
Lessons in User Interface Design in the Procedural
City Generation for Games Tool Ürban PAD

Lionel Barret
∗

and Claudia Vance
†

Gamr7 SAS
9 rue de la Monnaie
Lyon 69002, France

{lionel, claudia}@gamr7.com

G. Michael Youngblood
‡

University of North Carolina at Charlotte
Computer Science, 9201 University City Blvd.

Charlotte, NC 28223-0001 USA
youngbld@uncc.edu

ABSTRACT
Procedural content generation design often involves config-
uring an array of abstract choices at each stage of the cre-
ation process. For new tools users, or for a non-specialist
user, these choices are often complex and uncertain. A
good interface that guides the user in their choices helps
overcome this uncertainty and subsequent frustration with
the process of generating procedural content. Since good
user interface (UI) experiences facilitate adoption, procedu-
ral software tool developers constantly refine UI design in
order to accommodate the engineering demands of procedu-
ral content generation architecture and translate them into
a coherent user experience.

This paper discusses Gamr7’s experience in creating, test-
ing, and refining procedural user interfaces based on our
experience with redesigning the user interface for our pro-
cedural content generation software, Ürban PAD. This case
study will address user expectations, architecture, and ex-
ecution flow considerations as well as solutions to some of
Ürban PAD’s specific user interface challenges.

Categories and Subject Descriptors
H.5.2 [User Interfaces]: User-centered Design; K.8.0 [Games];
J. [Computer Applications]: Graphical Modeling Pipeline
Tools

Keywords
Procedural City Generation, User Interface, Lessons Learned

1. INTRODUCTION
The games, simulation, and movie industries are in con-

stant need for more and more art assets that form virtual

∗Gamr7 Co-founder and Technical Director
†Gamr7 Marketing and Communications
‡Academic presentation and editing.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PCGames 2011, June 28, 2011, Bordeaux, France.
Copyright 2011 ACM 978-1-4503-0872-4/11/06 ...$10.00.

worlds to support interaction, training, evaluation, virtual
sets, and other uses. Consumer demand for richer and more
expansive worlds coupled with the rapid advancement of
computational ability to support this need has created a
significant challenge to create content through crafted man-
power, which is expensive and time intensive. Maintaining
a manageable pool of art talent and sufficient tool pipelines
simply will not scale with this demand.

A promising solution to the content creation problem is
to automate parts of the content generation pipeline by cap-
turing, abstracting, and parameterizing the process. This
well-established process has been long used in computer
graphics [1], which has been used for activities such as creat-
ing trees [6] (commercialized in SpeedTree [www.speedtree.
com]), textures [5]1 (Allegorithmic’s MapZone and Substance
[www.allegorithmic.com] provide a commercial procedural
texture generation tool), and even city environments [3, 2]
(Procedural’s CityEngine, [www.procedural.com], offers a
commercial tool based on Müller’s work—he is also CEO).

Building cities through traditional 3D modeling is difficult
and time consuming; however, cities often follow basic pat-
terns that could be replicated mathematically. Many games,
simulations, and movies specifically need massive-scale hu-
man cities to be created rather quickly and inxpensively—
making it an important and interesting problem domain.
Instead of solely using shape grammars [3] that require de-
tailed abstract configuration (programming in the shape gram-
mar) and building façades [4] derived from existing building
images, we have focused on working more closely with the
artists to bring their uniquely crafted and stylistic ideas into
the world of procedural content generation.

1.1 Ürban PAD
Our commercially available Ürban PAD (UP), which can

be downloaded from www.gamr7.com on request, is a soft-
ware tool dedicated to the creation of virtual cities. To
produce such massive and complex scenes, UP uses proce-
dural content generation to automate repetitive and time-
consuming tasks in the creation of city buildings, roads, and
other artifacts. The software is composed of many parts,
each of them managing one aspect of scene creation with fo-
cus areas on: static mesh import, model creation, material
definition, building templates, road layout, city generation,
and scene exports.

