
Generative Methods

Kate Compton
Expressive Intelligence Studio

UC Santa Cruz
kcompton@soe.ucsc.edu

Joseph C. Osborn
Expressive Intelligence Studio

UC Santa Cruz
jcosborn@soe.ucsc.edu

Michael Mateas
Expressive Intelligence Studio

UC Santa Cruz
michaelm@soe.ucsc.edu

ABSTRACT
The field of procedural content generation continues to grow
in scope and in technology, but the term “procedural con-
tent generation” awkwardly suggests that the field’s output
be defined by its ability to produce game “content”, a term
that fails to capture the breadth of artifacts produced by
PCG researchers. There are many parallel fields of research
on using algorithmic means to generate what we often call
“content”, but due to differences in terminology and indus-
try they have remained invisible to the mainstream of games
research. In this paper, we propose the term “generative
methods” to refer to all such generative systems. This term
relates our practice to similar work in generative art, gener-
ative music, generative design, and other fields, and recon-
nects game artifact generation problems to their historical
(but non-game-specific) instances that have often been over-
looked.

Categories and Subject Descriptors
Software and its engineering [Software organization and
properties]: Contextual software domains Virtual worlds
software [Interactive games]

General Terms
Algorithms, Design

Keywords
procedural content generation generative methods paramet-
ric

1. INTRODUCTION
From the (eventually abandoned) random star-fields of Space-
war! [2] to the automatic dungeon layout of Rogue, design-
ers and programmers have often devised and deployed algo-
rithms to synthesize in-game artifacts. Until recently iso-
lated practitioners and academics lacked the consistent lan-
guage necessary to discuss their practice. When a useful

term was found in the field of computer graphics and pop-
ularized by an influential report, it allowed a community to
form around the newly identified field of “procedural content
generation”.

Computer graphics had historically used the term “proce-
dural” to describe process-derived artifacts, even including
the process of rendering of 3D scenes [5]. Eventually, the
term “procedural” came to refer, in the graphics commu-
nity, to various approaches for synthesizing e.g. textures,
models, and animations. When Intel published a techni-
cal report directed at game developers entitled “Procedural
3D Content Generation”[4], the phrase (with “3D” dropped)
stuck, aided by the historical overlap between the games
and graphics communities. This popular article surveyed
the generative techniques of the past few decades, from frac-
tals and L-systems to Perlin noise, and informed subsequent
academic[3] and popular[14] discourse, even giving a name
to this workshop.

As PCG has grown as a field, we have expanded outside the
motivating problem of generic landscape synthesis provided
by the Macri and Pallister report. PCG now encompasses—
as a few examples—puzzle generation, level design, anima-
tion, quest design, and storytelling. The “content” of PCG
has become problematic: the term is nebulous. Is a level
content? Are enemy behaviors? What if they’re defined in
XML? It is also a notion which has, in the games literature,
long been at odds with “rules”. This is especially troubling
when content is produced by systems of rules, or if, as in
[10], rule systems are the artifacts being generated.

When the authors spoke with colleagues and practitioners
about their respective conceptions of PCG, pinning down
what was and was not PCG was a persistent issue. Often,
merely changing the context of use could take the same al-
gorithm from “not PCG” to “PCG”: a physics simulation
is not considered PCG, but is if it generates terrain. Even
fields that clearly overlap with PCG—classical and game AI,
storytelling and narrative synthesis—are often counted out,
while automatic UV skinning is in.

In this paper, we contend that these problems are not inher-
ent to the task of writing algorithms to produce artifacts;
instead, they are incidental to a particular way of seeing :
“Procedural content generation” privileges certain types of
instantial asset—textures, models, text, terrain—over other
sorts of things that could be generated (e.g. game rules or



player models). Further stifling interdisciplinary research,
its exclusive use as a game- or graphics-centric term ignores
the clear connections to dozens of academic and industrial
traditions that exist outside of games and graphics.

PCG may remain useful as an industry term to describe a
particular solution to game asset production (like its sibling
“user-generated content”), but we argue that as an academic
term it troubles and frustrates inquiry.

So what term do we substitute? Since all PCG approaches
could usefully be described as methods which generate some
artifact, we propose the term Generative Methods.

