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ABSTRACT
In this paper we introduce an architecture, an implementation and
an evaluation of a system for the automatic creation of interactive
stories for games. Our goal is to algorithmically create a branched
story for the entire game; in each game run a different variant
is generated. The architecture uses natural language processing
(NLP) to generate meaningful stories. For NLP we use a statistical
language model based on a neural network (Generative Pretrained
Transformer, GPT-2). The basic architecture generates stories with
too many characters which tend to get incoherent for longer texts,
so we add a component restricting the number of persons and
improving the consistency. The system is initialized with a hand-
written game introduction that defines the main characters and the
inventory; it also sets the goals for the game. From that text the
remainder of the game story is generated algorithmically. We have
fully implemented our system, and we report initial, encouraging
experimental results.
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1 INTRODUCTION
The creation of story generating systems is a long-standing field
in the domain of procedural content generation for games (PCG-
G). A story generating system is designed to generate coherent,
credible, and dramatically meaningful narratives [1]. This is a task
that even human authors fail to accomplish from time to time,
often due to budget and workload. These last two stumbling blocks
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are a common reason to explore procedural storytelling, even if
the temporal aspect is always under discussion [23]. It is not only
useful for the main plot of a game, but also for subplots. In this way
the authors retain sovereignty over the main storyline so that the
course of play remains known for the entire development team.

Another good argument to deal with procedural storytelling
is the creativity that an algorithm generates. People often write
about their personal experience or modify stories that they have
read themselves. In contrast, an algorithm based on the vast set
of available literature and language models draws from a nearly
infinite pool of rules, possibilities, phrasing and connections. So,
instead of reflecting the opinions, prejudices, tastes or moods of a
single author, the algorithm returns a mixture of its training data.
However, even these can be biased and violate ethical principles.

The use of stories in the domain of games, may they be hand-
written or generated, is manifold: Some games only aim to have
a basic story to convey mood and setting [4], so that the player
can put herself in the position of the protagonist. Others live from
diverse, branched stories that take the decisions of the players
into account and might even have different endings. In total, we
identified five different classes of games, characterized by the nature
of their story:

• games without story (e.g., Tetris, Rollercoaster Tycoon),
• games with a simple background story, to convey mood and
setting (e.g., Need for Speed, Street Fighter II ),

• games with complex but fixed stories (e.g., Final Fantasy VII,
Legend of Zelda),

• games with interactive stories that convey the feeling that
the player can influence the course of the game (e.g., Border-
lands, Mass Effect),

• games with interactive stories whose course and ending
can be actively influenced by the player (e.g., Life is Strange,
Detroit: Become Human).

This work focuses on the last category, namely on the generation
of interactive stories that the player can influence during gameplay.
Our motivation is that text adventures are currently experiencing a
revival through the generation via language models. Similar to Nick
Walton’sAI Dungeon 2 [26] and NathanWitmore’sGPT-2 Adventure
[27] wemake use of statistical languagemodels to generate a unique
story with each new run of the generator.

We distinguish ourselves from the approaches mentioned above
by providing a reasonable set of actions from which the player
can choose to continue the story. Presenting three methods of
action generation, we compare the results in regard of creativity,
controllability, coherence, mood, and variety.

In addition, we evaluate two processes of story generation in
terms of feasibility and performance: one in which the generator
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reacts spontaneously to the previously executed action, and the
other in which all actions and their consequences are precalculated.
We examine how to control the development of the stories by man-
aging the state, progress and inventory outside the generator and
by placing prefabricated text modules in the generated paragraphs
to keep objects, places and people in the storyline.

2 RELATEDWORK
Yao et al. describe the story generation process as a two-steps
process, planning a sequence of events (story planning) and for-
mulating the actual text that the player sees (surface realization)
[30]. In fact, the complexity of both steps is divided into many
sub-processes, especially with adaptive approaches. Façade, as an
example, is a system that builds dramatic tension by concatenating
events and by reacting carefully on the player’s actions [15].

