evaluation
function [33].

In particular, PCG research has produced several different ap-
proaches for generating dungeon levels, a popular level design
archetype found in games such as the Legend of Zelda [25] series
and Diablo [5]. These approaches include both constructive and
search-based approaches: space partitioning, agent-based meth-
ods [28], cellular automata [18], grammars [13, 35], and mutation-
based graph evolution [19].

Since game and level designers are potential users of PCG-tools,
mixed-initiative approaches arose as a way of involving human
input in the automated generation process [26, 33, 36]. Designers
act as an active part of the search process. In some cases, such as in
Galactic Arms Race [16] or Unexplored [14], players act as designers
implicitly as they play the game. On the other hand, authoring tools
like Ropposum [27], Tanagra [31], or The Sentient Sketchbook [22]
ask the user to explicitly input their design criteria at different
stages of the evolutionary process.

Some methods have combined PCG with Game Design Patterns
(GDP) [4], as semi-formal interdependent descriptions of commonly
reoccurring parts of the design of a game that concern gameplay.
Specific taxonomies to different game genres have been developed,
including platform games [9], first person shooters [17], and role
playing games [8]. Rather than using design patterns as building
blocks for content creation, Dahlskog and Togelius [10] suggest
applying design patterns as objectives for a PCG generator. Such
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approaches may provide game designers a better understanding of
the mixed-initiative generation, enhancing creativity while giving
designers more control over the whole process.

In this paper we present the current development of the Evo-
lutionary Dungeon Designer (EDD) [2], a pattern-based mixed-
initiative PCG tool where the user takes the role of a level designer
to design dungeons for fantasy role playing games. Section 2 sum-
marizes the previous contributions to this work, Section 3 describes
the current status of the EDD, while Section 4 presents the results
from both laboratory experiments and a user study. Our conclusions
and suggestions for future work are presented in Section 5.

2 PREVIOUS WORK
In this section, we present a summary of the preceding research
on game design patterns and mixed-initiative level generation, to
which the presented current state of the Evolutionary Dungeon
Designer acts as a continuation.

2.1 Game Design Patterns
Initially derived from Design Patterns [1] in architecture, Kreimeier
[21] proposed the use of Game Design Patterns (GDP) as a tool
to design and understand games. Björk & Holopainen gathered
a pattern collection bordering on 300 patterns [3, 4] covering a
variety of aspects including goals and interaction patterns in games.
Over the years GDP have been explored in more specific domains,
like the game genres First Person Shooters [17] and Role-Playing
Games [30]. Practical uses of GDP include teaching and communi-
cating design aspects of games. However, GDP can of course be used
in more concrete design activities like brainstorming, exploration
and fine-tuning of actual design decisions.

Björk & Holopainen argue that patterns collectively create hier-
archies, due to the presence of patterns that instantiate or are in-
stantiated by other patterns. Other effects in a given design instance
may cause patterns to modulate other patterns. As a consequence
Björk & Holopainen use the terms: “higher-level” and “lower-level”
patterns to indicate these relations [4].

Previously, PCG and GDP have been used together to generate
levels for the 2D-platform game Super Mario Bros.(SMB) [10–12].
An approach using a hierarchy of patterns was suggested [11],
in order to generate content that is similar to the orginal game.
The hierarchy consist of three levels: micro-, meso-, and macro-
patterns, where higher level patterns consist of combinations of
low level patterns and express more complex gameplay scenarios.
This provides structure through a rather open design heuristic
when using the GDP as objectives in a search-based PCG approach.
Dahlskog et al. define a collection of patterns from the dungeon
domain [8], with the goal of providing a sufficient level of detail
to use them in a generator – one example of such generator is our
previous work on EDD [2].

2.2 The Evolutionary World Designer
The Evolutionary World Designer (EWD) [15] presents a grammat-
ical evolution system as a way of describing and evolving world
maps for adventure-like games using context-free grammars. This

search-based approach that avoids generating infeasible individu-
als, guaranteeing solvability of the levels and allowing some level
of control to the designer.

A world is represented as an acyclic graph whose nodes are
interconnected sections of it. Each node then encloses a specific
dungeon represented as a separated cyclic graph, whose nodes are
the rooms that compose it. The world graph is first evolved, then a
separate evolutionary process is run for each of the dungeon graphs
to be generated.

