
Literally Unplayable: On Constraint-Based Generation of
Uncompletable Levels

Seth Cooper
se.cooper@northeastern.edu
Northeastern University

Boston, USA

Mahsa Bazzaz
bazzaz.ma@northeastern.edu

Northeastern University
Boston, USA

ABSTRACT
Most research in procedural content generation has, understand-
ably, focused on generating levels that are completable—that is,
levels where it is possible for a player to complete them. In this
work we explore the generation of uncompletable levels and their
applications. Building on an existing constraint-based level gen-
erator, we add support for constraints that a level’s goal is not
reachable from its start. The generator can thus create levels that
are similar to completeable levels in many ways (such as local tile
patterns), yet are not possible to complete. We then describe several
applications of those constraints and the resulting levels, includ-
ing: qualitatively characterizing what makes levels uncompletable;
creating training data for completability classifiers; checking that
a generator can only generate completable levels; and generating
levels that require the player to use a special move.

CCS CONCEPTS
• Human-centered computing;

KEYWORDS
procedural content generation, constraints, completability
ACM Reference Format:
Seth Cooper and Mahsa Bazzaz. 2024. Literally Unplayable: On Constraint-
Based Generation of Uncompletable Levels. In Proceedings of the 19th In-
ternational Conference on the Foundations of Digital Games (FDG 2024),
May 21–24, 2024, Worcester, MA, USA. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3649921.3659844

1 INTRODUCTION
When procedurally generating levels for games [26], the com-
pletability of the levels is important. Including a level that can’t be
completed in a game can be undesirable. Thus, most PCG research
has understandably focused on generating completable levels. In
contrast, in this work, we developed a level generator that only
generates uncompletable levels, to explore possible applications of
such a generator.

In this case, we use completability in particular to mean there
is technically a way to solve the level, regardless of the difficulty

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FDG 2024, May 21–24, 2024, Worcester, MA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0955-5/24/05
https://doi.org/10.1145/3649921.3659844

of finding or carrying out the solution — although sometimes the
term playability has been used. Additionally, we would like un-
completable levels to still have some reasonable structure and style
to them and not just be something like random noise. Specifically,
we look at 2D tile-based levels whose completablity is determined
by there being a path from the start to the goal of the level, and
generate levels using the Sturgeon constraint-based PCG system
[5]. The system can learn the style of example levels by learning tile
patterns from them. Thus we aim to generate levels that are locally
similar to the examples, but which globally are not completable.

In this work we extended Sturgeon to incorporate additional
constraints that can ensure that the goal is not reachable from the
start, and use these in two games, a top-down exploration game
and a side-view platformer. We give an overview of four potential
uses of a level generator that can incorporate uncompletability
constraints.
Qualitative Characterization of Uncompletable Levels: By generating
a number of uncompletable levels, it may be possible to better
understand some ways that a level can be uncompletable. This
might help to improve generators of completable levels, or just give
insight into levels or generator for a game.
Training Completability Classifiers: Machine learning models that
can classify levels as completable or uncompletable may be useful in,
for example, quickly filtering generated levels in place of a testing
agent. Such classifiers would need training data including both
completable and uncompletable levels.
Generating Completable Levels without Completability Constraints:
If the constraints that a level be uncompletable are not satisfiable,
then that means it is not possible for the generator to generate
an uncompletable level. Thus we could remove those constraints
(and any other completability constraints or checks) and have the
generator generate completable levels regardless.
Generating Levels Only Completable with Special Moves: By gener-
ating levels that are completable with a special move, but uncom-
pletable without it, we can generate levels that are only completable
using the special move. This could be useful in games that introduce
new moves to help teach them to players.

We provide an overview of these applications as an initial ex-
ploration of constraint-based generation of uncompletable levels.
More work may be possible in each of them.