One of the most obvious approaches is to use prefabricated
grammars, often in combination with manually generated building
blocks (templates). A famous representative is Tracery by Compton
et al. [6]. Its core element is a list of production rules, which create
sentences by substitution of symbols. The concatenation of those
sentences results in a story. The advantage of this approach is that
the computer has maximum control over the text to be generated.
The disadvantage is also obvious: Creating templates and complex
rules is time-consuming. Furthermore, simulated creativity can re-
sult in a creativity that differs from what a human would expect
[5].

Grammars can (but do not have to) go hand in hand with plan-
ning algorithms. Those generate stories under the assumption that
stories consist of a sequence of actions that work towards a pre-
defined goal (see Chapter 7 in [22]). A disadvantage of using plan-
ners (often based on the Planning Domain Definition Language
(PDDL) standard) is that a planner works strictly towards the given
goal. An interactive story, on the other hand, can also be worth
playing if it contains detours and setbacks or if the protagonist has
to completely reorient herself. All these events speak against the
nature of a planner designed for optimization.

Neural network based story generators were frequently dis-
cussed in the last years and also operate in the domains story plan-
ning and surface realization. L. J. Martin et al. trained two neural
networks, event2event and event2sentence, to generate chains of
events maintaining the semantic meaning of the story and translat-
ing the event chain to readable and understandable texts [14].

Yao et al. propose a hierarchical generation framework that is
not limited to any domain. Generating the storyline first, it extends
this storyline in a second step to a story. The interesting part is
that they compare a full storyline planning and a subsequent story
generation to a partial storyline planning with an interlacing story
generation [30].

Fan, Lewis, and Dauphin show a four-step coarse-to-fine model
which returns a structured action plan to an arbitrary story prompt.
The action plan containing placeholders for entities is assembled
to a story and placeholders are replaced by specific references [8].

A holistic approach to narrative continuation is presented by
Roemmele. Besides traditional NLP techniques, she proposes to
use neural networks to solve various tasks including story ending

prediction and she presents an automated evaluation of stories
based on specific linguistic metrics [21].

Cychosz et al. created DINE (Data-driven Interactive Narrative
Engine), an authoring platform for interactive fiction primarily
addressing the authors’ tasks, instead of the players’. Their approach
resembles ourmethod but instead of generating new passages, DINE
classifies the user input and maps it to professionally, pre-authored
texts [7].

Angela Fan et al. explore the generation of game environments by
machine learning using crowd-sourced data from the multiplayer
text adventure game environment LIGHT [25]. They show how
to construct cohesive arrangements of locations, characters, and
objects and emphasize the diversity and variety of their results [9].

In this paper we would like to address possible shortcomings
regarding creativity in grammars and planning algorithms by statis-
tical language models. Such models provide information about the
probability of the correlations of word sequences. In recent years
language models have appeared, such as Google’s Bidirectional En-
coder Representations from Transformers (BERT), Facebook’s Cross-
lingual Language Model Pretraining (XLM), or OpenAI’s Generative
Pretrained Transformer (GPT and GPT-2).

Based on GPT-2, created by Radford et al. [19], and trained and
published by Hugging Face [29], Whitmore recently released a
text adventure using GPT-2’s strength to predict the next token(s)
in a sentence to continue a story [27]. The fact that previously
played passages form the input text for the following paragraphs
creates a continuing context, which is a key element in creating
procedural stories [11]. We base our work on GPT-2 Adventure
and extend it as discussed in the following section. Tambwekar et
al. note the lack of player guidance when using language models
for story generation and present a reward-shaping system which
re-trains a language model in order to reach a given goal [24].
Language models calculate the probability of word or character se-
quences p(x)=p(x1,x2,...,xn ), frequently in an autoregressive manner
p(x)=p(x1)*p(x2|x1)*p(x3|x2,x1).

The training process is unsupervised and allows the use of very
large amounts of data. The application of models trained in this
way helps with various tasks, such as text translation, summaries,
question answering, and text generation (see Figure 1). The fol-
lowing paragraph shows how a hybrid approach of templating,
language models and related NLP techniques can lead to new, inter-
esting interactive narratives. It also discusses how the weaknesses
of the respective approaches (predictability, limited domain and
uncontrollability) can be circumvented.

3 A HYBRID APPROACH OF LANGUAGE
MODELS AND STATE MANAGEMENT

We use the creative possibilities of language models in our approach
and add controls to allow the player to interact with the story
generator.

