
Fast exact graph matching using adjacency matrices

Marlon Etheredge
Amsterdam University of Applied Sciences

Duivendrechtsekade 36
Amsterdam, The Netherlands

marlon.etheredge@hva.nl

ABSTRACT
This paper introduces a technique of graph subgraph search-
ing, that allows for varied complex subgraphs to be matched
in directed or undirected target graphs in a fast and flexible
manner. Along with a discussion on the contrast with other
known algorithms, benchmarks are presented that compare
these known algorithms to the algorithm that is presented
in this paper.

Categories and Subject Descriptors
G.2.2 [Discrete Mathematics]: Graph Theory—Graph
algorithms

General Terms
Algorithms

Keywords
Graph grammars, graph subsets, graph rewrite rules, proce-
dural generation

1. INTRODUCTION
The demand for a fast and exact graph subset search al-
gorithm comes from development of the game DroidRacers.
DroidRacers is a multiplayer racing game with infinite pro-
cedurally generated race tracks that are constructed from
graphs. The game is played on a public screen where many
potential players will pass and allows players to play the
game using their Android device as a controller. Players
will join and leave the game while it is running. With the
introduction of this feature within the game, the need for a
fast mechanism of procedural content generation is required
since the set of players within the game is adjusted when
players enter or leave the game. The gamestate is adjusted
by the experience level of the group as a whole. To tackle
this problem the game makes use of so called mission graphs
as described by Joris Dormans [3]. With the mission graphs,
graph transformation is used to allow for adaptive gameplay,
e.g. changing track layout depending on player skill level

and constructing new track geometry upon completion of
mission goals in the game. To achieve this altering of game
content search and replace operations need to be performed
on the game content, these known patterns are represented
as subgraphs that are searched within a target graph (the
gamestate, or part of the gamestate). This requires a fast
and flexible technique for graph searching that does not af-
fect performance in a realtime game environment. Many
existing methods of subgraph searching do not meet the re-
quirements for processing time of realtime game environ-
ments, causing poor performance or, when approximating,
suboptimal matching. Also, existing methods that rely on
evolutionary (genetic) algorithms do not meet the standard
for the quick and interactive way of graph transformation in
this game; changes should be introduced directly, without
the need of evolution. Therefore a robust and fast technique
of exact graph subgraph matching is indispensable.

1.1 Other related work
For a graph matching method we refer the reader to [3],
where multiple appliances of graph grammars are described
in the context of game design. An example of a graph search
algorithm is discussed in [5]. Graph grammars and rewrite
rules are related to querying graphs in graph databases.
There is a long history of research and approaches concern-
ing graph databases and querying graphs. Approximation is
used for querying graphs in various approaches, like TALE
[7]. Other approaches including GraphGrep[4] and GiS [6]
make use of an index phase and filter phase, but due to the
nature of realtime game environments we cannot afford to
have to run these additional phases. As well as these ex-
isting tools many algorithms exist for solving the graph iso-
morphism problem, a well-known solution for this problem
was introduced by Ullmann [9]. Ullmann’s approach was
later used in VF, as well as the VF algorithm for solving
isomorphism in graphs [2], VF is used throughout this pa-
per to test our algorithm against, both in the description of
the algorithm as the benchmark (VF and Ullmann). There
are known solutions for the generation of personalised race
tracks as described in [1] and [8].

2. ADAPTIVE GAMEPLAY
DroidRacers allows players to enter and leave an ongoing
game. This requires that the content of a live game is altered
according to the state of the players that enter and leave the
game. Race tracks may need to be altered and objectives
within the game may need to be changed according to the
new set of players. Previous research like [1] and [8] that fo-

cus on the generation of personalised racetracks make use of
evolutionary (genetic) algorithms to achieve this. Since the
states of DroidRacers need to be adjusted in realtime and
we require that the game is modified without many evo-
lutions, the evolutionary approach does not seem suitable
for DroidRacers. In addition to this insuitability caused by
the evolutions in genetic algorithms, the graph-based ap-
proach allows us to alter any form of content within the
game; not only race tracks may be altered at runtime, but
we also may introduce new objectives or we may adjust the
game space. Practically every structure in the game may
be represented by graphs and transformed according to cer-
tain events within the game. In other words, implementing
a fast graph matching algorithm makes it possible to create
an endless race game that constantly adopts its content to
the changing set of players.