2. DEFINING GENERATIVE METHODS
Abstractly, a generative method is a function which pro-
duces artifacts (Fig. 1). Generative methods often begin
with some set of inputs which may consist of user-provided
tuning values, static assets (such as 3D models, story seg-
ments, or audio samples), or higher-level inputs like partially-
configured artifacts or scripts. The generator, a core com-
ponent of every generative method, then manipulates, com-
posites, or combines these inputs to create a set of artifacts.

When speaking of artifacts, we refer to two relevant portions
of Herbert Simon’s influential definition: “Artificial things
can be characterized in terms of functions, goals, adapta-
tion” and they present an “interface” between interior sub-
stance and an exterior environment[6]. Put simply, an ar-
tifact is something which contains non-trivial structure (an
interior) and a context in which it is used (an exterior).

The sine function is not a generative method since it pro-
duces only uninterpreted scalars, which have no interior sub-
stance and are not situated in an exterior environment: that
is, we can project no goals onto the generation—the sine
function has no inherent context or purpose. However, a
generative method for determining camera movements might
use a sine function as a core component, but situate the
output in a “camera movement” of which the sine function’s
scalar output forms only a part. This movement can be
interpreted in the context of visual expression: though the
camera’s movement is driven by a sine wave, its context
of use demands an evaluation of framing, composition, and
our interpretation of its“intent”when it gives an unexpected
closeup of a particular character.

Very often a generative method will include a critic which
validates the generator’s proposed artifact, releasing it into
its surrounding context or providing it as input to another
generative method. The critic can also give the generator an
explicit accept/reject decision, a reward value, or a corrected
artifact to accommodate generators which incorporate feed-
back. This computational critic could range in complexity
from a simple collision detector to a heuristic optimizer ca-
pable of returning an improved version of the artifact.

The generator, assets and critic may themselves be com-
posed of smaller systems, including other generative meth-
ods; for example, a level generator’s critic could apply a set
of generated player models to the level under consideration.
Critics can be human as well as computational: Human crit-
ics are exceptionally good at providing aesthetic heuristics

Figure 1: A generator combines several inputs into
an artifact which is then evaluated by a critic. This
evaluation is provided as additional input to the gen-
erator.

(e.g. beauty, uniqueness, interestingness) that would oth-
erwise be inaccessible to a generator. Human generators
combined with computational critics could form the basis of
novel approaches to user-generated content.

Our purpose in replacing “procedural content generation”
with “generative methods” is not to encompass every way
that an algorithm can produce output, but to construct a
useful framework for understanding the synthesis of arti-
facts. The definitions and examples given for generative
methods are not meant to draw a hard line between gener-
ativity and non-generativity. Instead, “generative methods”
provides a lens for examining systems that emphasizes the
interplay between inputs, algorithms, and the expressivity
and correctness of the outputs.

“Generative methods” integrates better into existing schol-
arly and industrial discourses, many of which already use
the term “generative” to indicate algorithmic approaches
to their respective fields. This makes it easier to search
for and find relevant work. Searching the literature for
any combination of the terms “procedural X generation” is
not likely to return many results prior to the year 2000;
that would miss decades of study in generative music, para-
metric architecture, generative art, generative methods in
programmed instruction, generative programming, genera-
tive grammars for computational linguistics, and genera-
tive models for computer-aided industrial design—not to
mention the non-digital traditions of Dada, Pollack, cut-up,
and other human-enacted algorithms. In fact, among the
approaches which address computation, “generative” is the
term of choice—not“procedural”—in nearly every discipline.

3. FINDING NEW COMMUNITY
If the term “generative methods” includes disciplines outside
of the discourse on games, how does the diligent researcher
make an inquiry into these newly-available fields?

From the perspective of generated artifacts, our hypotheti-
cal researcher could seek out systems that produce artifacts
similar to the ones desired. This can be an easy task for
game artifacts with analogues in non-game contexts: Gen-
erative game music is already well-linked to the generative
music community, and much of the generated terrain work
in games can trace its roots to generative art and com-
puter graphics traditions of fractals and context-free gram-



Figure 2: Several generative methods. Each follows the schema of Fig. 1.

mars; but there remain many under-examined connections
between research areas in generative methods.