In the following sections we will look at the three phases of
initialization, runtime, and ending as outlined in Figure 2. Subse-
quently, we discuss the challenges of coherence, action generation
and performance of the story generator.



Procedural Generation of Interactive Stories
using Language Models FDG ’20, September 15–18, 2020, Malta

Figure 1: The introduction of this paper as generated by a
GPT-2 model.

Figure 2: The hybrid story generation approach is split up
into the three steps initialization, runtime, and ending.

3.1 Initializing Language Model and Templates
The initialization phase is a two-step process. The model is loaded
before the generator is started (step 1 in Figure 2). The player can
choose between different pre-trained models which differ mainly
in the number of their parameters (82 to 1558 million). The models
will be examined again later with regard to diversity and speed of
application. We did not retrain a model as done by Whitmore [27].

In a second step of the initialization (step 2 in Figure 2) the player
selects various parameters such as the number of paragraphs the
narrative should contain, a player name, optional party members,

and a set of items for the game. Afterwards, one of multiple possible
introductions is loaded from the settings object and presented to
the player (step 3 in Figure 2).

Since the introduction is the basis of the story, it should contain as
much information about characters, locations and items in the story
as possible. Only with a sufficiently large amount of information can
the language model establish a context and later credibly continue
the story. In addition to printing out the introduction as a first
paragraph, the items of the game are added to a visible inventory
so that the player knows what she is carrying around.

3.2 Course of the Plot
The Runtime phase is a repetitive process that continues until the
player has completed a number of paragraphs of her choice. It
starts with a named entity recognition (NER) on the last paragraph
- which is the introduction in the first run. Entities are not only
recognized but also categorized withWordNet Synsets in order to
select the group of nouns that the player can physically interact
with [10] (step 4 and 5). Those categories are

• noun.animal (nouns denoting animals),
• noun.artifact (nouns denoting man-made objects),
• noun.food (nouns denoting foods and drinks),
• noun.plant (nouns denoting plants), and
• noun.object (nouns denoting natural objects (notman-made)).

This avoids later actions like Take love or Talk to faith in the
action generation. Such actions may seem creative in some places,
but more often they disturb the flow of the game because they are
confusing or inappropriate.

Those entities are stored in a short term memory with a life-cycle
spanning the current paragraph. They are also transferred to a long
term memory to be referenced later. This allows the generator to
relate to past events or past conversations and hence add control
and consistency to the stories.

3.2.1 Redundancy Avoidance of Entities. Entities can occur more
than once with different names in a paragraph. The NER process
will detect the expressions Elisabeth and Queen from the sentence
Elizabeth II is Queen of the United Kingdom. For a human being
it is clear that both terms refer to the same person but for a NER
component it is not. Thus, the story generator will treat Elisabeth
and Queen as separate entities and might thus simultaneously gen-
erate the actions Talk to Queen and Talk to Elisabeth. This leads to
an inconsistency in the story and disrupts the flow of reading, so
expressions that refer to the same entity must be reduced to a single
expression. We use coreference resolution to detect such expressions
and keep the first expression found while discarding all others. We
used the implementation by Hugging Face as presented by Wolf in
[28]; it is based on word vectors and neural networks and detects
references reliably.

3.2.2 Action Generation. As mentioned in the introduction we
implemented three methods to generate actions that the player can
use to continue the story (see Figure 3 and step 6 in Figure 2).

Such an action is not only a verb and an object but has multiple
attributes as shown in Listing 1. The type informs about the named
entity type, the action about the action type, the sentence about the
full sentence based on a template as it is added to the story if the
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Figure 3: The three different ways to offer fixed actions to
continue a story: The analytical (a), the mask-based (b) and
the generative approach (c).

Listing 1: The action object potion with its individual prop-
erties
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Figure 3: The three different ways to offer fixed actions to
continue a story: The analytical (a), the mask-based (b) and
the generative approach (c).

player picks this action, the simple sentence contains a simplified
version of the template sentence, and the probability is the sentence
probability calculated using the underlying language model.