The designer sets up initial parameters regarding the number of
world sections, as well as the number of enemies, treasures, and
rooms per section. These rooms are automatically populated with
enemies, treasures, and keys that grant access to the subsequent
world sections, but the exact placement of these elements inside
the room is missing, as well as the placement of any kind of wall
structures or aesthetic components.

2.3 The Evolutionary Dungeon Designer
The Evolutionary Dungeon Designer (EDD) [2], goes one step fur-
ther than the EWD, generating the specific content for each of the
rooms in the generated dungeons. This is implemented by a FI-
2Pop GA [20], where game design patterns are used both as input
parameters and objectives. The first release of this tool involves the
following micro-patterns in the generated rooms: enemy, treasure,
chamber, corridor, connector, entrance, and door. Additionally, a
playability constraint is defined so that a playable room must con-
tain at least one treasure and one enemy, as well as paths between
the entrance and all other doors, treasure and enemies.

Given this, the generated rooms are evolved in two different
populations (feasible and infeasible), which are evaluated according
to different fitness functions. Feasible rooms are evaluated by as-
signing a quality measure to each pattern, which allows designers
to achieve finer control over the nature of the patterns found in the
generated room. Infeasible rooms are evaluated according to how
close they are to fulfilling the playability constraint. The experi-
ments on this version were satisfactory at validating the system in
terms of fitness optimization, pattern detection, and solution diver-
sity. A sufficient level of control over the results was also provided
to the designer.

In this work, we present an extended version of EDD which
involves meso-patterns as a core feature of the room generation
process, and also presents the generated rooms in a mixed-initiative
tool that allows a greater degree of interaction between the designer
and the generator in the creation process.

3 THE MIXED-INITIATIVE EVOLUTIONARY
DUNGEON DESIGNER

3.1 System Overview and Workflow
EDD is a mixed-initiative dungeon generator that takes advantage
of the combination of artificial intelligence techniques with the
natural intuition and creativity of human designers. Simplicity was
a primary consideration in the design of this tool, in order to reduce
the need for laborious and potentially unintuitive tweaking of the
underlying generation algorithms.

For this reason, EDD provides a workflow in which the user is
presented with a number of widely varied suggestions of possible
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Figure 1: The room suggestion view.

maps and can then follow an iterative process of regeneration and
manual refinement to create a room that satisfies their expectations.
The tool is divided into two distinct interfaces: the room suggestion
view (Figure 1) and the room editing view (Figure 2).

After opening EDD, the room suggestion view presents six rooms
generated using different configuration files selected from a small
pool of diverse candidates, with the goal of acting as a starting
point for the mixed-initiative generation process. If none of the
generated rooms are interesting, six new ones can be generated.
After clicking on one of the suggestions, it is loaded in the room
editing view.

Figure 2: The room editing view.

The editing view is the main interface for generating new room
suggestions, manually editing rooms and viewing the game de-
sign patterns contained in a generated or edited room. The basic
functionality of this view is highlighted in Figure 2, including:

(1) A larger, manually editable version of the selected map.
(2) A toolbox of tiles that can be painted onto the map. Note

that only floor, walls, treasure and enemies can be placed
in this fashion. Door positions are fixed and cannot be
changed.

(3) The Show patterns button overlays the map with a view of
the patterns it contains – see Figure 3 for more details.

(4) The Generate maps button will generate four maps based
on the map being edited.

(5) Newly generated maps appear here and can be selected to
replace the currently chosen map in order to edit them.

(6) A legend explaining the meaning of the icons shown in
the pattern overlay.

The four suggested rooms are generated by following two strate-
gies based on the current map. Two maps are generated using a new
configuration based on the proportion and type of design patterns
detected in the current map. The remaining two suggestions are
also generated using a configuration computed in the same way,
but each run is seeded with individuals that are mutated versions
of the current map.

By employing these two types of mutation we aim to produce
two different types of suggestions: rooms containing a similar distri-
bution of game design patterns to the original room for the former
approach and rooms that visually resemble the original room and
contain a similar distribution of game design patterns for the latter
approach.

Figure 3: The room editing view with pattern overlay en-
abled. Spacial micro-patterns are displayed as blocks of
colour, blue for chambers, red for corridors and yellow
for connectors. Black lines show the pattern-graph for the
room, where meso-pattern icons are overlaid.