Some areas of PCG research may not have clear parallels
in existing generative methods traditions; in those cases, we
can work from the perspective of shared constraints. Con-
sidering “procedural level design”, there is no tradition of
level design outside of games as there are no “levels” in the
natural world; but there are already established subfields
in architecture, urban planning, and puzzle generation for
computer-based learning (which coincidentally has a lot to
say about user-adaptation). Generative puzzle design proba-
bly has at least as much in common with the hard constraints
of industrial design as it does with the softer constraints of
3D model generation and texturing. The lens of genera-
tive methods produces useful connections to other areas of
inquiry, even when the generated artifacts are different.

Examining mature fields of research in non-game genera-
tive methods can also suggest clear links to current PCG
research. Consider space planning, a category of problems
concerned with placing objects in the correct spots in a room
(or rooms in a building, or buildings on a city block) such
that the desired objects are in the room, that they have some
physical relationships with respect to each other, and that
other constraints like the traversability of the room are main-
tained. Generative methods in space planning have been
an active area of research from the 1970s[1] to the modern
day[12], but similar parallel research in games and graphics
since 2005 has used the term “procedural interior genera-
tion”[11] and barely refers to this established discourse. The
new term isn’t only harder to search the literature for: it
cuts the concept off from its own past and present.

We argue that by acknowledging both the similarities and
differences in generating particular types of artifacts across
two fields, practitioners and academics from both sides can

make informed decisions on borrowing techniques and ap-
proaches from each other. Furthermore, understanding the
values of another discipline could lead to new ways of think-
ing about both. By sharing knowledge across fields of prac-
tice, we begin to discover common threads that run through
all generative methods.

4. COMMON THREADS
The lens of generative methods helps us see a broader and
more interesting set of candidate systems for analysis and
synthesis—including systems which do not fall within tradi-
tional definitions of PCG[9] (Table 1). By viewing these ex-
amples as generative methods (i.e., in the schema of Fig. 1),
a researcher can make a quick visual comparison of what the
systems’ respective inputs are, what sorts of generators they
use, what artifacts they produce, and what forms of critics
and feedback loops they employ (Fig. 2).

Diablo dungeons Rogue-likes Spore
Galactic Arms Race Elite WolframTones
Mirrorgram Cell Cycle Sodaplay
Conway’s Game of Life Revit Eliza
Context Free Art Electric Sheep Bubble Harp

Table 1: Systems in bold are traditional “PCG”, but
all of these examples employ generative methods.

Besides comparing the topologies of generative methods, re-
searchers can also compare the respective algorithms driving
their generators or critics. Every implementation strategy—
e.g. a satisfiability solver, a production grammar, or a ge-
netic algorithm—carries a distinct set of affordances. Spe-
cific artifact use-cases often have distinctly hard or soft con-
straints: a system producing artifacts to satisfy soft con-
straints can more readily use optimization techniques like ge-
netic algorithms, but systems with hard constraints (where
a single mistake will result in a broken artifact) are better



off using constraint solvers.

There are many concerns and issues that appear in nearly
all practical implementations of generative methods, and
shared problems can suggest shared approaches:

• Granularity. How fully-formed are the inputs to the
generative method? Does this method assemble hun-
dreds of small and generic units, or does it piece to-
gether large and complex components that have al-
ready been partially authored or configured? Is a text
generator starting from letters, words, sentences, or
hand-written scenes?

• Expressive range. It is a common goal of generative
methods to generate a wide and surprising range of
artifacts. What factors determine how broad an ex-
pressive range will be? What parameters are tuned
to eliminate bad artifacts without pruning away desir-
able ones? Granularity is a relevant factor, but other
properties are involved; research here is only just be-
ginning[7].

• Adaptability. A key feature of generative systems is
that, with sufficient computing power, they can be run
in real-time (or at least on demand), and therefore
can generate artifacts in response to user actions. As
tantalizing as a responsive and adaptable system is,
we often forget how hard it is to define how such a
system should adapt, a difficulty pointed out in one of
the earliest dynamic difficulty papers[13].