3. MATCHING
Let G be a graph that consists of the following properties:

• Gn as a set of nodes

• Ge = (n1, n2) a set of 2-tuples elements as e edge

• n1 ∈ Gn, n2 ∈ Gn

The set Ge might be stored in different ways in an imple-
mentation, e.g. sets of nodes per node to store edges or, like
proposed, adjacency matrices.

A graph will contain a set of node types, these node types
are used to check similarity within graph and subgraph, and
are independent of implementation. As long as the node
types are comparable in an implementation, any definition
for this node type would be correct. Node types may even
be stored inside a node itself.

Graph

A1

B2

B5

D3

D4

E7

C6

A9

B8

A10

Figure 1: A target graph example

3.1 Search operation
Consider the target graph that is laid out in figure 1, one
would want to search for a subgraph of node types in an ar-
bitrary position in the graph and match all subgraphs that
match in the target graph. The matching of this subgraph is
done by selecting nodes that are accepted by the search op-
eration and marking these nodes as such. An exact search
algorithm must ensure that only nodes that are part of a
subgraph used as a search criterium are selected. Another
requirement for a successful search operation is to have ex-
actly the same connections as the targeted graph.

Complexity of these requirements increase whenever the sub-
graph gets more complex, especially when the subgraph con-
tains many deep branches. This is due to the fact that when-
ever deep branches are traversed, it becomes more complex
over time to step back into nodes of the same type at the
same level of a branch.

Pattern

C1

E2

B3

A4A5B6

Figure 2: A subgraph example

The subset matched in the graph

Subset in graph

A1

B2

B5

D3 D4

E7

C6

A9

B8
A10

Figure 3: The subgraph matched in the targeted
graph, showing the accepted nodes

It is clear that the subgraph that is matched that is shown
in figure 3 contains all types that were required to match
the subgraph in the target graph.

4. TRADITIONAL SEARCHING
An algorithm as described in [5] or as used in [3] will store
the edges as sets of nodes. Describing a subgraph A by the
following properties:

• An as a set of nodes existing in A

• Aout as a set of outgoing edges

• Ain as a set of incoming edges

• Aout ⊆ An, Ain ⊆ An

And a targeted graph G by the following properties and the
previously described structure of edges:

• Gout as a set of outgoing edges

• Gin as a set of incoming edges

• Gout ⊆ Gn, Gin ⊆ Gn

An implementation of this traditional search algorithm would
then recursively search every node in Gout for a node in Aout

starting from every node in Gout. This would cause exponen-
tial processing time, unacceptable in a realtime environment
as well as undesired levels of recursion that make it harder
to search for more complex subgraphs.

5. OUR ALGORITHM
In contrast with the previously mentioned search algorithm,
our algorithm uses adjacency matrices as a way to store and
quickly search through edges. An adjacency matrix

a11 a12 · · · a1m

a21 a22 . . . a2m

...
...

. . .
...

am1 am2 . . . amm

is constructed by a simple function (as seen in figure 4, hav-
ing a as the adjacency matrix for the graph, C as a set of
connections and l as the size of the matrix).

for (Connection connection : C) {
pA = connection.A.Position;
pB = connection.B.Position;

a[pA][pB] = 1;

++a[pA][l - 1];
++a[l - 1][pB];

}

Figure 4: Simple adjacency construction function

In an implementation there should be storage for row and
column size, it is trivial to store this data as the last element
of a row or column, to provide fast access when iterating over
rows and columns. These elements are later used to perform
sorting operations on required sets prior to any search op-
erations. The following adjacency matrix m is constructed
from the graph as presented in figure 1. Rows can be seen
as outgoing nodes, while columns are describing incoming
nodes. 1 as an element states a connection, 0 states a non-
existent connection.