As an aid to the understanding of the gameplay afforded by
generated rooms, users can view a pattern overlay, as shown in
Figure 3. This overlay is automatically updated as the room is
edited, so edits can be made with the overlay visible, providing
rapid feedback on how changes to the layout of the room affect the
resulting gameplay. Rooms are edited by changing existing tiles to
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one of the other tile types: floor, wall, treasure and enemy. Door
positions are locked and cannot be changed (except by starting a
new generation process) or overwritten. In the case that the user
creates an unplayable room (that is, the room does not satisfy the
playability constraint [2]), the room is highlighted with a red border,
but new rooms may still be generated based on this unplayable
room.

3.2 Pattern Detection
EDD optimizes rooms for the occurrence of micro- and meso-
patterns, while excluding macro-patterns, since macro-patterns are
generally on the scale of entire levels [8]. As meso-patterns are built
upon combinations of micro-patterns, detecting these patterns is a
process in multiple stages in which we first detect micro-patterns
and then use these to identify the meso-patterns that contain them.

We differentiate between micro-patterns that deal with the
layout of space (passable tiles) in the level and those that deal with
the contents of that space. As mentioned in Section 2.3, in the
former category – spacial micro-patterns – EDD detects corridor,
connector and room, (referred to room as chamber for the sake of
clarity). The second category – inventorial micro-patterns – consists
of the remaining passable tile types: door, treasure and enemy. How
EDD detects and involves these micro-patterns in the evaluation
function is not the focus of the present work, being related in detail
in [2].

In order to detect meso-patterns, which are defined by how
micro-patterns or other meso-patterns relate to each other in space,
or by what inventorial micro-patterns they contain, we require a
means of analysing these properties of the detected micro-patterns.
To do this we construct a pattern-graph (using a breadth-first search
starting at the room’s entrance), where vertices are spacial micro-
patterns and edges represent adjacency between the spacial pat-
terns’ tiles. The constructed graph (Figure 3) can be cyclic and two
vertices (patterns) may be connected by multiple edges, signifying
that there exist multiple direct paths between the two patterns.
Each edge is weighted according to the number of adjacent tiles
and will generally have a weight of either one or two.

(a) Ambush (b) Guard
Chamber

(c) Treasure
Chamber

(d) Guarded
Treasure

Figure 4: Icons shown in EDD to represent the presence of
four of the five meso-pattern types.

The detected meso-patterns are treasure chamber, guard chamber,
ambush, dead end, and guarded treasure. These are highlighted by
icons representing the meso-pattern type (Figure 4). The icons are
drawn in the location of the chamber contained in the pattern or, in
the case of the guarded treasure, which includes multiple chambers,
the icon is drawn in the included treasure chamber. Note that dead
ends are not represented by an icon, since they can cover a large

(a) (b)

Figure 5: a) A room that contains a treasure chamber with
exactly two treasures. b) The pattern-overlay view with the
corresponding icon.

(a) (b)

Figure 6: a) A room that contains a guard chamberwith three
guards. b) The pattern-overlay view with the corresponding
icon.

area of the map. They instead are represented by black dots in the
center of the patterns that belong to a dead end.

3.2.1 Treasure Chamber. We define a treasure chamber as a
chamber containing two or more treasure tiles and no enemies.
While this can be interpreted as a chamber containing multiple
discrete treasures, this pattern could also be used to denote a room
containing a single particularly valuable or useful item and could
be seen as similar to The Binding of Isaac’s item rooms, which are
guaranteed to contain a special item for the player to collect [24].

Quality for treasure chambers is defined by how close the number
of treasures in the chamber is to a user-defined target number,
Tchamber treasure and is calculated (for a treasure chamber p) as:

Q(p) = max
{
0, 1 −

����Nt −Tchamber treasure
Tchamber treasure

����} (1)

By adjusting the target number of treasure tiles in the whole
room and the desired number of treasures in a treasure chamber,
the user is given some control over how treasure is distributed
throughout the room.

3.2.2 Guard Chamber. We define a guard chamber as a chamber
containing two or more enemy tiles and no treasures. As with the
treasure chamber pattern, this could be interpreted literally as a
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(a) (b)

Figure 7: a) A room that contains an ambush: a chamber
containing a guard and the room’s entrance. b) The pattern-
overlay viewwith the corresponding icon. Note that themap
also contains a treasure chamber on the left.

number of discrete enemies or be used to represent particularly
challenging enemies (such as bosses or mini-bosses), depending on
the number of enemies in the chamber.

