
Level Design as Model Transformation: A Strategy for
Automated Content Generation

Joris Dormans
Amsterdam University of Applied Sciences

Duivendrechtsekade 36-38
Amsterdam, The Netherlands
j.dormans@hva.nl

ABSTRACT
This paper frames the process of designing a level in a game
as a series of model transformations. The transformations
correspond to the application of particular design principles,
such as the use of locks and keys to transform a linear mis-
sion into a branching space. It shows that by using rewrite
systems, these transformations can be formalized and auto-
mated. The resulting automated process is highly control-
lable: it is a perfect match for a mixed-initiative approach
to level generation where human and computer collaborate
in designing levels. An experimental prototype that imple-
ments these ideas is presented.

Categories and Subject Descriptors
K.8.0 [Personal Computing]: General—Games;
F.4.2 [Mathematical Logic and Formal Languages]:
Grammars and Other Rewriting Systems; J.6 [Computer-
Aided Engineering]

1. INTRODUCTION
Most handbooks of level design, describe the process of

designing levels at a very practical level. They provide the
reader with a few theoretical tools to describe levels. Most
quickly zoom in on the software applications that are com-
monly used for the task. Although many use abstract de-
scriptions in the form of flowcharts [15, 5], hierarchies of
challenges [7, 1], and level-layouts [5, 1, 16], none of these
has been developed into an industry wide standard that al-
lows designers to think and communicate about their efforts
in a suitable abstract manner. The descriptions and formal-
ism in these sources contradict each other on many points.
None of these present a clear and concise theory of what
a level actually is, and where quality in level design comes
from.

In this paper, I propose to discuss level design as a se-
ries of model transformations: a level designer generates a
series of different models, slowly working towards the com-
plete level. Even though most level designers will not think

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PCGames 2011 June 28, Bordeaux, France
Copyright 2011 ACM 978-1-4503-0872-4/11/06 ...$10.00.

of their products as models, I argue that many of them are:
an initial sketch of a level layout, or a storyboard are mod-
els focusing on particular aspects of the whole level. These
models are related: the first model will somehow impact or
even dictate the construction of the second model. The goal
of this discussion is two-fold: it can be used as a strategy
for automating (parts of) the process of designing levels, but
it also formalizes the design process itself; model transfor-
mations allow designers to reason about level design in an
structured and abstracted manner.

Model transformation is a notion taken from the prac-
tice of “model driven engineering” or “model driven archi-
tecture” within computer science. Model driven engineering
describes the process of creating software as a series of model
transformations where, for example, a model of a business
is transformed into a software architecture, which in turn
can be transformed into software code. Model driven engi-
neering is a practice designed to deal with the complexities
of designing enterprise-scale software solutions. It depends
strongly on a formalized conceptual framework, expressed
through different models, which can be used to design sys-
tems and communicate about system architecture. It also
plays an important role in automatic software generation.
One of the main premises is that it relieves the program-
mer form many tedious, manual tasks and elevates the task
of programming to a higher level of abstraction, a level of
abstraction where the most is made of the creativity and in-
genuity of the programmer. Through model driven engineer-
ing, the quality and efficiency of software production are to
be improved [4]. Model driven engineering works with many
different models, some of which are specific for a certain do-
main, while others are more generic. There is a strong push
to use UML as a standard modeling language independent
of platform and implementation [17].

This is not the first time that a model driven approach
is taken to the development of games. In a short paper
Emanuel Montero Reyno and José Á Carśı Cubel [13] ex-
plore the use of standard Unified Modeling Language (UML)
techniques and tools for the rapid, and mostly automated,
creation of game prototypes. They conclude that the UML
approach caters better to software engineers than to game
designers. In a later paper the same authors sketch a platform-
independent modeling language for gameplay specification
[14]. This modeling language still relies heavily on the use
of UML, although they do add game structure diagrams
and rule set diagrams to the palette of models offered by
UML in order to deal with specifics of the domain of games.
The main difference between their approach and the ap-

proach taken here is that their approach aims for the auto-
mated generation of games and prototypes only, whereas I
use model transformations to formalize the design process
itself as well. As a result, the models I am using are not
based on UML, but are closer to the models designers are
used to work with; they are more domain specific models
for design rather than domain specific models for software
engineering.