2 RELATEDWORK
This work was partly inspired by recent graph layout work that
used optimization for “the worst graph layout algorithm ever” [8].
We explored a similar concept in video games: a level generator
that can only generate uncompletable levels. However, most prior

https://orcid.org/0000-0003-4504-0877
https://orcid.org/0009-0004-0022-9611
https://doi.org/10.1145/3649921.3659844
https://doi.org/10.1145/3649921.3659844
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3649921.3659844&domain=pdf&date_stamp=2024-07-05


FDG 2024, May 21–24, 2024, Worcester, MA, USA Seth Cooper and Mahsa Bazzaz

cave cave-isl
✕

nbr-l nbr-plus ring diamondblock2

✕

✕

✕

✕

✕

✕

✕

✕

✕

input

output

✕

cave Example Levels Pattern templates

maze +blink platform

walk

fall jump

+highjump

high jump

source

open
(dest.)

open
(path)

closed
(off-path)

9..
.

closed
(path)

Reachability templates (not a complete list)

Figure 1: Some example levels, pattern templates, and reachability templates used.

Game Setup Size Tile Example Pattern Reachability
Name Counts Level Template Template

mario uncompletable 14 × 32 at least 1 pipe, 1 gap, SMB 1-1 ring platform:unreachable
(funct.) completable 34 block/ground, SMB 1-1 ring platform:reachable

must-with and 1-4 ? tiles SMB 1-1 diamond platform:reachable
must-without SMB 1-1 diamond —
special SMB 1-1 ring platform:unreachable &

platform+highjump:reachable
(image) — — — SMB 1-1 nbr-l —

cave uncompletable 15 × 15 interior ~45–55% solid cave nbr-plus maze:unreachable
completable cave nbr-plus maze:reachable
must-with cave-isl block2 maze:reachable
must-without cave-isl block2 —
special cave nbr-plus maze:unreachable &

maze+blink:reachable
Table 1: Table of different setups used in this work.

work on procedural content generation for levels has focused on
generating completable levels.

There are many constraint-based approaches to level generation
[11, 15, 18, 24, 27, 30]. A number of these can incorporate constraints
that levels are completable. For example, work in generating mazes
or other levels using Answer Set Programming has incorporated
constraints that there are paths through the level between desired
areas [22]. The work of Smith et al. [28] used a related approach to
generate solvable puzzles while ruling out undesirable solutions in
an educational game. The Sturgeon system that our work builds
on also includes path-based constraints [5], as well support for
constraints that levels are completable using more complex rewrite-
rule mechanics [6].

In search-based PCG, completablility can be incorporated into
the fitness function, as generated levels can be tested for com-
pletablility, e.g. by agents [34]. One approach used in search-based
PCG is feasible-infeasible two-population genetic algorithms (FI-
2Pop) [17, 35, 37]. FI-2Pop evolves two populations, one feasible (e.g.
completable) and the other unfeasible (e.g. uncompletable). While
this approach does have the property that it can generate many
uncompletable levels in the infeasible population, the intention is
to generate completable ones. However, some work has presented
unplayable levels found during search [36], and recent search-based
PCG has used a fitness function to search for unplayable levels as a
way to better understand the generator [9].

Machine learning approaches to PCG (i.e. PCGML [32]) have
incorporated techniques to improve the completability of generated
levels. For example, including path information in training levels



Literally Unplayable. . . FDG 2024, May 21–24, 2024, Worcester, MA, USA

Start blocked (61): Only a few
(usually 1) tiles are reachable
near the start.

Start isolated (9): Only a few
(usually 1) tiles are reachable
near the start, which are in their
own separate area of the level.

Middle blocked (2): A good
amount of the level is reachable,
with larger regions appearing
reachable from start and goal.

Goal blocked (9): Most of the
level is reachable, but goal and
a few (usually 1) tiles near it are
blocked.

Figure 2: Uncompletable level categories for cave.

as a way to improve level quality and playability [25, 29, 31]. Some
machine learning approaches to repairing uncompletable levels
have been developed as well [14].

Other PCG work has taken different approaches to completabil-
ity. Some have focused on taking pre-generated level segments or
partial levels that are themselves completable, and assembling or
extending those into larger completable levels [3, 20]. Some work
goes further and ensures that not only are levels completable, but
that it is not possible to get stuck [21].

3 SYSTEM OVERVIEW
In this work, we build on and use the Sturgeon constraint-based
level generation system [5]. Sturgeon generates levels by converting
higher-level “design rules” into constraint satisfaction problems,
and using low-level solvers (such as SAT solvers) to find solutions.
Two types of Sturgeon rules are most relevant to this work.