A1 B2 D3 D4 B5 C6 E7 B8 A9 A10 l
A1 0 1 0 0 1 0 0 0 0 0 2
B2 0 0 1 0 0 0 0 0 0 0 1
D3 0 0 0 1 0 0 1 0 0 0 2
D4 0 0 0 0 0 0 0 0 0 0 0
B5 0 0 0 0 0 1 0 0 1 0 2
C6 0 0 0 0 0 0 0 0 0 0 0
E7 0 0 0 0 0 1 0 1 0 0 2
B8 0 0 0 0 0 0 0 0 0 1 1
A9 0 0 0 0 0 1 0 0 0 1 2
A10 0 0 0 0 0 0 1 0 0 0 1
l 0 1 1 1 1 3 2 1 1 2 0

The following adjacency matrix a can be constructed from
the graph as displayed in figure 2. This matrix uses the same
mapping as the previous matrix.

C1 E2 B3 A4 A5 B6 l
C1 0 0 0 0 0 0 0
E2 1 0 1 0 0 0 2
B3 0 0 0 0 0 0 0
A4 0 1 0 0 0 0 1
A5 0 0 0 1 0 0 1
B6 0 0 0 0 1 0 1
l 1 1 1 1 1 0 0

The matrix a is used to extract patterns of nodes in nodes
that are used to scan m. When speaking of these patterns
we define a pattern as a map containing a key and one or
more value entries. The key of such a pattern ’pair’ will
describe the nodetype that requires the entries in the values
of the map for the particular pattern. And will be extracted
by a function similar to the pseudocode that is presented in
figure 5, having P as a set of patterns, N as a set of nodes
within a graph and m as the adjacency matrix of the graph.
Please note that in the pseudocode the requirements set is
implemented using bitmasking.

The adjacency matrices are used to test if edges exist for
a specific node, iteration is over nodes and a lookup for
node types in the collection of nodes is needed to test for
requirements defined in the subgraph graph. This approach
allows for quick searching since no traversal into node lists is

P.clear();

for (int i = 0 ; i < N.size() ; ++i) {
Pattern p;

p.Key = N[i].Type;

for (int j = 0 ; j < N.size() ; ++j) {
if (D[i][j] == 1) {
p.Requirements |= 1 << N[j].Type.GetId();

++p.RequirementsLength;
}

}

P.push_back(p);
}

P.sort();

Figure 5: Pattern extraction pseudocode

needed whenever node types do not meet. Another benefit
from this approach is that the pattern collection condenses
while more matches are found, since these patterns are in-
validated upon a match, search requirements in the form of
patterns become more narrow.

One-directional search problem

One-directional subgraph

A9

B5

C6

B10

C8

C11 B7

A1

C2 A3

A4

Figure 6: A one-directional subgraph in a target
graph

5.1 Directional searching
Figure 6 shows an example of one-directional searching, where
the direction is only outgoing seen from the entry-node A9.
This is a case of simple searching, where only the outgoing
edges set should be searched for patterns.

Where figure 3 shows a case of bi-directional searching, where
seen from entry-node E7, the direction is outgoing to node
C6 and B8 as well as incoming from node A10 through B8.
Required for such a case is that both incoming as outgo-
ing edge sets are searched for patterns. This requires the
pattern set to contain both a set for input edges as output
edges. Since this case adds to the polynomial search com-
plexity of this algorithm, additional optimizations might be
used to pre-evaluate such a search condition.

An entry point for this algorithm with a graph G should be
the first row r = 0 in the adjacency matrix of the graph
that is targeted. It should continue iterating over every row

void Graph::SearchInMatches(O, M, P, A) {
for (Node match : M) {
for (Pattern pattern : P) {
if (!A.Exists(match)) {

if (pattern.key == match.Type) {
SearchState s = SearchForPatterns(o,
match.position, pattern, P, A);

if (s == LEAF) {
break;

}
}

}
}

}
}

Figure 7: Search in matches function

void Graph::Search(O, R) {
R.clear();

P = O.GetPatterns();

int i = 0;

for (Node node : N) {
SearchForPatterns(O, i++, P.front(), P, R);

}
}

Figure 8: Search entry-point

until the last row r = |Gn|. The algorithm can be bro-
ken up in three parts as seen in figure 7, figure 9 and fig-
ure 8. Where the pseudocode presented in figure 8 can be
seen as the entry-point to a search operation, supplying the
subgraph as O and an empty set R used for search result
storage.