Listing 1: The action object potion with its individual prop-
erties

1 { " name " : " po t i on " , " type " : " i t em " , " a c t i o n " : " use " , "
s en t en c e " : " P e t e r b r a v e l y used the po t i on
wi thout h e s i t a t i o n . " , " s imp l e " : " P e t e r used
the po t i on . " , " p r o b a b i l i t y " : 0 . 7 6 }

Approach a) in Figure 3 uses NLP to analyse the previous story
paragraph and offer senseful actions such as take, pick up, visit, use
or push from a static list in combination with an item, person, or
place.

Since the actions are derived from the recognized entities, a para-
graph with many entities can lead to an equally high number of
actions. Therefore prioritizing the actions is useful. We do this in
step 7 by checking the actions for plausibility. This check computes
the probability of occurrence of a combination of the action and
the object in question. Several approaches were considered. First,
we evaluated ngrams (bi- and trigrams) to calculate the probability
p of an action, e.g., Peter used a potion would be much more likely
than Peter talks to a potion. The trained ngram model was based
on the Reuters corpus containing 10.788 news documents with 1.3
million words [12]. In many cases, however, even simple combina-
tions such as takes an apple could not be found in our generated
list of trigrams. Hence, we evaluated semantic similarities in the
second place using word vectors to calculate probabilities. Here,
too, the result was unsatisfactory, since the similarity often could
not give any information about the connection between verbs and
nouns. For example, the combination of push and love was rated
higher than take and apple. The probability calculation based on
the GPT-2 model finally brought convincing results. Calculating
the loss as an error of the model for the given sentence helps to
figure out which sentence is more likely to be found in the train-
ing corpus of GPT-2. We have observed that the use of a simple
sentence reduced to subject, predicate and object, and thus linguis-
tically normalized, provides a better comparable probability than
the embellished sentences based on the templates.

The approach b) is also based on the extracted entities of the
previous paragraph. Here, a simple sentence is formed from the
combination of a personal pronoun and the object, in which the
position of the verb is masked. Using a bidirectional language model

Gender Sequence Score Lemmatized verb
male He catches the ball. 0.049 catch
male He dropped the ball. 0.033 drop
male He threw the ball. 0.026 throw
female She dropped the ball. 0.051 drop
female She throws the ball. 0.039 throw
female She threw the ball. 0.035 throw

Table 1: Results of themasked sentence "He <mask>the ball."
and "She <mask>the ball." including the probabilities and
the lemmatized verb.

(such as BERT) allows to replace this placeholder by the statistically
most reasonable verb.

Table 1 shows sequences that fill themasked field in "He <mask>the
ball." and "She <mask>the ball." Although it cannot be explicitly
requested that a verb is used for the mask, linguistically there is
rarely another option for the model. Two particularities stand out:
First, the chosen personal pronoun plays a role in the choice of
the verb. Thus, the probabilities differ for he and she as the first
word in the masked phrase. Secondly, it can happen that the same
verb is used again in a different tense. Thus lemmatizing the verbs
is recommended. Here one can clearly see the gender bias, which
is based on the language model’s training data. Bordia and Bow-
man state that this bias can even be amplified in the models and
propose methods to measure and minimize this bias [3]. The proba-
bility used to decide which verb fits best comes with resolving the
masked word so that is does not have to be calculated manually as
it is done in approach a). Control over items while using the actions
use, take, and combine can be maintained by using WordNet Synsets
and checking the chosen verb for synonyms. If the verb is take or a
synonym, the object can be added to the player’s inventory. Usage
of an item is processed analogously. Combining items is a special
case and can once again be achieved by masking the target object
in a sentence. A combination is always preceded by two objects in
the inventory. Masking is used to determine the statistically most
probable result of the combination using BERT. Let us look at an
example.

Input: He combined iron and hammer to receive a <mask>.
• Output 1: blade
• Output 2: handle
• Output 3: shield

The items iron and hammer are removed from the inventory and
the masked object, determined by the BERT model (blade, handle,
or shield) is added in return.