First, pattern rules, which learn local patterns of tiles from ex-
ample levels, and constrain the generated levels to contain those
patterns. Patterns are learned using pattern templates, which specify
the relative relationships between tiles in learned patterns.

Second, reachability rules, which ensure that the goal of a level
is reachable from the start. These rules are based on a reachability
template, which specifies which tiles are potentially reachable from
which other tiles. This creates a reachability graph over the level,
with nodes representing locations and edges representing potential
moves between locations. Edges require certain nodes (i.e. tiles) to
be open (passable) or closed (solid) to be included in the solution
path. Reachability rules add constraints that there is a path from
the start to the goal in the reachability graph that meets the open
and closed node requirements of the edges.

Pipe first (18): Path blocked by a pipe,
which is the first obstacle.

Pipe further (35): Path blocked by a
pipe, which is not the first obstacle.

Hill first (12): Path blocked by a hill,
which is the first obstacle.

Hill further (5): Path blocked by a hill,
which is not the first obstacle.

Gap first (1): Path blocked by a gap
that cannot be jumped across, which
is the first obstacle.

Gap further (6): Path blocked by a
gap, which is not the first obstacle.

Gap and hill further (3): Path blocked
by a gap with a hill on the far side,
which are not the first obstacle.

Figure 3: Uncompletable level categories for mario. (may
have other blocks in the way that prevent the jump)

In this work specifically, we add a high-level unreachability rule,
which uses the reachability graph to ensure that there is not a path
from the start to the goal. This rule uses Sturgeon’s mid-level API
to set up the following constraints:

• If a node is the start node, it is reachable.
• If a node is the goal node, it is unreachable.
• If a node is closed, it is unreachable.
• If a node is open and has any reachable incoming edge, the
node is reachable.

• If a node is reachable, any of its outgoing edges whose
open/closed node requirements are met are reachable.

4 APPLICATIONS
To explore constraint-based generation of uncompletable levels, we
applied unreachability rules to two games. Here we give a high-
level view of the general setups used for each game (although some
applications used more specific setups).

cave — A simple custom cave exploration game, using image
tiles from Kenney [16]. Two custom example levels are used, and
depending on the setup, the nbr-plus or block2 pattern template
is used. Tile count constraints are added to make the levels about
half solid. The level start must be in the top-left and the goal in



FDG 2024, May 21–24, 2024, Worcester, MA, USA Seth Cooper and Mahsa Bazzaz

completable
cave mario

0.0 0.2 0.4 0.6 0.8 1.0

cave completable

0.0 0.2 0.4 0.6 0.8 1.0

mario completable

Figure 4: Sample completable levels and heatmap of solid
tiles. A path through the level shown in red.

the bottom-right. The main reachability template used is the maze
reachability template, which represents top-down movement.

mario — Based on the game Super Mario Bros. A cleaned-up
version of level 1-1 from the VGLC [33] is used as the example level.
Tile count constraints are added to make sure there are several
interesting elements in the level. Levels are generated in a two-step
process: first, the functional part of the level is generated using the
larger ring or diamond pattern templates, and then the level image
is generated, using the nbr-l pattern templates. The level start
must be on the left and the goal on the right. The main reachability
template used is the platform template, which represents walking,
falling, and jumping.

A summary of all setups is given in Table 1; although several
different setups were used depending on the application, some
further information on specific setups is given when the application
that used them is discussed. Example levels and templates used
are shown in Figure 1. Timing information is given in Figure 6,
discussed in the applications. 80 levels were generated for each
setup. The levels are available at https://osf.io/td4nb/.

To solve for levels, we used a portfolio solver consisting of three
instances of PySAT’s [12] MiniCard [19] solver. In screenshots
of the levels, when there is no path from the start to the goal,
the boundary of what is reachable is shown in yellow, and when
there is a path, it is shown in red. Since the solution paths output
by Sturgeon can be very indirect, we re-ran a pathfinder to find
more direct paths from the start to the goal in completable levels,
or find reachable locations to confirm the goal is unreachable in
uncompletable levels.