Using the Ürban PAD tool begins with allowing the user

1There are hundreds of papers on procedural generation of
textures.

to import 3D models and textures made with external tools.
Procedural textures from Allegorithmic’s Substance can also
be directly included. All of these assets are collected in the
project and made available to the builder components, which
start with forming the building templates. Creating build-
ing templates is a process that defines the rules in which
new geometry, imported geometry, and textures are allow-
ably combined to create whole building structures. The next
step in city creation is to define the roads, which can be ei-
ther placed manually, established by a set of rules, or a com-
bination starting with machine layout tuned manually. The
structure of the roads defines sectors of the city in which to
populate with the set of building templates previously de-
fined or imported. The last step is to define the rules by
which the city sectors are populated by buildings or other
defined artifacts of the previous steps. The final result is a
city generated by rules that can be recreated over a large
number or permutations with a single press of a button on
the interface.

Producing a commercial procedural content generation
tool that is integrated into the asset creation pipelines of
media studios presents many challenges. One of the key
challenges is adoption of the tool and integration into ex-
isting workflows. The user interface (UI) is the gateway to
allowing users to use your tool and to enable the use of pro-
cedural content generation to meet their goals. This paper
presents some specific development lessons learned over the
past three years with regard to Ürban PAD.

We will focus on UP’s Building Editor because it is one of
the more unique facets of our work. This module is repre-
sentative of UP’s ability to provide control over the proce-
dural content generation process and offers a good example
of the UI design challenges facing UP, which call for learn-
ing the interface in one sitting without having to learn the
whole framework. Users with modeling experience and ba-
sic knowledge of procedural generation expect these types
of software tools to be familiar, intuitive, and fit organically
into their asset pipelines.

2. PROCEDURAL BUILDING CREATION
THROUGH TEMPLATES

The Ürban PAD Building Editor (BE) is focused on build-
ing model creation, similar to those created with 3D model-
ing software such as Autodesk’s Maya or 3ds Max, by com-
bining procedural geometry with asset placement. Buildings
can be composed entirely of procedural geometry or have
prebuilt model assets (e.g., custom windows, planters, or
gargoyles) applied under arrangement rules. Specific model
assets may be created in the BE or imported as mesh geom-
etry with textures. A visual programming language is used
to create and connect a series of transformation nodes that
specify rules defining the configuration space of the building
as shown in Figure 1. The resulting UP model, known as
a template, can be used to obtain a variation of the speci-
fied building. Examples of variations include different levels
of detail (LOD), different heights, different wall textures,
and the same type of sub-components (like windows) with
different appearances.

The Building Editor is one component of the UP suite,
which contains content editors and a city generator. Edi-
tors are used to create urban content, such as buildings and
roads, while cities are generated in a dedicated procedural

Figure 1: The Ürban PAD Building Editor showing
a rule definition panel on the left, and a procedu-
rally generated building above the transformation
graph—a form of visual programming that specifies
the building configuration template.

generation engine. The overall UP workflow consists of the
following steps, not all of which maybe used depending on
the user’s needs:

1. Import externally created assets. A user’s assets, gen-
erated with other software (Maya, 3ds Max, Blender)
are imported to UP (textures, meshes). This step is
not required as it is possible for a user to create a
procedural building using only the procedural geome-
try creation features available in UP and the few ba-
sic textures furnished with the project package. Any
imported assets will be packaged into the city project.
The city project is the basic unit in UP and contains all
files, which includes imported assets and UP-created
templates associated with a city.

2. Creation of procedural geometry in the Building Edi-
tor through the use of rules. Rules transform geometry,
which creates model layers. Rules, which are a form of
pseudo-scripting, transform the layers on which they
are applied, deforming them geometrically. Rules al-
low users to build variety into their templates as they
work by entering randomized rule parameter values.

3. Decoration of procedural geometry in the Building Ed-
itor with the imported assets or procedurally generated
sub-components. For example, this is the step where
those fancy imported gargoyles are added to the build-
ing as defined by the rules set in this step.

4. The final model specification is a template. This tem-
plate can generate specific instances of this model un-
der the defined rules. All instances are present at once,
encapsulated in the model structure and rules. This
presence allows different variations to be generated as
shown in Figure 2a and b.