Approach c) uses the same language model that is deployed for
the paragraph generation and to create the subsequent sentence
using the previous paragraph as input (see c) in Figure 3). The
result is a freely formulated sentence which can not be fit to the
attributes of an action object (see Listing 1) without a huge effort,
because the generator does not generate sentences in the pattern
of subject, verb, object. As a consequence, control over using, taking
and combining items in the player’s inventory is lost. Furthermore,
the following example shows that actual actions are generated only
in rare occasions.

player picks this action, the simple sentence contains a simplified
version of the template sentence, and the probability is the sentence
probability calculated using the underlying language model.

Approach a) in Figure 3 uses NLP to analyse the previous story
paragraph and offer senseful actions such as take, pick up, visit, use
or push from a static list in combination with an item, person, or
place.

Since the actions are derived from the recognized entities, a para-
graph with many entities can lead to an equally high number of
actions. Therefore prioritizing the actions is useful. We do this in
step 7 by checking the actions for plausibility. This check computes
the probability of occurrence of a combination of the action and
the object in question. Several approaches were considered. First,
we evaluated ngrams (bi- and trigrams) to calculate the probability
p of an action, e.g., Peter used a potion would be much more likely
than Peter talks to a potion. The trained ngram model was based
on the Reuters corpus containing 10.788 news documents with 1.3
million words [12]. In many cases, however, even simple combina-
tions such as takes an apple could not be found in our generated
list of trigrams. Hence, we evaluated semantic similarities in the
second place using word vectors to calculate probabilities. Here,
too, the result was unsatisfactory, since the similarity often could
not give any information about the connection between verbs and
nouns. For example, the combination of push and love was rated
higher than take and apple. The probability calculation based on
the GPT-2 model finally brought convincing results. Calculating
the loss as an error of the model for the given sentence helps to
figure out which sentence is more likely to be found in the train-
ing corpus of GPT-2. We have observed that the use of a simple
sentence reduced to subject, predicate and object, and thus linguis-
tically normalized, provides a better comparable probability than
the embellished sentences based on the templates.

The approach b) is also based on the extracted entities of the
previous paragraph. Here, a simple sentence is formed from the
combination of a personal pronoun and the object, in which the

Gender Sequence Score Lemmatized verb
male He catches the ball. 0.049 catch
male He dropped the ball. 0.033 drop
male He threw the ball. 0.026 throw
female She dropped the ball. 0.051 drop
female She throws the ball. 0.039 throw
female She threw the ball. 0.035 throw

Table 1: Results of themasked sentence "He <mask>the ball."
and "She <mask>the ball." including the probabilities and
the lemmatized verb.

position of the verb is masked. Using a bidirectional language model
(such as BERT) allows to replace this placeholder by the statistically
most reasonable verb.

Table 1 shows sequences that fill themasked field in "He <mask>the
ball." and "She <mask>the ball." Although it cannot be explicitly
requested that a verb is used for the mask, linguistically there is
rarely another option for the model. Two particularities stand out:
First, the chosen personal pronoun plays a role in the choice of
the verb. Thus, the probabilities differ for he and she as the first
word in the masked phrase. Secondly, it can happen that the same
verb is used again in a different tense. Thus lemmatizing the verbs
is recommended. Here one can clearly see the gender bias, which
is based on the language model’s training data. Bordia and Bow-
man state that this bias can even be amplified in the models and
propose methods to measure and minimize this bias [3]. The proba-
bility used to decide which verb fits best comes with resolving the
masked word so that is does not have to be calculated manually as
it is done in approach a). Control over items while using the actions
use, take, and combine can be maintained by using WordNet Synsets
and checking the chosen verb for synonyms. If the verb is take or a
synonym, the object can be added to the player’s inventory. Usage
of an item is processed analogously. Combining items is a special
case and can once again be achieved by masking the target object
in a sentence. A combination is always preceded by two objects in
the inventory. Masking is used to determine the statistically most
probable result of the combination using BERT. Let us look at an
example.

Input: He combined iron and hammer to receive a <mask>.

• Output 1: blade
• Output 2: handle
• Output 3: shield

The items iron and hammer are removed from the inventory and
the masked object, determined by the BERT model (blade, handle,
or shield) is added in return.