Next, we describe several different applications of using unreach-
ability rules to generate uncompletable levels. We describe the
approach and discuss the results in each application individually.

uncompletable
cave mario

0.0 0.2 0.4 0.6 0.8 1.0

cave uncompletable

0.0 0.2 0.4 0.6 0.8 1.0

mario uncompletable

Figure 5: Sample uncompletable levels and heatmap of solid
tiles. Boundary of what is reachable shown in yellow.

4.1 Qualitative Characterization of
Uncompletable Levels

Approach — One application of uncompletable levels is to qual-
itatively characterize what makes levels uncompletable. For this
application, we generated levels using the uncompletable setup,
which incorporates the unreachability rule constraints to ensure
there is no path from the start to the goal. Sample levels are shown
in Figure 5. We categorized the levels based on what made them
uncompletable, with a focus on the boundary of the reachable area
and what was preventing further areas from being reachable. This
was done informally by the authors first independently, then based
on discussion.

In cave, the categories were largely based on how far the player
could make it into the level before being blocked, either right at the
beginning, right before the end, or somewhere in the middle. Some
also had the start appearing isolated in its own separate area of the
level. The large majority of levels had the start blocked within a
few tiles, usually only one.

In mario, the categories were based on what type of obstacle
blocked progress, either a pipe or hill that was too tall to jump
over, or a gap that could not be jumped across. Sometimes other
blocks were in the way of a jump. A few levels incorporated a gap
and a hill together. These categories were also divided into if they
were the first obstacle the player encountered or they came later in
the level. Pipes were the most common obstacle to block progress,
possibly due to their flexible placement and size.
Discussion— In this application, we were able to determine several
categories of what makes levels uncompletable. In both games we
found it interesting to note how far it appeared the player could
make it through the level before being blocked. Categorization was
done manually, but could possibly be done in an automated way

https://osf.io/td4nb/


Literally Unplayable. . . FDG 2024, May 21–24, 2024, Worcester, MA, USA

uncompletable

completable

special
must-with

must-without

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m

e 
(s

)
cave

uncompletable

completable

special
must-with

must-without

0

2

4

6

8

10

Ti
m

e 
(s

)

mario

Figure 6: Times for generating levels with different setups.
Mean shown with standard deviation error bars.

in the future. If incorporated with machine learning approaches, it
might be possible to incorporate into explainability techniques.

The categories we determined were subjective, and there are
other categorizations possible; even with these categories there
can be some subjectivity about resolving which category a specific
level is in for ambiguous cases. These are also based just on the
setup specific and generator used, and it’s possible, for example,
other pattern templates or even other solvers might have different
categories or distributions of levels across categories. These are
also not exhaustive, as there may be rare levels that did not show
up in our sample, but would if we generated more levels.

4.2 Training Completability Classifiers
Approach — Another application of uncompletable levels is as
training data for machine learning completability classifiers. Such
a classifier will need samples of both completable and uncom-
pletable levels for training, and being able to directly generate
uncompletable levels could help with this process. Previous work,
for example, has used active learning to train such a classifier [2],
but with a pool-based approach.

10 20 40 80 160
Size

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

cave

10 20 40 80 160
Size

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

mario

Figure 7: Accuracy of classifier of completable vs.
uncompletable levels for different dataset sizes. Mean shown
with standard deviation error bars.

Thus, for this application we also used level generated with the
completable setup, which uses reachability rules to ensure a path
from the start to the goal. Sample levels are shown in Figure 4.
We then used increasing numbers of levels from the completable
and uncompletable levels to examine the impact of dataset size
on classifier accuracy.

Our goal was mainly to examine the impact of dataset sizes,
and not necessarily to develop the best possible classifier. For each
dataset size, we selected an equal number of completable and
uncompletable levels for a balanced dataset. We used random for-
est binary classifiers with 100 trees based on the example provided
in the VGLC [33] implemented with scikit-learn [23]. The features
for the classifier were the frequencies of occurrences of all 2 × 2,
3 × 3, 4 × 4 square patterns in the training levels. With 5-fold cross-
validation, we trained 20 random forest classifiers on the training
data and determined accuracy on the test data, resulting in accura-
cies for 100 folds for each dataset size. Given the balanced dataset
sizes, accuracy of 0.5 would be a reasonable baseline. Results are
shown in Figure 7.



