
SpeedRock:
procedural rocks through grammars and evolution

Isaac M. Dart, Gabriele De Rossi and Julian Togelius
IT University of Copenhagen

Rued Langgaards Vej 7
Copenhagen, Denmark

{imda, gdro, juto}@itu.dk

ABSTRACT
We present an approach to procedurally generating diverse
and believable rocks for usage in games and virtual worlds.
The basic idea is to evolve rulesets for three-dimensional
L-systems. The fitness calculation involves expanding these
rulesets a number of times, collapsing the resulting structure
and evaluating how well the collapsed structure conforms to
a user-specified shape. Texture is then applied through ray-
casting from a sphere around the evolved “skeleton”. The
result is a lightweight, stand-alone tool for rock generation
capable of exporting assets to mainstream modelling pro-
grams.

1. INTRODUCTION
This paper reports on the development of a software tool

aimed to provide 3D artists with a method for rapidly gen-
erating different types of rocks using a search-based PCG
technique based on an indirect representation.

Rapid development of realistic 3D rocks in game levels
and movie scenes is a priority as rock generation is currently
something of a bottleneck in 3D graphic artists’ production
pipelines. The development of realistic 3D rocks can take
considerable time and skill, as seen in Sascha Henrich’s 3DS
Max tutorial [3] on environment modeling.

Although not the most glamorous type of game object, the
humble rock can play a vital role in a game. For example,
rocks can be used:

• To provide cover-spots in conflict based games

• As natural barriers during exploration

• As potential challenges (i.e. when rolling or falling)

• As enemies, such as in the classic video game Asteroids

• To enhance aesthetics for a more immersive gaming
experience.

In order to provide artists with control over the shape of
a desired rock we propose a novel approach based on a form

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PCGames 2011 June 28, 2011, Bordeaux, France
Copyright 2011 ACM 978-1-4503-0872-4/11/06 ...$10.00.

of 3D L-system, artificial evolution and an implosion mech-
anism. In the SpeedRock system, an artist specifies certain
parameters about how a rock should look and then the sys-
tem will evolve a rock meeting these given shape specifica-
tions. L-systems have previously been used as genotype-to-
phenotype mappings for search-based PCG [7] in e.g. [2, 4],
but we believe that neither the specific form of L-system we
are using here nor the implosion and skinning mechanisms
have been used in a similar context before. We hope the
method presented in this paper will enable anyone involved
in 3D development to easily and quickly produce unique
and interesting 3D rocks for use in their games and 3D
scenes. We also urge the reader to download and try out the
SpeedRock software in conjunction with reading this paper,
as it is freely available online1.

1.1 Other approaches to procedural rock gen-
eration

There already some tools for procedural rock generation
available.

The aa rockGen 1.0 [1] tool is a plug-in for 3D Studio Max.
This tool gives the artist a rock of a preset shape which can
then be adjusted manually to meet the shape requirements
of an artist. In contrast, our tool creates the rock from
scratch, thereby allowing greater variety and originality. It
is also an independent tool rather than 3DS Max plugin.

In [5], Peytavie et al. describe a method for generating
very impressive scenes composed of rocks and rock forma-
tions using a mixture of aperiodic tiling and erosion. This
method is however more suited to rock piles than individual
rocks, and there is no mention of a complete tool available
for artists to use.

2. METHODS
SpeedRock is a simple application built using the game

engine/development environment Unity3D. It presents the
user with a simple interface allowing them to specify how a
PGC rock should look. It also provides simple file output
functionality, allowing the user to save the generated rock
as an OBJ file for easy import into mainstream modelling
programs.

The rocks are represented as axioms and rulesets for L-
Systems as such representations have previously been shown
to induce search spaces with high locality, permitting evo-
lutionary algorithms to search for structures with a shape

1http://logicartists.com/logicartists/tool links/
speedrock/description.html

specified by the user [4]. The most common way of using
L-systems for content generation and computational art is
to interpret strings generated by L-system rewriting as in-
structions for a turtle mechanism that draws in 2 or 3 di-
mensions [6]; in contrast, we are here using the 3D structure
resulting from rewriting directly as the “skeleton” for our
rocks.

Each chromosome with the evolutionary algorithm con-
sists of one axiom and four rules.