Approach c) uses the same language model that is deployed for
the paragraph generation and to create the subsequent sentence
using the previous paragraph as input (see c) in Figure 3). The
result is a freely formulated sentence which can not be fit to the
attributes of an action object (see Listing ??) without a huge effort,
because the generator does not generate sentences in the pattern
of subject, verb, object. As a consequence, control over using, taking
and combining items in the player’s inventory is lost. Furthermore,
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the following example shows that actual actions are generated only
in rare occasions.

Input: The conference was over and Diana was on her way
home. She...

• Output 1:was in charge of organizing the conference, taking
the oath of office.

• Output 2: walked onto the street and then the entire group
of people had heard about the situation.

• Output 3: turned around and asked me if I had any reserva-
tions.

3.2.3 Generating new Paragraphs. If the player has chosen an ac-
tion to perform in step 8, its full clause is appended to the text of the
story (step 9). This new text forms the basis for the next generation
process. When generating texts using GPT-2 in step 10, the input
of a source text is crucial. Too short input does not give the model
enough context to generate a credible continuation. An input that
is too long increases the memory consumption when calculating
the subsequent text and also the duration of the generation process.
In this evaluation the previous 300 characters were used. Steps 4 to
10 are now repeated until the initially set number of paragraphs is
reached.

3.3 Coming to an End
If this is the case, a template for introducing the Ending phase is
initialized. In step 11, an analysis determines the sentiment of the
last n sentences. Based on this, a template of the respective mood
(positive or negative) is loaded, and placeholders for the protago-
nist are filled (step 12). In a last step the generator creates a final
paragraph based on the template before the game ends. We have
found that an ending is more believable if there are only one or
two paragraphs following the template-based ending. Several para-
graphs would give the impression that the story is to be continued
after the end, and the effect of the prepared paragraph heading for
an end fades away. Mostafazadeh et al. contribute the Story Cloze
Test which is able to determine the end to a four-sentence story
based on the ROCStories corpus, a collection of 50.000 commonsense
stories [17]. This test allows a precise evaluation of the quality of
the generated ends.

4 IMPLEMENTATION, OBSERVATIONS AND
ENHANCEMENTS

This section focuses on the observations we made while implement-
ing and testing our approach. We discuss the technical realisation,
performance, character diversity, coherence, and the alignment of
sentiments. The exemplary output of a story generation after all
enhancements discussed in this section will also be presented (see
Figure 4).

4.1 Technical Realization and Performance
We did two separate implementations to generate a story based
on language models. On the one hand, Twine was used, a tool
that allows to write interactive, non-linear stories and make them
available to the players on a website. When using Twine, it is
essential that all branches of a story are precalculated since the
game is compiled and therefore cannot be updated while playing.

The advantage is obvious: The entire calculation can be done on
a suitable system, and the generated story can be played on any
device. If desired the game can be passed on, and the limitation that
language models usually do not provide a reproducible output can
be avoided. The disadvantage is that all paths of a story have to be
generated, no matter whether the player enters them or not. If only
one action is offered to the player, a total of num_paragraphs =
story_depth paragraphs have to be calculated. If more than one
action is offered, num_paragraphs equals to:

num_paragraphs =
num_actionsstory_depth − 1

num_actions − 1
(1)

The variable story_depth corresponds to the number of para-
graphs a player sees to get to the end of the story. Equation 1
shows the exponential character of the calculation when increasing
the possible actions per paragraph. When measured on an Intel
i7 processor and a GeForce GTX 1080 TI with 11 GB of RAM the
generation took approximately 10 seconds for one single paragraph
(including NLP preprocessing, applying templates, and generating
new texts; based on the GPT-2 small model).

The second implementation reacts to the user input and cal-
culates the subsequent paragraphs and actions on the fly, during
the game. Since there is no precalculation of possible subsequent
paragraphs in this approach, the depth of the story corresponds
to the number of paragraphs to be calculated. This eliminates the
exponential growth of precalculation. The disadvantage is that the
device on which the story is played must have the capability to gen-
erate the text in real-time using a neural network-based language
model.

Even with suitable hardware, the generation of a new paragraph
takes some time, so that the flow of gameplay may be disturbed.
Furthermore, this requirement prevents the possibility to play the
game on mobile devices, unless there is a constant connection to
a corresponding cloud service. For these two reasons we refer our
further considerations to the precalculated variant.