FDG 2024, May 21–24, 2024, Worcester, MA, USA Seth Cooper and Mahsa Bazzaz

must-with
cave mario

0.0 0.2 0.4 0.6 0.8 1.0

cave must-with

0.0 0.2 0.4 0.6 0.8 1.0

mario must-with

Figure 8: Sample must-with levels and heatmap of solid tiles.
A path through the level shown in red.

Discussion — The classifier accuracy does appear to go up as the
dataset size increases. Both games start near 0.5 with only a few
examples, but quickly increase. Even with a dataset of only 160
levels, the cave classifer does very well, surpassing an average of
0.95 accuracy, while the mario classifier passes an average of 0.8
accuracy.

With samples from two setups, the time to generate completable
and uncompletable levels can be compared in Figure 6. For cave
they appear comparable, but for mario uncompletable levels appear
to generate more quickly. Similarly, heatmaps of solid tiles can be
compared in Figures 5 and 4. Though similar, it does appear that
the uncompletable levels use more solid tiles, particularly high up
with tall obstacles in mario. However, uncompletable mario levels
also appear to have fewer solid tiles along the bottom near the end,
likely where gaps are introduced.

Again, this analysis is based only on this level generator, and it is
possible that other generators might make levels that are harder to
classify. The classification features used were similar to what is used
to generate the levels — local tile patterns. Also, mario accuracy
does appear to level off, and a more sophisticated classifier might
be needed to improve accuracy further.

4.3 Generating Completable Levels without
Completability Constraints

Approach — We can also use the unreachability rules to check
if all the levels generated will be completable. That is, if the un-
reachability rules are used, and a level cannot be generated, then
this means that the unreachability rule constraint cannot be sat-
isfied (presuming that a level can be generated at all without the
unreachability rules). If this is the case, any generated level must
have the goal reachable from the start. Logically, we might say: if

must-without
cave mario

0.0 0.2 0.4 0.6 0.8 1.0

cave must-without

0.0 0.2 0.4 0.6 0.8 1.0

mario must-without

Figure 9: Sample must-without levels and heatmap of solid
tiles. A path through the level shown in red.

there does not exist a level that is uncompletable, then all levels
must be completable. Thus, levels can be generated without the
reachability rules and still must be completable. This may improve
performance as the number of the constraints to be solved can be
greatly reduced, as the solver does not also need to solve for a path
through the level.

To explore this application, we found setups for each game that
could generate levels, but could not generate levels when the un-
reachability rules were applied. Finding these setups was guided by
the authors’ experience with the Sturgeon system. For cave, this
involved a new example level that had only “islands” of solid tiles
among open space (shown in Figure 1), and used the block2 pat-
tern template. For mario, this was simply using the larger diamond
pattern template to capture more context around each tile in the
example level.

Using these setups, we then generated levels both with reachabil-
ity rules (must-with) andwithout reachability rules (must-without).
Sample levels and solid tile heatmaps are shown in Figures 8 and 9.
Discussion — This approach appears to work to determine if a
setup can only generate completable levels. From the timing infor-
mation in Figure 6, it appears the must-without setups do generate
levels faster than the must-with. Looking at the heatmaps in Fig-
ures 8 and 9, these levels, unsurprisingly, have more open space in
them than other levels. Comparing just these two setups, the distri-
bution of solid tiles appears shifted, with some areas more often
containing solid tiles in must-without levels. This may indicate
less overall variety in these levels. So while the levels may generate
faster, there is certainly an impact on the structure of the levels
themselves, which may or may not be desirable. Thus, a designer
may not necessarily want to adjust their setup to find one such
as we did. However, if a given setup is already what a designer



Literally Unplayable. . . FDG 2024, May 21–24, 2024, Worcester, MA, USA

wants, using unreachability rules to check that it only generates
completable levels is straightforward.