6. FLEXIBILITY
A traditional search technique recursively traversing into
branches is limited in flexibility. When sticking to the case
of simple subgraph matching alone, there are cases where
this method does not comply with the definition of exact
graph matching.

As an example, a graph containing one or multiple branches
containing equal node types as in figure 10 would be complex
to search using the traditional search algorithm. The tradi-
tional algorithm would need to push both node 2 and 3 in
a set S. Set S then needs to be traversed to make sure that
both branches A1 → B2 and A1 → B3 are searched instead
of only one of the two branches. In the example above, the
loss in performance would be negligible, but imagining a case
where this patterns is repeated several times, the complex-
ity of the search algorithm would increase significantly over
time. In any such case in a targeted graph, S will need to
be constructed, stored and searched for a particular pattern
at that level of depth.

When implementing this case within the traditional method,
we must implement a maximum recursion depth. Not only

SearchState Graph::SearchForPatterns(O, r, p, P, A)
{
Node *node = n[r];

if (pattern.Key == node.Type) {
list<Node> M;

for (Node node : N) {
if (!A.Exists(node)) {
if (D[row][i]) {
if (pattern.Requirements.Exits(node)) {
M.push_back(node);

}
}

}
}

if (M.size() >= pattern.ReqLength && M.size() > 0) {
pattern.Key = NullNodeType();

A.push_back(N[r]);

SearchInMatches(O, M, P, A);

return TRAVERSE;
}
else if (M.size() == 0 && pattern.ReqLength == 0) {
pattern.Key = NullNodeType();

A.push_back(N[r]);

return LEAF;
}

}

return NONE;
}

Figure 9: Search for patterns function

Graph

A1

B2

B3

Figure 10: A graph example

to make sure that searching is always clamped in an im-
plementation dependent processing frame, but also to make
sure that the search operation is not getting stuck in an
infinite loop.

Pattern

A1 B2

Figure 11: A subgraph example

When searching for a pattern like displayed in figure 11,
every time a node of type A is discovered, every outgoing
connection will need to be stored in S. S will then in turn
need to be searched for pattern A → B, prior to searching
for other patterns; in this particular example none.

The nature of our algorithm allows for the matching of both
branches by default. Figure 6 shows an example of one-

directional searching, to support bi-directional searching we
only need to invalidate the pattern after processing every
match.

A5

A1

B2

B3

B4

A0

Figure 12: A subgraph example

A0 A1

B2

B3

Figure 13: A subgraph example

Another example of a more complex matching case is given
in figure 12 that should match the subgraph presented in fig-
ure 13. When running a search operation on this scenario the
search algorithm should return two sets of affected nodes:
{A5, A1, B2, B3, B4} and {A0, A1, B2, B3, B4}. Our algo-
rithm covers this case naturaly, as long as the set of affected
nodes is stored with a relationship between the entry-node
(A5) and all other nodes.

6.1 Advanced node types
When implementing more advanced node types like for in-
stance:

Wildcard Node type that allows for any graph structure
positioned at the wildcard node in a subgraph to be
accepted by the search operation.

Exclusion Node type that accepts nodes that are not of
the not-node type positioned at the not-node in a sub-
graph.

Times Node type that allows for any graph structure de-
scribed by the structure in the subgraph positioned at
the time node in a subgraph to be accepted by the
search operation one or n times.

Using the traditional search algorithm to match these kinds
of structures would be very complex and inefficient, for the
same reason as described above.

Implementing these structures would be trivial and a case
of implementation, only a specific equals-operator should be
implemented for different node types.

7. BENCHMARKS
To test the processing time of both algorithms, an imple-
mentation of our algorithm is compared to both the VF2 al-
gorithm [2] and Ullmann’s algorithm [9], by using the VFLib
with implementations of both algorithms. The benchmark-
ing method that is chosen is to generate graphs from random
adjacency matrices and match these graphs against a full
subset of that target graph. The complexity of the graphs
is then increased by introducing more nodes to the graphs.
For all search algorithms only the search operation is timed,
timing is done by using the standard C++ timing functions.

10 10
0

10
00

10-5

10-4

10-3

10-2

10-1

100

Time
(seconds

Nodes

Figure 14: Graph showing the processing time of
Ullmann’s algorithm (red line), our algorithm (green
line) and the VF2 algorithm (blue line).