2. MISSION AND SPACE
Applying a model driven approach to level design assumes

that there are suitable models to work with. In a previous
study I proposed two distinct models for level missions and
level spaces to facilitate different steps in an fully automated
level generation process [9]. A level’s mission can be repre-
sented as a flowchart of the tasks and challenges players need
to complete in order to finish the level. A level’s space con-
sists of its geographical layout, either represented by a map,
or a network of nodes that resembles a map very closely. I
argued that a complete level consists of both a space and a
mission; it has a particular spatial layout and a series of
tasks that needs to be performed in that space.

The current theories and practices of level design do not
separate mission from space. As a result, the typologies of
level design layouts as presented by several authors are quite
contradicting and sometimes confusing. One of the most
complete typologies is given by Marie-Laure Ryan [15], as
her focus is more on interactive narratives than on games,
most her categories correspond closely with topological con-
structions suitable for missions: “story trees”,“braided plots”,
“directed networks”, and “vectors with side-branches”. Yet
she also includes“mazes”and“story worlds”, which are clearly
spatial constructions. The categories with Ernest Adams
and Andrew Rollings seem to be spatial structures first and
foremost, yet at the same time their categories also represent
different strategies to control the players progress through a
level, which case they are closer to missions.

The confusion of mission and space often causes level de-
signers to resort to simple, but effective strategy: to make
mission and space isomorphic. Although this works well for
particular games, especially for games that have a fairly lin-
ear level design in the first place, it is not the only option.
Separating between mission and space allows for far richer
palette of level design strategies. For example, games might
reuse the same space for different missions, as is the case in
System Shock II where the player traverses the same areas of
a spaceship multiple times. System Shock II shows that the
same space can accommodate multiple missions (assuming
that the individual mission structures do not resemble each
other too closely). Reuse of game space in this way is often
economic: the developer does not have to create a new space
for every mission in the game. It has gameplay benefits as
well. For example, the player can use previous knowledge
of the space to her advantage, adding to the player’s sense
of agency and the depth of the gameplay. As I will argue
below, for action-adventure games, too, separating missions
from spaces is also a useful strategies, as it allow us to de-
sign or generate levels that are less linear and foreground
the player’s growing experience.

In [9] I presented an approach to automatic level design
that started by generating a mission and then used that mis-
sion to generate a space to accommodate it. It is conceivable
that a level designers also use such an approach. They might

Figure 1: Level design as series of model transforma-
tions. The steps here correspond with the steps in
of the generation process investigated in this paper
in detail.

Figure 2: An alternative series of transformations.
This paper includes some suggestions on how such a
process might be setup, but does not go into details.

first create a mission by generating a list of tasks the player
must perform to finish the level, next they transform this
mission into a space by rearranging these tasks into a map
of the level. The designers then add detail to the map un-
til it is sufficiently detailed and populated to function as a
game level (see figure 1).

Mission and space, as described above, each represent a
different view of a level; each model foregrounds different
structural qualities of the same level. The mission graph
focuses on the player’s tasks and their interrelation while
the space graph represents the spatial structure of the level.
Usually, the latter model is more complex and more detailed;
with sufficient detail one can assume that the mission is em-
bedded within the space graph, but not the other way round.
For the same reason, when designing a level it is usually eas-
ier to start with designing a mission and then design a space
to accommodate it. Alternatively, a designer might begin by
designing a space first, then design a mission that matches
the space, and maybe make some adjustments in order to fa-
cilitate that mission before adding detail (see figure 2). This
approach is better suited to generate levels where space con-
forms to some logical, architectural principle: a level might
be a mine first and foremost, furnished with all the elements
that one expect from such an environment, and a mission
might be constructed to fit that environment second. This
way a single space might also host multiple missions, as is
the case in System Shock II where the player traverses the
decks of a space ship, and returns to previously explored
decks during later stages in the game. For this paper I will
focus mostly on the first, simpler strategy.