4.4 Generating Levels Only Completable with
Special Moves

Approach — It is possible to use unreachability rules simultane-
ously with reachability rules to generate levels that are completable
with one moveset but not another. This could be used to generate
levels that are only completable using a special move; for example,
in cases where a designer wants to require the player to use a spe-
cial move, possibly for tutorial purposes. Both unreachability rules
for a template without the special move and reachability rules for a
template with the special move can be applied. Then, levels where
the goal is unreachable without the special move, but reachable
with it, will be generated.

Some previous work has, for example, worked toward automati-
cally finding special moves or mechanics that can complete given
levels [4, 10], whereas in this application we aim to generate levels
based on players with different movesets. Thus this approach may
be considered to have some commonality with restricted play [13],
which has previously been used for game balancing, where the
moveset without the special move is restricted.

For this application, we created a reachability template for each
game that had all the moves of the original, but also added a special
move. For cave, this was a “blink” move that allowed the player
to teleport through exactly two solid tiles when also surrounded
by solid tiles. In mario, the special move was a highjump that
was much higher than the original jumps. These additions to the
reachability templates are shown in Figure 1. We then generated
levels using these special setups. Samples shown in Figure 10.
Discussion — This approach did allow generating levels only com-
pletable using a special move. In mario, it was not uncommon for
the path to use a highjump to get onto a block to then reach higher
points in the level. Looking at timing in Figure 6, these levels took
notably longer to generate, likely due to the additional constraints
to be solved. The solid tile heatmaps appear to use more solid tiles,
similar to the uncompletable setup.

4.5 Other applications
While we have explored a few applications here, we think there
could be further applications to intentionally generating uncom-
pletable levels. These could be used to test or make benchmark data
sets for level repair algorithms (e.g. [7, 38]). Uncompletable levels
could also be used as training examples for generative models that
can incorporate positive and negative examples (e.g. [1]).

5 CONCLUSION
In this work we presented the intentional generation of uncom-
pletable levels and several related applications. The levels, though
uncompletable, still capture the structure and style of example lev-
els by learning tile patterns. Uncompletable levels were generated
by using a constraint-based generation approach that incorporates
additional constraints that a level’s goal is not reachable from its
start. These unreachable rules allowed applications in qualitatively
characterizing what makes levels uncompletable; creating training
data for completability classifiers; checking that a generator can

special
cave mario

0.0 0.2 0.4 0.6 0.8 1.0

cave special

0.0 0.2 0.4 0.6 0.8 1.0

mario special

Figure 10: Sample special levels and heatmap of solid tiles.
Boundard of what is reachable by the base player shown in
yellow, and a path through the level by the player with a
special move shown in red.

only generate completable levels; and generating levels that require
the player to use a special move.

In the future, we are interested in further exploring these appli-
cations, such as more expressive range analysis, or the behavior of
different solvers other than the PySAT solver used here.

It may also be interesting to explore what makes other types
of generated content — such as music, quests, or narrative — the
“worst” or unusable in some way, while still being stylistically co-
herent, to better understand the boundary between usable and
unusable content.

REFERENCES
[1] Siddarth Asokan and Chandra Seelamantula. 2020. Teaching a GAN what not

to learn. In Advances in Neural Information Processing Systems, Vol. 33. Curran
Associates, Inc., 3964–3975.

[2] Mahsa Bazzaz and Seth Cooper. 2023. Active Learning for Classifying 2D Grid-
Based Level Completability. In 2023 IEEE Conference on Games (CoG).

[3] Colan F. Biemer and Seth Cooper. 2022. On linking level segments. In 2022 IEEE
Conference on Games (CoG). 199–205.

[4] Michael Cook, Simon Colton, Azalea Raad, and Jeremy Gow. 2013. Mechanic
Miner: reflection-driven game mechanic discovery and level design. In Applica-
tions of Evolutionary Computation. 284–293.

[5] Seth Cooper. 2022. Sturgeon: tile-based procedural level generation via learned
and designed constraints. Proceedings of the AAAI Conference on Artificial Intelli-
gence and Interactive Digital Entertainment 18, 1 (2022), 26–36.

[6] Seth Cooper. 2023. Sturgeon-MKIII: simultaneous level and example playthrough
generation via constraint satisfaction with tile rewrite rules. In Proceedings of the
18th International Conference on the Foundations of Digital Games.