Quality for guard chambers is defined by how close the num-
ber of guards in the chamber is to a user-defined target number,
Tchamberenemies and is calculated (for a guard chamber p) as:

Q(p) = max
{
0, 1 −

����Ne −Tchamberenemies
Tchamberenemies

����} (2)

3.2.3 Ambush. We define an ambush as a chamber containing
both the room’smain entrance and at least one enemy. Conceptually,
this represents a room in which the player will have to engage in
combat (or flee) immediately upon entering and, depending on the
number of enemies, may significantly increase the challenge of the
room.

Quality for ambushes is defined by how close the number of
guards in the chamber is to a user-defined target number,Tambushenemies
and is calculated (for an ambush p) as:

Q(p) = max
{
0, 1 −

����Ne −Tambushenemies
Tambushenemies

����} (3)

3.2.4 Dead End. Dahlskog et al. define dead ends as “locations
from which players must move through previously explored ar-
eas.” [8]. While this definition invites a number of potential inter-
pretations, we consider a spacial micro-pattern to be part of a dead
end if and only if every path from that pattern to the room’s critical
path passes through a single pattern (where the critical path for the
pattern graph is the shortest path connecting all the room’s doors).
To find dead ends, we first calculate the pattern graph’s critical path.
Then, for every pattern in the critical path, we execute a breadth
first search of adjacent patterns not in the critical path. For each
such pattern, if the edge traversed to reach it is not in a cycle, then
all other connected unvisited patterns not in the critical path make
up a dead end.

Dahlskog et al. also note that an area might be considered less of
a dead end if it contains interesting gameplay [8]. We encapsulate
this idea in the quality measure for dead ends by rewarding dead
ends that contain other meso-patterns (such as a dead end that

(a) (b)

Figure 8: a) A room generated with a high penalty for dead
ends. The pattern graph for this room, shown in b), indicates
that the roomcontains no dead ends.Multiple possible paths
exist connecting the three doors, giving the player the op-
tion of bypassing the enemies.

(a) (b)

Figure 9: a) A room generated with no penalty for dead
ends. The pattern graph for this room, shown in b) indi-
cates that most of the room’s patterns are included in dead
ends (shown by the black dot in the centre of these patterns).
There is only one path between the three doors and large
parts of the room are optional.

contains a treasure chamber or a guard chamber). However, it may
in some cases be desirable to create dead ends that do not contain
anything interesting, in order to create a maze-like room layout. For
this reason we allow the user to specify the proportion of patterns
in a dead end that should also be contained in other meso-patterns
and use this to define the function Density(p) for a dead end p as:

Density(p) = 1 − 1
max{TDEdensity , 1 −TDEdensity }

·
����Nmp

Nsp
−TDEdensity

���� (4)

where Nmp is the number of meso-patterns present in the dead
end and Nsp is the total number of spacial patterns present in the
dead end.

The presence of dead ends in a room may also dictate whether
or not there are alternative paths between the doors. A room with
a high proportion of dead ends (such as Figure 9) may have a single
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path connecting the doors, while a room with no dead ends (such
as Figure 8) may present alternative paths, potentially allowing
players to bypass difficult sections while still traversing the room.
To provide control over how likely dead ends are to appear in a
room at all, we employ a user-defined penalty Pde ≥ 0 to be applied
to detected dead ends.

Combining these elements, the quality of a dead end is defined
(for a dead end p) as:

Q(p) = 1
2
(1 + Density(p) − Pde ) (5)

(a) (b)

Figure 10: a) A room containing the guarded treasure meso-
pattern: a treasure chamber in a dead end such that the
playermust pass through a guard chamber to access the trea-
sure chamber. b) The pattern overlay view, where the guard
chamber in the center and the treasure chamber in the up-
per right (heremarkedwith the guarded treasure icon)make
up a guarded treasure pattern. The black dots in the graph
indicate that these patterns are part of a dead-end.