5. The final model can be used in a city, generated by
UP’s City Editor component. The template can also
be exported in Collada format as a standalone model
as shown in Figure 2c.

In UP, a user does not create a specific model, but rather
one abstract model/generator that, when used, will produce

Figure 2: From the Ürban PAD Building Editor: a) one instance of a single model template, b) another
instance with an optional part shown in configuration, and finally c) another instance exported in Collada
format and rendered in Blender 3D.

specific instances. An example would be a model that has
windows in one instance, but does not have them in another.
In the template file, the possibility of both instances exists in
the model simultaneously. However, the number of windows
is instance-specific information, decided at generation time.
Because an abstract model is generated and all instances are
present in the template at the beginning of instantiation of a
specific instance, there is no additional storage cost to scale
since only the template and base components are stored.
The core element of the template that stores the rules to
perform transformation and assembly of the instances is the
transformation graph.

2.1 User Interface Components
A primary component of Ürban PAD’s current Building

Editor UI is a transformation, or dataflow graph as shown
in the lower right pane of Figure 3. The user connects trans-
formation nodes together to create the building model tem-
plate. These nodes contain rules that modify the preceding
nodes. Each rule includes a set of parameters, which can be
adjusted to vary aspects like geometry height, texture color,
face selection, and so forth. Except output nodes (textur-
ing, export nodes), each node can be thought of as a pure
function.

Located above the node graph is a visualization module
that displays instances generated by the model as shown in
Figure 3. This module gives visual feedback about the cur-
rent state of the graph and helps users evaluate the model/template.
It is also possible to link one model/template to another via
a rule, so another model/template can generate a subpart of
the instance. One example would be linking a roof model,
stored as a separate file, to a house model. In this case, the
house model would be the parent model, and the attached
roof model, the child model. The parameters of rules can
be specified or adjusted when either a node or link is se-
lected, which will populate the left panel of the UI as shown
in Figure 3.

Model components can be arranged hierarchically, and
some aspects of the child model can be overridden to provide
a user with some flexibility in model editing or modification.
For example, new contextual rules introduced in a recent
beta version of UP allow the user to override the color of a
child model with colors that match the parent model. To

return to our roof example, a roof created with a selection of
textures and linked to a house model will not necessarily in-
clude the match to the parent house texture at the moment
it is linked as a child. Using contextual rules to override the
color makes it possible to match roof model color to house
model color.

Figure 4: Ürban PAD was used by artist Histro
Petrov for generating a city in his Unearthly Chal-
lenge entry rendered using Epic’s Unreal Engine 3.

As we will learn, the development of the current trans-
formation graph arose from user feedback. Faced with user
content generation challenges and frustrated first-time users,
we realized that the software needed refining. User feedback
indicated that the UI was a viable solution for creating mas-
sive amounts of 3D content as demonstrated in Figure 4, but
that lack of a user-friendly interface often frustrated these
efforts.

Figure 3: The Ürban PAD Building Editor showing a rule definition panel on the left, and a procedurally
generated model above the transformation graph on the right.

3. USER DIVERSITY & FEEDBACK
In redesigning the user interface, we needed to consider

different user populations. Interface construction therefore
began with consideration of a user’s mental model. Ür-
ban PAD’s user base includes beginner 3D content creators,
programmers, and professionally trained 3D artists. Based
on information culled from three years of informal inter-
views, we were able to further breakdown this latter cate-
gory, which makes up the bulk of our user base, into nodal
designers, which are technical artists who create a bridge
between art (artists) and development (programmers).

Programers expected procedural content creation software
to include scripting capabilities, while 3D artists were sur-
prised to find that the software did not include a node-based
graph. Both expectations reflect different populations’ con-
ceptions and expectations of what such software should look
like and how its workflow should be structured. Not to be
ignored, many of our users are beginners and have very lit-
tle knowledge about 3D modeling in general. From our ex-
perience, the growth of the 3D modeler population comes
from amateur and hobbyist circles. The success of Google’s
SketchUp modeler and Unity game engine seem to support
this observation.