[7] Seth Cooper and Anurag Sarkar. 2020. Pathfinding Agents for Platformer Level
Repair. In Proceedings of the Experimental AI in Games Workshop.

[8] Sara Di Bartolomeo, Matěj Lang, and Cody Dunne. 2022. The worst graph layout
algorithm ever. In Proc. alt.VIS workshop at IEEE VIS (alt.VIS).

[9] Maria Edwards, Ming Jiang, and Julian Togelius. 2021. Search-based exploration
and diagnosis of TOAD-GAN. In Proceedings of the AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment, Vol. 17. 140–147.



FDG 2024, May 21–24, 2024, Worcester, MA, USA Seth Cooper and Mahsa Bazzaz

[10] Johor Jara Gonzalez, Seth Cooper, and Matthew Guzdial. 2023. Mechanic Maker
2.0: reinforcement learning for evaluating generated rules. Proceedings of the
AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment
19, 1 (Oct. 2023), 266–275.

[11] Maxim Gumin. 2016. WaveFunctionCollapse. https://github.com/mxgmn/
WaveFunctionCollapse.

[12] Alexey Ignatiev, Antonio Morgado, and Joao Marques-Silva. 2018. PySAT: a
Python toolkit for prototyping with SAT oracles. In Theory and Applications of
Satisfiability Testing – SAT 2018. 428–437.

[13] Alexander Jaffe, Alex Miller, Erik Andersen, Yun-En Liu, Anna Karlin, and Zoran
Popovic. 2012. Evaluating competitive game balance with restricted play. Pro-
ceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment 8, 1 (Oct. 2012).

[14] Rishabh Jain, Aaron Isaksen, Christoffer Holmgård, and Julian Togelius. 2016.
Autoencoders for level generation, repair, and recognition. In Proceedings of the
ICCC workshop on computational creativity and games, Vol. 9.

[15] Isaac Karth and Adam M. Smith. 2017. WaveFunctionCollapse is constraint
solving in the wild. In Proceedings of the 12th International Conference on the
Foundations of Digital Games. 68:1–68:10.

[16] Kenney. 2022. Free game assets. https://www.kenney.nl/assets.
[17] Ahmed Khalifa, Michael Cerny Green, Gabriella Barros, and Julian Togelius.

2019. Intentional computational level design. In Proceedings of the Genetic and
Evolutionary Computation Conference. 796–803.

[18] Vivian Lee, Nathan Partlan, and Seth Cooper. 2020. Precomputing player move-
ment in platformers for level generation with reachability constraints. In Pro-
ceedings of the Experimental AI in Games Workshop. 8.

[19] Mark H. Liffiton and Jordyn C. Maglalang. 2012. A cardinality solver: more
expressive constraints for free. In Theory and Applications of Satisfiability Testing
– SAT 2012. 485–486.

[20] Hao Mao and Seth Cooper. 2022. Segment-wise level generation using iterative
constrained extension. In 2023 IEEE Conference on Games (CoG).

[21] RossMawhorter andAdam Smith. 2021. Softlock detection for SuperMetroid with
computation tree logic. In The 16th International Conference on the Foundations
of Digital Games (FDG) 2021. 1–10.

[22] Mark J. Nelson and Adam M. Smith. 2016. ASP with applications to mazes and
levels. In Procedural Content Generation in Games, Noor Shaker, Julian Togelius,
and Mark J. Nelson (Eds.). Springer International Publishing, 143–157.

[23] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau,
Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay. 2011. Scikit-learn:
machine learning in Python. Journal of Machine Learning Research 12, 85 (2011),
2825–2830.

[24] Arunpreet Sandhu, Zeyuan Chen, and Joshua McCoy. 2019. Enhancing Wave
Function Collapse with design-level constraints. In Proceedings of the 14th Inter-
national Conference on the Foundations of Digital Games (FDG ’19). Association
for Computing Machinery, San Luis Obispo, California, 1–9.