3.2.5 Guarded Treasure. In addition to the previousmeso-patterns
based on Dahlskog et al.’s definitions, we define one original meso-
pattern, guarded treasure with the goal of investigating a meso-
pattern constructed purely from other meso-patterns, rather than
micro-patterns or a combination of the two. Patterns like this are a
step closer to Dahlskog et al.’s more abstract macro-patterns, which
describe extended sections of gameplay dependent on multiple
lower-level patterns [8]. A guarded treasure is a treasure chamber
situated in a dead end, such that all paths from the treasure cham-
ber out of the dead end pass through at least one guard chamber
(Figure 10). The pattern encapsulates the idea of risk vs. reward:
the player does not have to enter the dead end in order to access
the room’s doors, but can choose to take a risk fighting the enemies
in the guard chamber in order to collect the treasure.

We detect a guarded treasure by locating treasure chambers
inside previously detected dead ends. From each such treasure
chamber, we execute a breadth-first search on the pattern graph,
searching for a node that is not part of the dead end. If all such paths
pass through a guard chamber, the treasure chamber is considered
a guarded treasure.

Quality for guarded treasure is defined by how close the number
of guards that must be passed in order to access the treasure is to

a user-defined target number, Tdeadendenemies and is calculated
(for a guarded treasure p) as:

Q(p) = max
{
0, 1 −

����Ne −Tdeadendenemies
Tdeadendenemies

����} (6)

3.3 Evaluation of feasible individuals
The genetic algorithm optimizes feasible individuals (rooms) to
increase their fitness, which is a value between zero and one, one
being the maximum possible fitness. This fitness is a linear com-
bination of two functions, finv (r ) and fspacial (r ), which evaluate
desirable features of dungeon rooms. finv (r ) evaluates inventorial
patterns, such as the placement of enemy and treasure tiles in the
room, relative to each other, the doors and the overall layout of the
room. fspacial (r ) evaluates the frequency of occurrence (in terms
of tile area) and quality of design patterns detected in the room.

Since meso-patterns do not necessarily correspond to a specific
set of tiles, their qualities are instead used to modify the quality
of the spacial micro-patterns they contain. After this modification,
the quality of a spacial pattern is a linear combination of its own
quality and the sum of the qualities of any meso patterns it is in
(capped at 1). So, for example, a chamber that is not also part of a
meso-pattern has its quality capped at 0.9, while if that chamber is
part of the treasure-chamber meso-pattern, it may reach a quality
of 1.

3.3.1 Inventorial Pattern Fitness. Inventorial pattern fitness finv (r )
for a room r is calculated as a linear combination of the sums of
the qualities of each pattern type.

finv (r ) =
1
5

∑
p∈D

Q(p) + 2
5

∑
p∈E

Q(p) + 2
5

∑
p∈T

Q(p) (7)

Where D, E and T are the sets of all doors, enemies and treasures,
respectively.

3.3.2 Spacial Pattern Fitness. Spacial Pattern fitness fspacial (r )
is a measure of the frequency and quality of design patterns de-
tected in a room and is a linear combination of two other functions,
fchamber (r ), which evaluates the fitness of detected chambers and
fcorr idor (r ), which evaluates the fitness of detected corridors and
connectors. This fitness can be seen as a measure of how closely a
room adheres to user-defined target values for the proportion and
quality-parameters of each design pattern. The final quality of a
spacial micro-pattern p is a linear combination of its own quality
and the quality of the meso-patterns it appears in,MesoQ(p), which
is defined as:

MesoQ(p) = min

{
1,

∑
m:p∈m

Q(m)
}

(8)

WChambers(r ) then calculates the proportion of passable tiles
in a room r that are in chambers, weighted by the quality of those
chambers and the meso-patterns that include the chambers as:
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WChambers(r ) =
∑

pchamber ∈r

( 9
10 ·Q(pchamber )

NP

+

1
10 ·MesoQ(pchamber )) ∗Area(pchamber )

NP

) (9)

where pchamber is a detected chamber pattern and NP is the
number of passable tiles in the room. This is used to calculate
the chamber fitness as the degree to which the proportion of
chambers differs from a user-defined target proportion Tchamber
as:

fchamber (r ) = 1 −
���� WChambers(r ) −Tchamber
max{Tchamber , 1 −Tchamber }

���� (10)

WCorridors(r ) calculates the proportion of passable tiles in a
room that are in corridors or connectors, weighted by the quality
of those corridors/connectors as:

WCorridors(r ) =
∑

pcorr idor ∈r

( 9
10 ·Q(pcorr idor )

NP

+

1
10 ·MesoQ(pcorr idor ) ∗Area(pcorr idor )