At one end of the spectrum, many programmers were in-
terested in having a graphical REPL (Read-Evaluate-Print-
Loop). Their mental models were based on this type of work-
flow, and some aspects of it were quite different from those
designed in UP: sequential/synchronous (instead of asyn-
chronous), debug-oriented, text-based, and so forth. On the
other end of the spectrum, artists accustomed to immediate
direct contact with the material and direct manual modifica-

tion expected an interface based on a free-form approach on
how to specify the model (e.g., something similar to Pixo-
logic’s ZBrush). In the middle of these two extremes was
the nodal designer, less common but the most familiar with
procedural content generation. Nodal designers are often
technical artists responsible for finding and implementing
technical solutions for art creation. They are interested in
the extensibility of the software (adding new transformation
nodes) and behave like expert artists when in front of a fa-
miliar UI (a dataflow graph).

Besides some professional views on the best interface to
procedurally create buildings, most populations share some
common expectations of 3D design software UI: undo/redo,
copy/paste, text entry, or autosave. It is sometimes difficult
to make these expectations compatible with the UP work-
flow.

The level of expertise is another variable that affects the
perception—and a user’s performance in using—of the UP
interface. Artists who work heavily with 3ds Max, for ex-
ample, will expect 3ds Max-style shortcuts.

Overall our user population draws from the following sources:

• Trial users, several hundred of whom actively provide
comments. Trial users including technical artists in
game development studios as well as non-specialist users
who were interested in making 3D content.

• Commercial prospects gleaned from cold prospecting
or that contacted us directly

• 3D artists in university/trade-school courses

• Industry partners from an ongoing collaboration in the

Rhone-Alpes region of France

• Gamr7’s in-house 3D artist interns with knowledge of
conventional tools like 3ds Max, Blender, Maya

When looking through our presentation notes and cold-call
reports, we found that the following concerns applied con-
sistently to all user populations. We decided that satisfying
the following UI conditions was imperative for UP’s success
and adoption across a broad, diverse audience:

1. No requirement of programming knowledge or hard
scripting. This was a particular concern of 3D artists,
the bulk of our users, who may have had little or no
exposure to computer programming or computational
thinking.

2. Easy navigation (short paths) through the UI with in-
stant feedback

3. Clear choices at each step of model construction and
easy movement between them

4. Possibility of mastering UP framework through feed-
back and self-exploration

4. LESSONS LEARNED
Ürban PAD editing is a multi-task process. In order for

users to have a coherent/satisfying experience with UP, the
workflow must be designed so that users know where they
are at any given time, and what they need to do next. Both
considerations guided the reworking/redesign of the work-
flow based on user feedback.

4.1 Where am I?
Because UP contains multiple components, it is crucial

for users to understand where they are in the workflow at
all times. This concern was especially pressing in pre-3.0
versions of UP, as software components existed as standalone
modules with no way of easily switching between them. Pre-
3.0 versions of UP actually required users to manually open
the correct editor, then choose to create a new template, or
select an existing one to edit. Once a template was created
or edited, the user saved it and closed the editor. If the
model needed to be changed once the user was in another
editor, the user had to save current work, exit the editor, and
start up the original editor in order to change the template.
The user also had to remember the template name, as there
was no way for templates to be kept in the application’s
memory and be launched automatically. This process was
time-consuming and broke the fluidity of the workflow, so
we were obligated to redesign the workflow.

Saving models, manually closing and opening editors, and
having to remember the name of the template to edit was
addressed with the arrival of the action stack and database
management in UP 3.0. The action stack allows instant
processing of tasks depending on which asset is clicked from
the main screen by keeping track of actions of the system
and preserving actions in the editor save files. This is a LIFO
stack that makes it easy to move between editors and keep
track of actions. In UP 3.0, all assets are also tagged with
a unique identifier and listed in the asset database, which is
accessible from the main screen as shown in Figure 5. When
an asset is clicked, the action stack immediately launches

Figure 5: Ürban PAD’s project interface, which
auto-recognizes file types and loads the correct edi-
tor and provides uniform access to all assets.

the correct editor for the task and displays the hierarchy in
a status bar.