3. REWRITE SYSTEMS
The process through which one model is transformed into

another model can be captured using rewrite systems. Rewrite
systems consist of rules that have a left and right side. These
rules specify a set of symbols (the left side) that can be
replaced another group of symbols (the right side). This
operation is similar to the use of rules in formal grammars.
Formal or generative grammars originate in linguistics where
they are used as a model to describe sets of linguistic phrases
encountered in natural language [6]. Formal grammars typ-
ically operate on strings, but this need not be the case.
Graph grammars are specialized form of formal grammars
that operate on graphs consisting of nodes and edges. Graph
are more useful than strings to represent mission structures,
and can also represent space. In a graph grammar one or

Figure 3: A graph grammar rule. Square nodes de-
note nonterminal symbols and circular nodes denote
terminal symbols.

Figure 4: The process of applying the rule depicted
in Figure 3 to a graph.

several nodes and interconnecting edges can be replaced by
a new structure of nodes and edges [12]. Figures 3 and 4
illustrate this process. After a group of nodes has been se-
lected for replacement as described by a particular rule, the
selected nodes are numbered according to the left-hand side
of the rule (step 2 in figure 4). Next, all edges between the
selected nodes are removed (step 3). The numbered nodes
are then replaced by their equivalents (nodes with the same
number) on the right-hand side of the rule (step 4). Then
any nodes on the right-hand side that do not have an equiv-
alent on the left-hand side are added to the graph (step 5).
Finally, the edges connecting the new nodes are put into the
graph as specified by the right-hand side of the rule (step
6) and the numbers are removed (step 7). Note that graph
grammars can have operations that allow existing nodes to
be removed, these operations are not used in this paper.

The difference between formal grammars and rewrite sys-
tems is that rewrite systems can takes can take a set of
symbols as its starting point, and lack a clear distinction
between terminal and non-terminal symbols. This means
that a rewrite system does not terminate in the same way
as a formal grammar does. Any transformation leads to a
meaningful model. [10]

Rewrite systems must operate on models that can conform
to a formal grammar. In this particular case, a graph rewrite
system could start from a graph representing a mission and
transform it into a space. The rules of the rewrite systems
must be constructed in such way that the output model does
not conflict with the grammar of target model. Figure 5
depicts mission and space models and grammars in relation
with each other and a rewrite system.

Rewrite systems are different from the formal grammars
as they do not define a language or a model. They can,
however, codify design principles: rewrite systems specify

Figure 5: Level design as a model transformation.

the operations a designer might perform on a model in order
to transform one model to another. When implemented as
a automatic transformation, these rewrite systems are very
strict; they allow only the operations that are represented by
their rules and nothing more. Real-life designers are more
flexible, yet they also follow certain restrictions. If the aim
is to create a level that is solvable, no designer would place
a crucial key behind a lock opened by that same key, as this
would create a deadlock.

The advantage of using a rewrite system is that such op-
erations can be prevented. This requires that the rewrite
system is constructed according certain constraints, and all
applied transformations are indeed conform the rewrite sys-
tem’s rules. For a human designer this might not be the best,
or easiest, way to work, but it can be easily automated. A
software tool for level design can be developed, that imple-
ments all possible operations to generate mission and space
models based on rewrite systems. Such a tool would have
the additional advantages that it would allow a designer to
produce different, correct levels quickly and efficiently. Fur-
thermore, it is quite conceivable that for particular types of
games, the entire level design process can be automated in
this way.