The SpeedRock chromosome is inspired by L-system gram-
mar, expanded to 3 dimensions. The actual representation
of the L-system rule is a 3 dimensional array of bytes, with
the size of each dimension being 2. This represents a cube
made up of 8 sub-cubes. Each byte value in a sub-cube holds
a value representing another rule, an empty space (rule 0),
or referencing itself.

For evolution to work well, the evolutionary algorithm
needs a large amount of variation within the population.
The population is therefore seeded with uniformly randomly
generated chromosomes.

2.1 3D L-systems
The algorithm we created works by starting with a 3D cu-

bic matrix as the L-system axiom, along with four randomly
generated rules. Figure 1 shows an example 3D Matrix Di-
vision rule set.

Figure 1: A sample ruleset for 3D Matrix division.
The results of a single expansion of a block of each
type (red, green, blue, yellow) is shown.

Figure 2: The results of two expansions of a red
block of the same rule set.

We then rewrite the 3D matrix six times. In each itera-

tion, each cube (cuboid) in the matrix is sub-divided along
their 3 axis into 8 smaller cuboids, reflecting the rule of the
parent cube. We call the approach of expanding the axiom
according to the ruleset “3D matrix division”. Figure 2 il-
lustrates two expansions of one of the sets shown in figure 1.

After each expansion, if a cuboid is set as “Rule 0”, it
is treated as a gap in the rock and invisible, in any other
case where the rule is non-zero it is treated as solid and
interpreted as rock during rendering.

During initial testing of this concept, we found the results
to be interesting, yet the variation in shapes was leaning
towards cubic or triangular structures. The results also in-
dicated that this technique may be suited for creating PGC
Buildings, perhaps some crystalline silicate rocks, and man-
made structures. See figure 3 for examples of structures
created through repeated expansions of random rulesets.

Figure 3: Some structures created through repeated
expansion of random rulesets.

2.2 Rock implosion
After the rewriting/expansion phase, SpeedRock applies

an “implosion” algorithm to the rock, forcing all cubes to
move towards the centre of the cube until no internal empty
space exists. Implosion works by repetitively searching through
the expanded 3 dimensional rock and upon finding an empty
space between a brick and the current center plane, pulling
the brick into the emprty space. The 3 center planes, one
for each dimension, run along the centre of the particular
dimension being operated on. This method is entirely de-
terministic.

See figure 4 for examples of structures created through
expansion of random rulesets followed by implosion. In the
eyes of the designers, the imploded structures look less man-
made than the correspinding unimploded structures.

2.3 Rock evolution
The variability of structures attained through the simple

expansion and implosion processes described here is quite
considerable, suggesting that the underlying representation
of four rules and an axiom is well suited for evolutionary
search. In SpeedRock, the user controls the generation chiefly
through specifying parameters for the fitness function.

Figure 4: Some structures created through repeated
expansion of random rulesets followed by implosion.

In initial experiments, a pre-existing shape and mesh was
used as an input, with the fitness function analysing the
difference between it and the candidate rock to determine
its fitness. After further consideration, we decided that us-
ing a known shape would restrict creativity too much, and
the requirement of having a “target mesh” would also place
unnecessary demands on the user.

In the current version the user specifies the desired di-
mensions of the generated rock, getting an x:y:z ratio. For
example, a flat stone would have a low y value, and higher
z and x values, such as 5:1:4. The fitness function is simply
defined as 1−d, where d is the average normalised difference
between desired and actual ratio in all dimensions.

Additionally, we decided to let the user specify some gen-
eral criteria about the type of rock that they want before
examining the fittest results. These criteria are are:

• Chunkiness value (size of each cuboid)

• Shape of individual cuboids: cubic / spherical

• Stochastic erosion percentage.

• Whether to implode the rock or not

The following evolutionary algorithm was used:

• Population size: 200

• Rank-based roulette wheel selection, where each gene
gets the same number of wheel places as its ranking in
descending order (i.e. fittest gene gets 200 places)

• One-Point random crossover.

• Mutation rate: 0.5% chance / rule

• Mutation: Chose a random cuboid within a rule. If
cuboid is empty: flip it to a random rule. If cuboid is
not empty: set it to empty.