Nodes Time (our) Time (VF2) Time (Ullmann)
10 0.000016 0.000017 0.000042
100 0.000660 0.000707 0.007091
1000 0.309008 0.090885 4.792513

Along with the number of nodes, the number of connections
are also increased with each increase of complexity, the fol-
lowing table shows the number of connections in relation
with the number of nodes.

Nodes Connections
10 35
100 3386
1000 370676

7.1 Test details
These benchmarks were performed on a system with a 2.4
GHz Intel Core 2 Duo CPU, 4GB 1067 MHz DD3 RAM,
running Apple Mac OSX version 10.7. All implementations
were written in C++, binaries were compiled using the Ap-
ple LLVM compiler version 3.0 without any optimizations.
The VF2 and Ullmann algorithms were the optimized ver-
sions as presented in the VFLib library.

When we look at the results of the benchmark we can see
that our algorithm performs better on low node counts and
sticks close to the VF2 algorithm on high node counts, with a
tipping point between graphs of 100 and 1000 nodes. Where
the Ullmann implementation stays behind in processing time
at low node counts as well as high node counts. Please note
that both implementations used from the VFLib are highly

optimized, further optimization might be needed to our al-
gorithm to reach even better results in sence of shortening
processing time.

8. CONCLUSION
Subgraph searching in graphs allows to solve various prob-
lems in computer science in a neat and fast way and allows
for search and replace operations to be performed. Tradi-
tional algorithms are limited in both efficiency and flexibil-
ity, causing suboptimal searching or performance. A search
algorithm for subgraphs is required to allow for fast search-
ing of such a subgraph in a target graph. Our algorithm
offers a fast way of searching subgraphs in graphs, while
still offering full flexibility. Opening new possibilities for
graph grammars to allow for more complex node types to
be searched for in graphs and thus allowing for more com-
plex grammars to be created.

In our domain of game development this technique allows
us to perform operations on graph-based game design struc-
tures in real time. This opens up possibilities to introduce
new ways of procedurally generated games and even pro-
cedurally generated gameplay; game mechanics can be ad-
justed and introduced in-game. Allowing us to introduce
new games with more dynamic gameplay.

9. ACKNOWLEDGMENTS
I would like to thank Joris Dormans, my mentor on the
DroidRacers project, for his guidance throughout the project
and being a true inspiration. As well as Jerrol Etheredge for
his vision and making time for me to listen to my ideas on
this paper and all other people that supported me through-
out this research.

10. REFERENCES
[1] Luigi Cardamone, Daniele Loiacono, and Pier Luca

Lanzi. Interactive evolution for the procedural
generation of tracks in a high-end racing game. In
GECCO, pages 395–402, 2011.

[2] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento.
Performance evaluation of the vf graph matching
algorithm. In Proceedings of the 10th International
Conference on Image Analysis and Processing, ICIAP
’99, pages 1172–, Washington, DC, USA, 1999. IEEE
Computer Society.

[3] Joris Dormans. Engineering Emergence: Applied
Theory for Game Design. PhD thesis, Amsterdam
University, 2012.

[4] R Giugno and D Shasha. Graphgrep: A fast and
universal method for querying graphs. Object
recognition supported by user interaction for service
robots, 2(c):112–115, 2002.

[5] R. Heckel. Graph Transformation in a Nutshell.
Electronic Notes in Theoretical Computer Science,
148(1):187–198, February 2006.

[6] Praveen R Rao. A tool for fast indexing and querying
of graphs. Scenario, pages 241–244, 2011.

[7] Yuanyuan Tian and Jignesh M. Patel. Tale: A tool for
approximate large graph matching. In Gustavo Alonso,
José A. Blakeley, and Arbee L. P. Chen, editors, ICDE,
pages 963–972. IEEE, 2008.

[8] Julian Togelius, Renzo De Nardi, and Simon M. Lucas.
Towards automatic personalised content creation in
racing games. In Proceedings of the IEEE Symposium
on Computational Intelligence and Games, 2007.
Togelius is working at IDSIA on SNF grant 21-113364
to J. Schmidhuber.

[9] J. R. Ullmann. An algorithm for subgraph
isomorphism. J. ACM, 23(1):31–42, January 1976.