Figure 5 suggests that applying rewrite rules to a graph
representing a mission always results in a graph representing
a space. This need not be the case. As was already men-
tioned, the actual transformation of a mission into a space
might involve many smaller transformation steps, each gov-
erned by different rewrite systems. One rewrite system can
create a number of tasks, the second might add some depen-
dencies or ensures that the tasks are in an interesting order,
the next might add locks and keys to create a non-linear,
more space-like mission structure, while another could add
bonus tasks and rewards. This gradual transformation from
mission and space puts in to sharp contrast that mission and
space are nothing but useful perspectives on game levels;
many intermediate perspectives exist. However, the struc-
tures these perspectives foreground have their own charac-
teristics, and experienced designers take advantage of these
characteristics to create compelling game experiences.

4. EXAMPLETRANSFORMATION: LOCKS
AND KEYS

Rewrite systems can be used to codify level design princi-
ples. For example, it is possible to design a rewrite system

Figure 6: Addition of a lock and key transforms a
linear mission (a) into a branching structure (b) in
which the lock can be moved forward (c). In this
model, e = entrance, g = goal, T = Task, K = Key
and L = lock. The dashed line indicates which key
unlocks what lock.

that implements the typical lock and key structures that are
commonly found in action-adventure games (cf. [2]). Locks
and keys are an important illustration of the technique of us-
ing rewrite systems, not only because locks and keys repre-
sent well-known mechanics for action-adventure games, but
also because they play a crucial role in how a particular level
mission might be transformed into a structure that is more
like a level’s space.

The locks and keys can be literally locks and keys, but it
is quite common to disguise them as different items. For ex-
ample the “gale boomerang” the player discovers in the first
dungeon level of The Legend of Zelda: Twilight Princess is
both a weapon and a key that can be used in different ways.
It has the capability to activate switches operated by wind.
The game’s protagonist Link needs to operate these switches
to control a few turning bridges to give him access to new
areas. In order to get to the master key that unlocks the
door to the final room with the level boss, he needs to use
the boomerang to activate four switches in the correct or-
der. At the same time the boomerang can be used to collect
distant objects (it has the power to pick up small items and
creatures), and can be used as a weapon. This allows the
designer to place elements of the second half of the mission
(after the mini-boss that guards the boomerang has been
defeated) in the same space that is used for the first half
of the mission. This means players will initially run into
obstacles they cannot overcome until they have found the
right “key”. It is generally better to have the lock before the
key in this way for three reasons. 1) When keys are encoun-
tered first players will simply be forced to collect everything
they encounter without discrimination, which creates rather
simplistic gameplay. 2) With obstacles and items that act
as locks and keys but are represented with something else,
it is easier to recognize the key if players know what the
lock is, players then usually realize where they can proceed;
they will actively formulate the intention to return to the
lock. 3) When players can negotiate obstacles they were un-
able to get past earlier, they will experience progress and
accomplishment.

What locks and keys allow a designer to do is to take a
linear series of task, which by itself would make for a equally
linear level, and to transform it into a branching structure
(see figure 6). This transformation can be captured with

Figure 7: Rewrite rules governing the transforma-
tions enabled by the use of locks and keys. In these
rules, the nodes marked with a question mark can
be any node: the question mark acts as a wild card.
Rule 1 might be translated into natural language as
“if some mission element is followed by a task, con-
sider turning the task into a lock and adding a key
which is made available by the task”. Rule 4 might
read: “If a lock is followed by a task, that is fol-
lowed by any other node, consider moving that task
to precede the key that unlocks the lock”.

Figure 8: Sample levels generated by randomly ap-
plying the rules 1, 2, 4, 5 and 6 of figure 7 on a
mission of twenty-one tasks.

only two graph rewrite rules (rules 1 and 2 in figure 7). This
step is an important one: a linear list of tasks is very easy
to specify, yet when mapped to space directly it does not
necessarily make an interesting level. Locks and branches for
keys introduce a certain degree of non-linearity. Especially
when a lock requires multiple keys; it represents players with
a number tasks that can be pursued in any order.