This unifying act of bringing all of the editor and gen-
erator components of UP into a single interface that can
recognize file types and maintains a database of all assets
greatly improved user satisfaction and workflow.

Key Lesson: Provide easy workflow management
and resource continuity/access in multi-stage tools.

4.2 What do I do next?
Solving the location problem and unifying the systems

through a single interface opened up possibilities for us to
focus on the overall workflow problem—helping the user fig-
ure out what to do next.

In the UP Building Editor, there are three possible types
of next steps:

1. Start/complete a task: edit a sub-template or close the
current one

2. Build/enhance the current template

3. Export a template (a lateral task that neither enhances
a template nor ends a work section)

4.2.1 Start/complete a task
Introducing the action stack also solved the editing work-

flow problem. Action stack processing makes it possible to
start and finish tasks easily, and to move from editor to ed-
itor to change a model without having to close the original
editor. A prime example of this function is the sector linking
capability, which can be used to add building templates to
a city sector in the UP Sector Editor. Instead of having to
manually save templates and open the correct editors, users
can access different templates and different editors without
having to leave UP’s Building Editor completely—just open
the Sector Editor and add the current template then return
to the Building Editor. The action stack will add and remove
actions as necessary to accomodate the in-focus builder at
any given moment.

4.2.2 Build/enhance the current template
To build or enhance the current template, users need to

add rules to successive template layers. Each application of
a rule transforms the layer(s) to which it is applied, creating

additional layers of procedural geometry. In pre-3.0 versions
of UP, rules were added in a stack-based system that relied
on a highly abstract textual UI. In early versions of the
pre-3.0 interface, users selected rules they wanted to use in
the Building Editor from a dialog, then manually entered
the rule parameter values and layer names in a separate
field. This process was long, tedious, and frustrating for
users accustomed to instant UI access and visual feedback.

Figure 6: Ürban PAD’s 2.0 interface required cor-
rect sequential placement of rules in the rule hierar-
chy tree (left) and untyped/unrestricted value entry
(right).

There was no way of visualizing connections between model
elements, and proper model display in the very earliest ver-
sions depended on correct sequential placement of rules in
the rule hierarchy tree to correctly carry out synchronous
generation as shown in Figure 6. Model design in UP 2.5.x
versions required selecting subsequent transformations in
the correct order. Selecting a transformation that was not
possible was likely to crash UP. There was no visual feedback
on what chains of dependencies looked like, and users were
required to tab back and forth through rules to access each
piece of a dependency. If a user was familiar with UP and
thought through their process execution correctly it worked
well, but was admittedly rather unforgiving.

Early users indicated that the UI was both too abstract
and not abstract enough: too abstract in that a text entry-
based, hierarchical UI presented a very steep learning curve,
as it presupposed familiarity with the range of rule choices
available in UP and the correct rule parameters associated
with them. Simplifying model construction would need to
involve a non-linear workflow so that users could use a nodal
graph-based interface that many of them has become accos-
tumed to in other pipeline tools. This was the only viable
solution for representing large amounts of visual information
and being able to adjust them on an as-needed basis.

The current version of UP includes a graph-based, rather
than a stack-based UI as shown in Figure 7. Transition-
ing to a graph gave users the possibility to use a non-linear
workflow that better adapted to the needs of procedural con-
tent generation, with the ability to modify nodes, create
branched dependencies, and edit model aspects that are not
directly interdependent.

Figure 7: Ürban PAD’s 3.0 interface with a nodal
graph-based interface that supports non-linear edit-
ing.

A linear, synchronous workflow with stack-based rules
kept the user bound to chains of dependencies that did not
allow them to move back and forth to parts of the model
that were not directly dependent on one another. The full
UP2 Building Editor is shown in Figure 8. Changing a sim-
ple rule parameter involved tabbing through lines of rules,
finding the rule to be changed, and adjusting the parameter.
Progress in UP’s current design stems from user feedback on
earlier UP versions. Previous versions displayed available
parameters as blank boxes into which numbers and/or text
needed to be entered in order for the parameter to function
correctly. Users had difficulty knowing which values to en-
ter, or which parameter values were pertinent to the part of
the model on which they were working.