NP

)
+

∑
pconnector )∈r

( 9
10 ·Q(pconnector

NP

+

1
10 ·MesoQ(pconnector ) ∗Area(pconnector )

NP

)
(11)

where pcorr idor is a detected corridor pattern and pconnector is
a detected connector pattern. This is used to calculate the corridor
fitness as the degree towhich the proportion of corridors (including
connectors) differs from a user-defined target proportionTcorr idor
as:

fcorr idor (r ) = 1 −
���� WCorridors(r ) −Tcorr idor
max{Tcorr idor , 1 −Tcorr idor }

���� (12)

Combining these two fitness functions (using weights deter-
mined through a process of experimentation), we arrive at the
pattern fitness:

fspacial (r ) =
3
10

fchamber (r ) +
7
10

fcorr idor (r ) (13)

3.3.3 Feasible fitness. Combining the inventorial pattern fitness
with the spacial pattern fitness, the overall fitness of a feasible
individual, also named as the feasible fitness score, is calculated
as:

ff easible (r ) =
1
2
finv (r ) +

1
2
fspacial (r ) (14)

3.4 Evaluation of Infeasible Individuals
The infeasible fitness score evaluates individuals that do not
satisfy the playability constraint. Rooms that are closer to fulfilling

the playability constraint will be awarded higher fitnesses. The
fitness finf easible (r ) is calculated as

finf easible (r ) = 1 − 1
3

(
Nepath

NE
+
Ntpath

NT
+
Ndpath

D

)
(15)

where Nepath ,Ntpath , and Ndpath are the number of enemies,
treasures, and doors respectively for which there is no path to the
main entrance and the best fitness is 1. D is the number of doors
excluding the main entrance.

4 EVALUATION
4.1 Diversity and Controllability
We conducted a set of experiments in order test the extent to which
the generator is able to optimize rooms to include the presented
patterns. These experiments aim for analyzing the diversity of the
solutions reached as well as the degree of controllability offered to
the user. Each experiment used a total population of 150 individuals,
split evenly into feasible and infeasible populations. Each run was
terminated after 150 generations. Rooms were 12x12 tiles. For each
set of input parameters, 100 runs were executed using 31 represen-
tative combinations of the following input parameters (see [2] for
more details on the first five): Tchamber , Tcorr idor , Tchamberarea ,
Ttr easure , Tenemies , and Pde . Note that Ttr easure and Tenemies
represent ranges and are denoted in the form Ttr easure = [a,b]
for brevity. Since these experiments analyze the expressiveness of
the generator, the following results are produced only by means of
evolution, without any kind of manual edition.

(a) (b)

Figure 11: (a) Optimal solution for the configuration: Pde = 0,
Tchamber = 0.5, Tcorr idor = 0.5, Tchamberarea = 9, Ttr easure =
[0.04, 0.05], Tenemies = [0.04, 0.05]. (b) The pattern overlay
view for this solution, indicating that a large proportion of
the room consists of dead ends.

Figure 11 shows the results for a series of runs where dead ends
were not penalized at all. It was our experience during prototyping
that the default behavior of the generator is to create maps with
pattern graphs that do not contain cycles (and, as such, are likely
to contain dead ends). As illustrated in Figure 12 and Figure 13, by
manipulating Pde we can control the likeliness for branching paths
and optional areas to appear.

The results obtained show that, on average, the proportion of
dead ends generated is inversely proportional to the value of the
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(a) (b)

Figure 12: (a) Optimal solution for the configuration: Pde = 3,
Tchamber = 0.5, Tcorr idor = 0.5, Tchamberarea = 9, Ttr easure =
[0.04, 0.05], Tenemies = [0.04, 0.05]. (b) The pattern overlay
view for this solution, where, while there are a number of
minor dead ends, the majority of the room consists of two
branching paths.

(a) (b)

Figure 13: (a) Optimal solution for the configuration: Pde =
10, Tchamber = 0.5, Tcorr idor = 0.5, Tchamberarea = 9,
Ttr easure = [0.04, 0.05], Tenemies = [0.04, 0.05]. (b) The pattern
overlay view for this solution, indicating that there are no
dead ends and there are many alternative routes by which
to traverse the room.

dead end penalty. This varies from a maximum 38% of passable tiles
belonging to dead ends when Pde = 0, to less than 0.05% of tiles
when Pde = 10.