There are plenty rules that could be added to this basic
set in order to generate more interesting levels. For example,
a rule can be made that moves a lock towards the goal (see
rule 3 in figure 7). However, this rule breaks with the level
design wisdom that is generally better to have the player to
encounter the lock before the key. Another rule can be made
that allows keys to pull tasks from behind a lock (rule 4).
This will in effect hide the key, making sure that the player
needs to accomplish more tasks before finding it. Other op-
tions include using multiple keys for a single lock (rule 5) or
creating keys that are used multiple times (see rule 6). Note
that in the last example the extra lock is a terminal lock,
which means that it cannot be moved by rule 2. Figure 8

shows a few example level structures that were generated
with these rewrite rules.

The technique of using rewrite systems is highly control-
lable. If you consider a lock and key combination to be a
single tasks, then none of these rules change the number of
tasks in the level. This way the size of a level is dictated
by the length of the initial mission. In addition, these rules
also make sure that a lock will always be followed by an-
other element. This can be verified by inspecting the rules:
there is no rule that allows the removal of the last node af-
ter a lock, and all additional branches that are created end
with a key node that is required to proceed elsewhere. This
means that all tasks must be completed in order to finish the
level. This is another reason that the second lock created by
rule 6 in figure 7 is made a terminal node so that it cannot
be moved. If moving it was allowed the tasks behind the
first door would no longer be required to complete the level.

Once a mission structure is generated that consists of mul-
tiple tasks with locks and keys, there are several strategies
to build spaces to accommodate the mission. In a previous
paper [9], I described a method that uses shape grammars
[20] to define spatial parts which are used to build up the
space not unlike a jig-saw puzzle. Although this approach
works, it has difficulty generating spaces for missions which
allow multiple paths to converge at the same goal. To deal
with this problem I take advantage of the spatial nature of
a two-dimensional representation of a graph, which can be
translated into a shape easily. This approach is outlined in
[3].

5. GENERATING MECHANICS
The generation process for game levels can be expanded

to include game mechanics as well. This requires that game
mechanics can be represented by graphs. The Machinations
framework [8] provides such a framework. Machinations di-
agrams have been developed to represent the internal econ-
omy of games. They model resources (small colored circles)
that are collected on pools (open circular elements). Pools
might be passive, or interactive. Interactive pools are repre-
sented with a double outline and can be activated through
certain player actions. Arrows indicate how resources flow
through the diagram, not unlike tokens in Petri-nets. Dot-
ted arrows indicate how a pool’s state (the number of re-
sources on a pool) affects the strength of the flow elsewhere
(called state connections), or how certain elements are ac-
tivated when certain conditions are met (called activators).
State connections have markers that indicate change (“+”,
”-”, “+2”), activators have markers that indicates a condition
(“<3”, ”>0”, “==3”). Other elements include sources that
produce resources (triangles pointing upwards), drains that
consume resources (triangles pointing downwards), convert-
ers that change the number of resources according to the
input and output flow values (triangles pointing sideways),
and gates that affect the flow of resources (diamond shapes).
Like pools these elements can passive (single outline) or in-
teractive (double outline). Machinations diagrams and can
be subjected to the same type of grammar as missions or
topographic representations of space.

Rewrite rules can be used to codify recurrent construc-
tions found in games. These constructions include typical
game goals [11]. Figure 9 features a number of rewrite rules
that might be constructed to include a number of these goals
in games. It is not difficult to see that from these starting

Figure 9: Transformation rules to create a goal from
an arbitrary starting point (the non-terminal symbol
“S”).

Figure 10: Rules to transform mechanics

constructions the mechanics can be expanded by replacing
simple mechanics with more sophisticated ones. Examples
of rules that describe such transformations can be found in
figure 10.