We hypothesised that it would take longer to evolve a
rock where fitness was determined after implosion or erosion.

After running multiple simulations and finding the average
fittest in each generation over 25 generations, we found little
difference between methods. The algorithm automatically
stops when no progress has been observed for the last few
generations (usually after about ten generations).

2.4 Rock erosion
Erosion is an optional feature (the amount of erosion can

be controlled with a slider between 0 and 100%) which is
applied to the structure after evolution. The algorithm is
inspired by [5] and resembles a one-step cellular automaton.
The number of neighbours for each cuboid is calculated, and
the probability of deleting the cuboid depends on the num-
ber of neighbours (45% if 4 neighbours, 65% if 3 etc) multi-
plied by the overall erosion amount.

2.5 Turning rock to mesh
Once the basic rock skeletal structure is evolved, it is con-

verted into a mesh in order to be a exportable to a standard
3D file format. As the saying goes, there are many ways
to skin a cat, and skinning a rock is no exception to this.
Techniques we considered ranged from finding the centre of
all cuboids and looking at the nearest neighbours to using
external tools such as Autodesk and Blender.

The approach we settled on was to place the evolved rock
“skeleton” inside a large sphere. We then iterate through
each vertex on the sphere’s perimeter and cast a ray to-
wards the very centre of the sphere. Once the ray hits the
rock skeleton we move the current vertex onto the hit loca-
tion and add a small amount of displacement noise to the
position. An analogy to this would be vacuum sealing a rock
by putting it into a plastic bag and removing the air.

Finally, once all vertexes on the sphere’s surface have been
wrapped over the skeletal structure, we recalculate the nor-
mals of each surface. To give a sense of the kind of rocks
produced by SpeedRock, figures 5 and 6 show two rocks that
have been evolved with differing chunkiness values.

3. THE TOOL
Figure 7 shows a screenshot of the final tool, SpeedRock

1.0. The various options for the generator are available from
a graphical user interface, as is an option to export the rock
as an OBJ file for import into e.g. 3DStudio Max.

4. CONCLUSIONS
We have described a method for generating diverse and

believable rocks using a combination of L-systems, evolution
and an implosion mechanism. The method is embedded in
a standalone tool which can export generated assets in a
format suitable for modern game production pipelines. No
user tests have been performed, but we believe the rocks we
have generated to be reasonably believable. We believe that
the direct usage of 3D L-systems is novel in the context of
game content generation, and also that the implosion mech-
anism, while not an advanced feature in itself, has not been
combined with structures resulting from grammar rewriting.

Acknowledgments
This research was supported in part by the Danish Research
Agency project “Adaptive Game Content Creation using
Computational Intelligence” (AGameComIn, 274-09-0083).

Figure 5: Skinned rock using high chunkiness value.

5. REFERENCES
[1] A. Ardolino. Rock generator, 2010.

http://www.scriptspot.com/3ds-max/scripts/rock-
generator.

[2] D. A. Ashlock, S. P. Gent, and K. M. Bryden.
Evolution of l-systems for compact virtual landscape
generation. In Proceedings of the IEEE Congress on
Evolutionary Computation, 2005.

[3] S. Henrichs. 3ds max environment modeling #1:
Procedural stone, 2010.
http://saschahenrichs.blogspot.com/2010/03/3ds
Max-environment-modeling-1.html.

[4] G. Ochoa. On genetic algorithms and lindenmayer
systems. In Parallel Problem Solving From Nature,
pages 335–344, 1998.

[5] A. Peytavie, E. Galine, J. Grosjean, and S. Merillou.
Procedural generation of rock piles using aperiodic
tiling. Computer Graphics Forum, pages 1801–1809,
2009.

[6] P. Prusinkiewicz. Graphical applications of l-systems.
In Proceedings of Graphics Interface / Vision Interface,
pages 247–253, 1986.

[7] J. Togelius, G. N. Yannakakis, K. O. Stanley, and
C. Browne. Search-based procedural content
generation. In Proceedings of EvoApplications, volume
6024. Springer LNCS, 2010.

Figure 6: Skinned rock using medium chunkiness
value.

Figure 7: Screen shot of the final tool: SpeedRock
v1.0.