The remaining meso-patterns are evaluated in terms of their
occurrence, not being meaningful to consider the proportion of
the room that is made up of these patterns, since it will be largely
dependent on details of the micro-patterns in the room.

Figure 14 shows the meso-pattern counts for a configuration
generating mainly chambers. Including the meso-patterns guard
chamber and treasure chamber has encouraged the formation of
chambers containing either treasure or enemies rather than a com-
bination of both. In this case, the algorithm increases the number
of both guard chambers and treasure chambers, with an average of
about 1.42 of each in a room of this configuration. Guarded treasures
are also generated by this configuration, with an average of 0.1 per
room (since it is very unlikely that two guarded treasures will occur

(a) (b)

Figure 14: (a) Optimal solution for the configuration: Pde = 3,
Tchamber = 0.5, Tcorr idor = 0.5, Tchamberarea = 9, Ttr easure =
[0.04, 0.05], Tenemies = [0.04, 0.05]. (b) The pattern overlay
view for this solution.

in a single room of this size, this essentially means that 10% of maps
generated with this configuration contained one guarded treasure).
The average number of ambushes arrives at an average of 0.34 (or
one in every three rooms). These four meso-patterns have little
impact on the layout of spacial micro-patterns, but rather control
the distribution of inventorial micro-patterns, so if the entrance
does not happen to be in a chamber, an ambush will not be present.

When the target number of treasures is tripled, fromTtr easure =
[0.04, 0.05] (Figure 14) to Ttr easure = [0.12, 0.15] (Figure 15), the
number of detected treasure rooms increases to an average count of
4.34. This also increases the number of guarded treasures from 0.1 to
0.25. A similar increase in guard chambers occurs when increasing
the target number of enemies.

(a) (b)

Figure 15: (a) Optimal solution for the configuration: Pde = 3,
Tchamber = 1, Tcorr idor = 0, Tchamberarea = 9, Ttr easure =
[0.12, 0.15], Tenemies = [0.04, 0.05]. (b) The pattern overlay
view for this solution.

Generating rooms with lower proportions of chambers (Fig-
ure 16) leads to a lower occurrence of these chamber-centric meso-
patterns, settling around an average count of 0.57. Ambushes are
also less frequent, as it is less likely that the entrance will be part of
a chamber. Guarded treasures were not found in any of the optimal
solutions.
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(a) (b)

Figure 16: (a) Optimal solution for the configuration: Pde = 3,
Tchamber = 0.5, Tcorr idor = 0.5, Tchamberarea = 9, Ttr easure =
[0.04, 0.05], Tenemies = [0.04, 0.05]. (b) The pattern overlay
view for this solution. A lower proportion of chambers in
the roomhasmade chamber-basedmeso-patterns less likely
to appear.

4.2 User Study
A user study was also conducted in order to assess the relevance
of the mixed-initiative PCG component. Five representatives from
four different branches of the game development industry (level
design, engine programming, animation, and user research) partici-
pated in the tests. Separately, these participants were introduced to
the tool by means of a brief description and a short demo of its func-
tionality. After filling in a pre-questionnaire on their background,
each participant was asked to design three rooms that would be part
of the same dungeon level showing progression (e.g. in difficulty)
between the rooms. Each room was modeled as a square of 11 by
11 tiles with three doors in fixed positions.

The nature of the dungeon and the rooms was left to the par-
ticipant’s imagination. No further information was given on the
layout of the individual rooms. Similarly, no information was given
regarding the nature of the enemies and treasures in advance. The
enemies and treasures were considered generic place holders, giv-
ing the participant the opportunity to make of them what they
wanted. All the generated maps were saved for an analysis and a
discussion conducted in a structured interview with the participant
after this phase. An observer kept notes of what the participant
was doing, providing additional data for the later analysis.

From the pre-questionnaire it is extracted that the term game
design pattern was only familiar to one of the participants, suggest-
ing a need to more deeply investigate the principles and language
used in professional level design situations in order to communicate
these concepts in a language level designers understand. Besides,
only one of the participants had prior experience of using artificial
intelligence-assisted level design tools.

The approach taken to accomplish the task varied considerably
between the participants. Whereas the designers tended to use the
initially selected maps as templates for further development, the
other participants tended to select maps based on emptiness in
order to start off each room design with a clean slate. The workflow
followed by the programmer most closely matched the kind of

workflow the EDD tool was originally intended to cater to, described
in Section 3.1.