The relation between mechanics and levels can be estab-
lished in various ways. For example, it is possible to express
lock and key transformations (see figure 7) in a rewrite sys-
tem that describes the same transformations at the level
of machinations (see figure 11). In a Machinations based
rewrite system it also becomes possible to include more me
elaborate mechanics than mission graphs conveniently allow.
For example, once a lock and key mechanism is created us-
ing rules in figure 11, these can in turn be replaced by some
other lock and key mechanism. The rules in figure 12 sug-
gest a few options. In a similar vein, the individual tasks
that make up mission graph can be specified better by using
Machinations diagrams to represent the mechanics that are
involved directly (see figure 13).

As with the transformations used to describe the process
of designing a level, there are many different sequences of
transformations possible. The most straightforward point of

Figure 11: Lock and key transformation grammar
expressed as Machinations diagrams. These rules
correspond with rules 1 and 2 of figure 7.

Figure 12: Optional lock mechanics. The classical
lock can be replaced by any of the three other con-
structions in this figure, which in turn can be elab-
orated further.

Figure 13: Rewrite rules that specify how tasks
might be elaborated.

Figure 14: Steps in the generation of game mechan-
ics could inform the generation of progressive levels.

departure is a mission, and refine that by adding interesting
mechanics using rules as described in figures 11-13. How-
ever, it might be more interesting to start with mechanics
and find a way how these mechanics might translate into
interesting missions, especially when one also finds a way to
create missions that create a structured learning curve.

One solution can be found in the process of generating the
mechanics in the first place. Assuming this process started
out with fairly simple mechanics, such a simple goal pre-
sented in figure 9, or perhaps with one or two elaborations,
a first level, or the first challenges of a level, could be gen-
erated from these mechanics. Subsequent levels could be
generated from further transformations (see figure 14). The
transformation history that led up to the complete design of
the mechanics could be used as a basis for such a structure of
level progression. This way levels might be created that are
coherent and where earlier challenges prepare the player for
the challenges that are still to come. At later stages of the
game, parts of the mechanics might be removed in order to
be replaced with new mechanics in order to create variation
in the gameplay.

6. AUTOMATED DESIGN TOOLS
The techniques discussed above can be leveraged to build

automated level design tools. There are several approaches
to these tools: one can try to build a tool that completely
generates a level from scratch, or one can try to build tools
that assist the designer in what might be called a “mixed-
initiative approach” [19], also see [18]. Although the first ap-
proach is interesting in itself, there are relatively few games
that actually consist of fully generated levels. Interest in
tools that focus on the assisting designers is growing as more
and more game companies acknowledge that such tools can
increase the effective output of their staff: it allows level
designers to focus on the creative aspects of their job and
delegate most of the manual tasks to the computer. There
are even opportunities for those games that allow players to
become the co-creators during play, as is the case with Little
Big Planet.

Model transformations and rewrite systems are an excel-
lent match for the mixed-initiative approach. They provide
the designer with many opportunities to control the process
of level generation at many different levels of abstraction.
At the top most level of abstraction, designers might specify
the sequence of transformations, selecting different rewrite
systems for each step. In effect this would allow designers to
specify whether the level is designed with a particular mis-

Figure 15: The experimental mission/space genera-
tor displaying a recipe (on the left).

sion as its starting point (as outlined in figure 1) or whether
a particular space guides the design of the level (as out-
lined in figure 2). There could even be alternative modules
to generate different types of spaces: one rewrite system
might generate a ‘dwarf fortress’ while another might gen-
erate an ‘orc lair’. Additional transformations might change
the ‘dwarf fortress’ into a ‘dwarf fortress overrun by orcs’,
etc. To this end the experimental prototype allows the de-
signer to specify a “recipe”: a series of rules that are applied
to suitable random nodes. A recipe can specify a specific
number of times a rule should be applied, a range from which
the tool will randomly select, or it can specify the rule must
be applied as long as there are suitable nodes to apply it to.
Recipes can also instruct the tool to select particular rewrite
systems, or change the layout of the graph (see figure 15).