• Hard and soft failures. We rarely talk about the fail-
ures of our generative methods, instead using only the
most flattering examples of output in our papers. But
generative systems often make bad, broken, or subop-
timal work, and an ugly artifact and a broken artifact
can have very different effects depending on their con-
text of use. Understanding the system’s resilience to
failure and its coping mechanisms in case of failure will
allow more generative methods to be deployed in unsu-
pervised situations like games—and, potentially, new
application domains in other fields.

5. CONCLUSIONS
We hope that by adopting the more useful phrase“generative
methods” in place of “procedural content generation”, game
developers and academics can discover and reach out to gen-
erative methods practitioners in other fields. We can work
across fields, with computational linguists working alongside
game dialog systems experts; and across types of artifact,
with rhythm-based level generators (like Launchpad[8]) bor-
rowing the rhythm generators invented by generative music
researchers. We would like to see more game developers at-
tending generative methods conferences in other fields, and
vice-versa.

One way to measure the success of this project is whether
this workshop is, in the future, named “Generative methods
for games”. More seriously, we hope that generative meth-
ods can be seen as worthy of inquiry in their own right, so
that generative methods papers in games no longer have to
begin with an appeal to cost-saving or workflow improve-
ment. There is much more to generative methods than

merely optimizing traditional development processes, and
the vibrant academic discourse in other fields echoes that
assertion. Generative music composition, for example, is
not grounded in the economical production of music, but in
the basic theory of the aesthetics and mathematics of music.

Using the right terms is only the first step. By deciding now
to integrate ourselves into existing discourses on generative
methods, we can grow with these other fields and multiply
our effort, rather than continually reinventing the discoveries
of the past fifty years.

6. REFERENCES
[1] C. M. Eastman. Representations for space planning.

Communications of the ACM, 13(4):242–250, 1970.

[2] J. M. Graetz. The origin of spacewar. Creative
Computing, 7(8):56–67, 1981.

[3] S. Greuter, J. Parker, N. Stewart, and G. Leach.
Real-time procedural generation of ‘pseudo infinite’
cities. In Proceedings of the 1st international
conference on Computer graphics and interactive
techniques in Australasia and South East Asia,
GRAPHITE ’03, New York, NY, USA, 2003. ACM.

[4] D. Macri and K. Pallister. Procedural 3d content
generation. Technical report, Intel Developer Service,
2000.

[5] D. F. Rogers et al. Procedural elements for computer
graphics, volume 103. McGraw-Hill New York, 1985.

[6] H. A. Simon. The sciences of the artificial. MIT press,
1969.

[7] G. Smith and J. Whitehead. Analyzing the expressive
range of a level generator. In Proceedings of the 2010
Workshop on Procedural Content Generation in
Games, page 4. ACM, 2010.

[8] G. Smith, J. Whitehead, M. Mateas, M. Treanor,
J. March, and M. Cha. Launchpad: A rhythm-based
level generator for 2-d platformers. IEEE Transactions
on Computational Intelligence and AI in Games,
3(1):1–16, 2011.

[9] J. Togelius, G. Yannakakis, K. Stanley, and
C. Browne. Search-based procedural content
generation. Applications of Evolutionary Computation,
pages 141–150, 2010.

[10] M. Treanor, B. Schweizer, I. Bogost, and M. Mateas.
The micro-rhetorics of game-o-matic. In Proceedings of
the International Conference on the Foundations of
Digital Games, pages 18–25. ACM, 2012.

[11] T. Tutenel, R. Bidarra, R. M. Smelik, and K. J.
de Kraker. Rule-based layout solving and its
application to procedural interior generation. In
CASA Workshop on 3D Advanced Media In Gaming
And Simulation, 2009.

[12] M. Verma and M. K. Thakur. Architectural space
planning using genetic algorithms. In The 2nd
International Conference on Computer and
Automation Engineering, volume 2, pages 268–275.
IEEE, 2010.

[13] J. Wexler. A teaching program that generates simple
arithmetic problems. International Journal of
Man-Machine Studies, 2(1):1–27, 1970.

[14] W. Wright. The future of content. In Game
Developers Conference, 2005.