Figure 8: Ürban PAD’s 2.0 Building Editor inter-
face.

These ambiguities were partially addressed in UP3. A
limited amount of information about which choice to make
next is currently available via visual feedback. If a layer is
affected by a transformation, the layer display mode shows
the transformation. While this strategy does not provide
explicit information about which subsequent steps may be
logical in light of a preceding step, lack of visual feedback
about a transformation may point to a problem in the usage
of a rule node. This feature is currently being refined with
the development of a dialog box alert system that will let
users know when a rule node choice is invalid. Additionally,
a variety of node rule information has been integrated into

the rule parameters in the UI. Each time a node is selected, a
rule parameter is displayed. Some parameters have been pre-
filled, indicating the places where a user will need to adjust
the parameter in order to have visual feedback. However,
some issues remain unresolved. Texture and material nodes
are not obvious as end nodes, although for professional users
they are logical. No changes are currently planned to address
this issue, but we are monitoring user feedback.

4.2.3 Export a template
In contrast to start/complete or build/enhance models,

exporting stands alone as a lateral task that neither starts
nor ends a work session. In UP, users export models to Col-
lada to check import into 3D rendering software like Maya
or 3ds Max. After exporting, a user can come back to the
template and keep editing. This task is integrated into the
Building Editor, away from the two other task types.

Key Lesson: Assist users in complex workflows by
providing easily understood contextual cues, feed-
back, and graphical over text displays.

4.3 Feedback and User Exploration
After introducing the action stack and an adapted work-

flow, we turned our attention to design improvements that
would reduce the time needed to learn UP and enhance its
fluidity for the user. This meant increasing UI feedback to
help the user answer the question, “What did I do?” and
master UP for quick, efficient content creation.

4.3.1 Managing abstraction for feedback
The current UP interface presents users with three kinds

of abstractions: node-level, parameter-level, and model level.
In older versions (< 3.0) of UP cited here, we consider that
the node-level abstraction is a rule-level abstraction since
the node graph did not exist in these versions. The first ab-
straction level, the node-level, refers to connections between
applied transformations and their effects on a given model as
shown in Figure 9. Node-level abstraction is the most imme-
diate contact with the interface, as it is needed to understand
a supplied model. The information contained in a node
provides a user with specific, editable information about a
node’s properties such as height, radius, extrusion value,
color, and so forth. Information display/representation at
the node level is straightforward, but some visual encapsu-
lation is missing, as it is not currently possible to hide, lock,
or annotate groups of nodes.

The parameter level regroups all the parameters that sup-
ply specific information for a given transformation node as
shown in Figure 10. The parameters are constrained and
explicit. For example, parameters based on integers accept
only entries of integers. They are the lowest/minimum ab-
straction level, and users can add new types of parameters
as they are needed.

Model-level abstraction consists of connecting one model
to another and overriding some parameters from the child
model through a context function. In this case, the encapsu-
lation is complete—as the implementation of the child model
is hidden—but assumes that the user understands the whole
abstraction gradient correctly. One aspect that confused
users was the connection between model nodes. Models can
be attached to other models via a linking rule, which places
one model in another. This model-to-model linking has the
same visual aspect as normal rule-to-rule linking, while be-

Figure 9: Node-level abstraction in Ürban PAD
Building Editor.

ing semantically and functionally different. For example, the
blueprint view of a child model is not available in the parent
model—only the final view is.

4.3.2 Visual Feedback and Annotation
UP3’s UI has been designed to obviate the need for hand-

written annotations or design sheets by presenting node rule
information visually as shown in Figure 11. The graph in-
terface displays all node rules and the dependencies between
them. Dependency paths are highlighted in white, making
it possible for users to click on one part of the model and
see the steps leading up to the realization of a given model
component.

Figure 10: Parameter-level abstraction in Ürban
PAD Building Editor.