On a lower level of abstraction the designer might also
affect the application of rewrite rules. In the prototype,
that allows the construction of graph grammars and rewrite
systems, the designer can either manually select nodes in the
graph and then apply any applicable rewrite rule to it. When
no node is selected the designer the tool finds out which rules
are applicable to any node and offers the designer a choice
between them. When the designer chooses to apply a rule,
a suitable node is selected randomly (see figure 16).

In this way mission graphs are slowly transformed into
space graphs, which at one point are transformed into geo-
graphical maps. The tool implements an automatic layout
system to handle the changing graph representations, but
the designer can manually change the layout by dragging
individual nodes around. Currently, the implementation of
the translation from a graph that represents a level space
to a map is very specific for top down 2D action-adventure
style games. The implementation of the shape grammars
and shape rewrite systems to refine the space is also imple-
mented in only two-dimensions, but the same type of gram-
mars can be made to work with three dimensions, if need
be.

7. CONCLUSIONS
This paper investigated the use of model transformations

as a strategy for partly automating the process of level de-

Figure 16: The experimental mission/space genera-
tor. The highlighted rules on the left indicate which
rules are currently applicable to highlighted lock in
the mission graph in the application’s main view.

sign. Level design framed as a series of model transfor-
mations allow us to formalize level design principles using
rewrite systems. This is applicable for the automatic gen-
eration of game level. It allows level designers to approach
their task on a high level of abstraction. At this level of
abstraction level designers can focus on the truly creative
aspects of their task. This increases their effectiveness in
designing levels, and reduces the chance of flaws in the de-
sign. One set of level design principles, the locks and keys
common to action-adventure games, was used to illustrate
how rewrite systems can be constructed and how these relate
to the process of designing a level.

Model transformations can be part of a flexible frame-
work where designers can generate or design missions before
space, or vice versa. The number of transformations that
are required to go from a starting point to a fully functional
and decorated level are likely to be many. It is advantageous
to make the individual transformations small; this keeps de-
signing rewrite systems easier, and creates the most flexibil-
ity. Creating a tool in which a level designer can organize
and direct a large number of small transformation also offers
the opportunity to expand the level generation process to in-
clude the generation of game mechanics. The advantage of
involving mechanics in this way would be that game levels
could be generated that better involve the unique mechanics
that define a game’s gameplay.

The transformations used as examples in this paper all
created branching levels, but the technique also allows the
creation of missions and levels that have a more complex
layout. For example a level that contains two alternative
routes can be generated from a mission that has two strings
of parallel tasks. The advantage of using graph grammars
to represent missions and early versions of the space, is that
these deal with that sort of structure naturally.

This paper discussed graph rewrite systems almost exclu-
sively. Graph rewrite systems can be used to handle a wide
variety of useful transformations that are part of the de-
sign process. These transformations include, but are not
restricted to: generating sequences of progressively more

difficult tasks, adding locks and keys, adding bonus struc-
tures and rewards, generating game mechanics to control a
players progress, transforming these mechanics into mission
graphs, transforming mission graphs into topological repre-
sentations of game space, and populating that space with
monsters, traps and puzzles. Shape grammars, which were
briefly mentioned, can be used create shape rewrite rules to
govern some of these transformations and expand the pro-
cess of generating and furnishing space.

Model transformations and the use of rewrite systems
match the mixed-initiative approach to content generation
where designers are assisted in their task by the computer.
Model transformations allow designers to control the pro-
cess of level generation at many different levels of detail,
but can equally well be used to automate these levels com-
pletely. The experimental tool that was build as part of this
research illustrates how this can work in practice.