Four out of five considered EDD as an interesting and time-saving
tool for designing dungeons, and also expressed the importance of
visualizing and working with patterns for this task, specially the
dead end. Nevertheless, one participant actively tried to construct
rooms containing patterns not previously described, which the tool
then failed to recognize. Two of the participants expressed a wish to
being able to define new patterns or redefine existing ones, e.g. the
dimensions of a corridor or the constitution of a guarded treasure,
which most participants interpreted as being a treasure with an
adjacent enemy. All in all, four out of five participants considered
the pattern detecting capabilities important, with the dead end
pattern being deemed extra important.

When asked about what is missing from the tool, four partici-
pants mentioned the importance of displaying a graph-like view
that connects all the designed rooms into one large dungeon. Three
of them considered that the manually edited content should not
be altered by the evolved suggestions. Interestingly, two of these
considered aesthetics as a very important criterion while design-
ing levels, while the others disregarded this in favor of gameplay.
These two also emphasized the importance of preserving a man-
ually designed symmetry in the suggestions offered, arguing that
the evolved suggestions appeared to be unrelated to the edited
room. The level designers mentioned that they lacked information
regarding the game type and game mechanics, e.g. the nature and
behavior of the enemies or the meaning of the treasures, which is
highly relevant when designing levels.

None of the participants used the pattern overlay frequently.
Some of them expressed a perceived lack of usefulness for pattern
visualization in the relatively small rooms they were expected to
work with. Nonetheless, the same participants expressed that the
pattern display would be useful in larger rooms to more easily grasp
the layout and nature of those larger rooms, particularly in terms
of the possible paths through the room.

5 CONCLUSIONS AND FUTUREWORK
We have presented the latest iteration of the Evolutionary Dungeon
Designer, in which we explore how game design patterns can be
used in a procedural dungeon generator in order to generate levels
based on the type of gameplay they contain, as well as to examine
how this can be used in a mixed-initiative level generator as a
means of facilitating collaboration between human designers and
PCG algorithms.

We have extended the results in [2] to the detection and genera-
tion of meso-patterns based on micro-patterns, showing that the
level of diversity and controllability achieved by EDD is sufficient
to drive an evolutionary mixed-initiative level design tool. While
doing this, as an additional contribution, our method refines the
pattern definitions presented in [8] to the level of detail necessary
to build a pattern-based dungeon generator. The presented graph-
based solution provides an understandable way of presenting micro
and meso-patterns, as well as a useful framework for working with
them in the context of search-based problems.
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As a mixed-initiative level generator, EDD provides a workflow
in which, through the use of game design patterns, room sugges-
tions are generated to provide a starting point to work with that is
of a higher quality than a suggestion simply generated at random
or a blank canvas. Users stated that they felt that this approach pro-
vides inspiration and could save time, since designers do not need
to manually alter as much of the room as they otherwise might.

We notice that users expect rooms suggested based on one of
their own designs to preserve the design’s essence to a higher
degree, both in terms of gameplay/game design patterns and the
aesthetics in the room. To facilitate this, the generator could allow
designers to define their own patterns, so that they can be later
detected, preserved, and promoted. As suggested by Liapis et al. [23],
designer modeling could also be used in a mixed-initiative tool in
order to better tailor generated content to the user by, for example,
emphasizing aesthetics when being used by a designer who favors
these features. Alternatively, automatically detecting new patterns
based on the user’s manual design choices could provide more
meaningful suggestions from the user’s perspective, as well as
enhancing the utility of the tool’s pattern visualization function.

The user study also revealed some interesting features to be
included in the next iteration of the software. Enemies that behave
differently and thus provide different gameplay were found to play
a major role in how designers choose to design a level – as such,
it would be valuable to include the means of generating/designing
multiple enemy types with different behaviour. The inclusion of
locked doors and keys would also expand the possibilities for in-
teresting gameplay. A world-like view that presents the designed
rooms in an interconnected fashion is also desirable for providing
the designer with more context about the entire level. As this work
exists as an extension to the previous Evolutionary World Designer
project [15], which generates higher level dungeon layouts (above
the room level), a next step is to integrate this with EDD so that
full dungeon levels can be evolved, starting from the larger context
and then moving on to the specifics of each room.
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