[25] Anurag Sarkar, Adam Summerville, Sam Snodgrass, Gerard Bentley, and Joseph
Osborn. 2020. Exploring level blending across platformers via paths and affor-
dances. In Proceedings of the Sixteenth AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment (AIIDE’20). AAAI Press, 280–286.

[26] Noor Shaker, Julian Togelius, and Mark J. Nelson. 2016. Procedural Content
Generation in Games. Springer International Publishing.

[27] AdamM. Smith, Erik Andersen, Michael Mateas, and Zoran Popović. 2012. A case
study of expressively constrainable level design automation tools for a puzzle
game. In Proceedings of the International Conference on the Foundations of Digital
Games (FDG ’12). 156–163.

[28] Adam M. Smith, Eric Butler, and Zoran Popovic. 2013. Quantifying over Play:
Constraining Undesirable Solutions in Puzzle Design. In Proceedings of the 8th
International Conference on Foundations of Digital Games. 221–228.

[29] Sam Snodgrass and Santiago Ontañón. 2017. Procedural level generation us-
ing multi-layer level representations with MdMCs. In 2017 IEEE Conference on
Computational Intelligence and Games (CIG). 280–287.

[30] Sam Snodgrass and Santiago Ontañón. 2016. Controllable procedural content
generation via constrained multi-dimensional Markov chain sampling. In Pro-
ceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence.
780–786.

[31] Adam Summerville and Michael Mateas. 2016. Super Mario as a string:
platformer level generation via LSTMs. arXiv:1603.00930 [cs] (March 2016).
arXiv:1603.00930 [cs]

[32] Adam Summerville, Sam Snodgrass, Matthew Guzdial, Christoffer Holmgård,
Amy K. Hoover, Aaron Isaksen, Andy Nealen, and Julian Togelius. 2018. Proce-
dural Content Generation via Machine Learning (PCGML). IEEE Transactions on
Games 10, 3 (Sept. 2018), 257–270.

[33] Adam James Summerville, Sam Snodgrass, Michael Mateas, and Santiago On-
tañón. 2016. The VGLC: The Video Game Level Corpus. arXiv:1606.07487 [cs]
(July 2016). http://arxiv.org/abs/1606.07487

[34] Julian Togelius, Georgios N. Yannakakis, Kenneth O. Stanley, and Cameron
Browne. 2011. Search-based procedural content generation: a taxonomy and
survey. IEEE Transactions on Computational Intelligence and AI in Games 3, 3
(2011), 172–186.

[35] Breno M. F. Viana, Leonardo T. Pereira, Claudio F. M. Toledo, Selan R. dos Santos,
and Silvia M. D. M. Maia. 2022. Feasible–infeasible two-population genetic
algorithm to evolve dungeon levels with dependencies in barrier mechanics.
Applied Soft Computing 119 (April 2022), 108586.

[36] Vanessa Volz, Jacob Schrum, Jialin Liu, Simon M Lucas, Adam Smith, and Sebas-
tian Risi. 2018. Evolving Mario levels in the latent space of a deep convolutional
generative adversarial network. In Proceedings of the Genetic and Evolutionary
Computation Conference. ACM, 221–228.

[37] Adeel Zafar, Hasan Mujtaba, and Mirza Omer Beg. 2020. Search-based procedural
content generation for GVG-LG. Applied Soft Computing 86 (Jan. 2020), 105909.

[38] Hejia Zhang, Matthew Fontaine, Amy Hoover, Julian Togelius, Bistra Dilkina,
and Stefanos Nikolaidis. 2020. Video game level repair via mixed integer linear
programming. Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment 16, 1 (Oct. 2020), 151–158.

https://github.com/mxgmn/WaveFunctionCollapse
https://github.com/mxgmn/WaveFunctionCollapse
https://www.kenney.nl/assets
https://arxiv.org/abs/1603.00930
http://arxiv.org/abs/1606.07487

	Abstract
	1 Introduction
	2 Related Work
	3 System Overview
	4 Applications
	4.1 Qualitative Characterization of Uncompletable Levels
	4.2 Training Completability Classifiers
	4.3 Generating Completable Levels without Completability Constraints
	4.4 Generating Levels Only Completable with Special Moves
	4.5 Other applications

	5 Conclusion
	References