However, this research is not complete. At the moment of
writing I am still implementing the generation of mechanics
as described in this paper. In addition, little attention has
been paid to the relation of game levels and the basic game
mechanics that deal with movement, interaction and conflict
in the game world. These mechanics also affect the level
design. For improved quality in a game, levels need to be
designed, or generated, around these mechanics. Finally, the
transformation from space graphs to space maps is currently
implemented by a algorithm very specific to the domain of
top-down two-dimensional spaces. To my knowledge no out-
of-the-box rewrite rules exists that can transform a graph
into a map. More research into how this step might be
implemented in a more generic way is warranted.

8. ACKNOWLEDGMENTS
I would like to thank Remko Scha and Jacob Brunekreef

for their support with this research. I am grateful to the
Hogeschool for Amsterdam for providing me with the op-
portunity to explore these matters as part of my PhD re-
search. Finally, I would also like to thank the anonymous
reviewers whose suggestions helped improve this paper, and
from whom I ‘stole’ the natural language translation of rule
1 in figure 7.

9. REFERENCES
[1] E. Adams and A. Rollings. Fundamentals of Game

Design. Pearson Education, Inc., Upper Saddle River,
NJ, 2007.

[2] C. Ashmore and M. Nietsche. The quest in a
generated world. In Situated Play, Proceedings of
DIGRA 2007 Conference, 2007.

[3] S. Bakkes and J. Dormans. Generating mission and
space for dynamic play experience. In Proceedings of
the GAME-ON Conference 2010, Leceister, UK, 2010.

[4] A. Brown. An introduction to model driven
architecture. 2004.

[5] E. Byrne. Game Level Design. Boston, 2005.

[6] N. Chomsky. Language and Mind, Enlarged Edition.
Harcourt Brace Jovanovich Inc, New York, NY, 1972.

[7] B. Cousins. Elementary game design. Develop, 2004.

[8] J. Dormans. Machinations: Elemental feedback
structures for game design. In Proceedings of the
GAMEON-NA Conference, 2009.

[9] J. Dormans. Adventures in level design: Generating
missions and spaces for action adventure games. In
Proceedings of the Foundations of Digital Games
Conference 2010, Monterey, CA, 2010.

[10] R. Heckel. Graph transformation in a nutshell.
Electronic Notes in Theoretical Computer Science 148,
pages 187–198, 2006.

[11] M. J. Nelson and M. Mateas. Towards automated
game design. In R. Basili and M. Pazienza, editors,
AI*IA 2007: Artificial Intelligence and
Human-Oriented Computing, pages 626–637, 2007.

[12] J. Rekers. A graph grammar approach to graphical
parsing. In Proceedings of the 11th International IEEE
Symposium on Visual Languages, pages 195–202, 1995.

[13] E. M. Reyno and J. A. Carśı Cubel. Model-driven
game development: 2d platform game prototyping. In
Proceedings of the GAME ON Conference, 2008, 2008.

[14] E. M. Reyno and J. A. Carśı Cubel. A
platform-independent model for videogame gameplay
specifation. In Breaking New Ground Innovation in
Games Play Practice and Theory Proceedings of the
2009 Digital Games Research Association Conference,
2009.

[15] M.-L. Ryan. Narrative as Virtual Reality: Immersion
and Interactivity in Literature and Electronic Media.
The John Hopkins University Press, 2001.

[16] J. Schell. The Art of Game Design: a book of lenses.
Morgan Kaufman, 2008.

[17] B. Selic. The pragmatics of model-driven development.
IEEE Software, 20(5), 2003.

[18] R. Smelik, T. Turenel, K. J. de Kraker, and
R. Bidarra. Inegrating procedural generation and
manual editing of virtual worlds. In Proceedings of the
Foundations of Digital Games Conference 2010,
Monterey, CA, 2010.

[19] G. Smith, J. Whitehead, and M. Mateas. Tanagra: A
mixed-initiative level design tool. In Proceedings of the
Foundations of Digital Games Conference 2010,
Monterey, CA, pages 209–216, 2010.

[20] G. Stiny and J. Gips. Shape grammars and the
generative specification of painting and sculpture. In
Proceedings of Information Processing 71, pages
125–135, 1972.