Figure 11: Ürban PAD Building Editor user inter-
face with visual feedback and clear symbology.

Another area of improvement was the display of available
rule choices. In previous UP versions, rule choices appeared
in a simple dialog box with rules listed in alphabetical or-
der. This system was unintuitive for most users, as it did
not include any other kind of rule grouping (type of trans-
formation or other classification). To make learning easier
in UP3, we classified rules into families by transformation
type. There are four rule families today: geometric trans-
formation, decoration, resource generation, and filters (pro-
cedural selection). Instead of searching for a rule in a sim-
ple alphabetical list, users now learn four simple and easily
searchable rule families. Rules appear in a dialog box when
a node is created, and text describing the use of each rule
when the rule is highlighted has been integrated into the
dialog box. In the graph, nodes are color-coded according
to rule family, making it easier for a user to search for a
particular rule while editing.

Another significant problem this solved, predictable in
hindsight but unanticipated, was a language problem. Gamr7
is a French company based in France, and the first users who
worked closely with the program usually did not speak En-
glish as their native language. UP’s interface is English-
only, and these users were frustrated by having to learn
alphabetically-grouped rules which had no other grouping
that facilitated learning. In the very earliest versions of the
Building Editor, there was no text describing the rules.

Hinting at the next step to take helps users understand
better how to use UP. While previous versions displayed
available parameters as blank boxes into which numbers
and/or text needed to be entered in order for the parame-
ter to function correctly, users had difficulty knowing which
values to enter, or which parameter values were pertinent to
the part of the model on which they were working. These
ambiguities have been partially addressed in UP3. A limited
amount of information about which choice to make next is
currently available via visual feedback.

In beta tests of UP3, users asked for extended notation
and additional function information like node and color group-
ing annotation. These seemingly small design improvements
help users save time and navigate the interface more easily.
The next version of UP will include a feature allowing users
to add comments/annotations to nodes and groups of nodes.
Recurring user feedback cited feeling lost in front of a new or
large graph: the ability to read instructions and comments
by the original graph designer was rated very highly as a
helpful extension.

Key Lesson: Use color, hierarchical categoriza-
tions, and the appropriate level of abstraction to
provide an organized and more intuitive workflow.

5. CONCLUSIONS
This paper introduced the Gamr7 Ürban PAD procedural

city generation tool with a specific focus on the Building Ed-
itor. Procedural content generation configuration through
the use of templates involving a graph-based specification
of transformation rules using imported and/or procedurally
generated geometry was presented along with the core user
interface elements of the UP tool. Lessons learned from our
first three years of tool iterations emphasize the importance
of establishing a clear workflow with significant feedback
to the user upon every action. Tool navigation should not
be complicated, and artists and nodal designers (technical
artists) highly prefer node-based graph editing as their pre-
ferred configuration paradigm. Additionally, we discussed
the evolution of the UP Building Editor interface from user
feedback

6. REFERENCES
[1] D. Ebert, K. Musgrave, D. Peachy, K. Perlin, and

S. Worley. Texturing and Modeling: A Procedural
Approach. Morgan Kaufmann, 2003.

[2] G. Kelly and H. McCabe. Citygen: An Interactive
System for Procedural City Generation. In The 5th
International Conference on Game Design and
Technology Workshop, 2007.

[3] P. Müller, P. Wonka, S. Haegler, A. Ulmer, and L. V.
Gool. Procedural Modeling of Buildings. Proceedings of
ACM SIGGRAPH 2006 / ACM Transactions on
Graphics, 25(3):614–623, 2006.

[4] P. Müller, G. Zeng, P. Wonka, and L. V. Gool.
Image-based Procedural Modeling of Facades. In ACM
SIGGRAPH / ACM Transactions on Graphics, 2007.

[5] K. Perlin. Implementing Improved Perlin Noise. In
R. Fernando, editor, GPU Gems, chapter 5. Addison
Wesley Professional, 2004.

[6] P. Prusinkiewicz, J. Hanan, and A. Lindenmayer. The
Algorithmic Beauty of Plants. New York, NY:
Springer-Verlag, 1990.