4.2 Character Diversity
We have observed that the number of characters increases with the
number of paragraphs played. Recurring characters are extremely
rare, which has a negative influence on the story’s context. Thus,
there is no long-term relationship between protagonist and antago-
nist, lasting love affairs or friendships. Except for the main character
named in each paragraph and the two optionally pre-defined party
members, no relationship can be built up with another character,
as these usually have a life span of only a few paragraphs. The fact
that people are forgotten during the course of the game is due to
the fact that the language model never takes the whole story as
input, but only the last n sentences.

It quickly became apparent that the number of characters in-
volved had to be controlled in order to keep the course of the story
within a certain boundary. For this purpose, a simple replacement
of new names in the text with already known names was done,
excluding those of the main character and his two companions.
Care was taken to replace them with the same gender, so that per-
sonal pronouns continue to match the gender of the person. The
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Figure 4: First two paragraphs of a story with all their components. Paragraphs have been shortened for reasons of space.
The green components are based on text templates, the blue boxes are generated using language models. Named entities are
highlighted according to the legend in the bottom right corner.

Figure 5: Nearly each new paragraph introduces a new char-
acter except themain character and the two partymembers.

gender detection is done by the gender-guesser library which re-
lies on the dictionary of first names by of Jörg Michael [13]. It has
also been observed that when a story begins with an excerpt from
well-known literature, characters from the book appear. On the one
hand, this results in an interesting story, on the other hand, it does
not prolong the time during which a character appears in the story.

4.3 Coherence
One of the biggest challenges in generating text adventures auto-
matically is to make the context of the story clearly visible and
maintain it across all sections. Although the results of the generated

texts using transformer-based language models are very credible in
themselves, there is a lack of a red thread when generating longer
texts. Through the measures mentioned in Section 3, such as the
regular naming of companions or items that the player carries in
his inventory, a positive effect on coherence was observed. The
following list shows some examples for our self-written control
sentences:

• [person] rolled [hisher] eyes.
• [person] cleared [hisher] throat.
• [person] took a deep breath.

We havemeasured the coherence by applying the four stage topic
coherence pipeline presented by Roeder, Both and Hinneburg. They
split a word set into pairs of words. Based on a reference corpus the
word probabilities are calculated. Then the entire agreement of all
pairs is calculated using Normalized Pointwise Mutual Information
(NPMI). All these scores are aggregated (arithmetic mean) to a final
uMass coherence value with a range of −14 < x < 14 [20]. We
use a word set of ten topics extracted from the respective texts
on the basis of Latent Dirichlet allocation (LDA) [2]. In order to
determine a reasonable number of topics, we have calculated the
coherence of a prepared text for different numbers of topics. The
highest coherence and the most meaningful topics was found to be
at a number of ten topics. Figure 6 shows a comparison of a story
with (left) and without (right) naming companions and inventory
items. It shows that the coherence can be slightly improved by inter-
spersing existing information on persons and inventory. This can
be explained by the fact that the LDA extracts persons and objects
as topics and recognizes them later in subsequent paragraphs.

On a perceptual level, it was also observed that coherence is not
always the most important factor when it comes to the entertain-
ment value of the game. Often it is also the game mechanics or a
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Figure 6: A storywith 100 paragraphswith (left) andwithout
(right) elements supporting coherence.

Figure 7: A story with 40 paragraphs with and without sen-
timent alignment. The red dots signify a negative mood
change, the green dots signify a positive mood change.

humorous element that causes a positive reaction from the players.
Nevertheless, measures that increase the coherence of the story
are important to increase the general acceptance of a procedurally
generated story.

4.4 Aligning Sentiments
We have also observed the relationship between positive and neg-
ative moods in individual paragraphs by means of a sentiment
analysis, and have noticed that mood does not remain the same
over a certain number of paragraphs, but changes indiscriminately
1. Thus, we introduced control words like luckily or unfortunately
as further input for the text generator.

Figure 7 shows that we were able to influence the mood of some
paragraphs through the control words. In our example, the mood
did not change 31 times (left), but 19 times (right). On the other
hand, it also shows that this instrument does not seem to have any
influence on the coherence since the two upper graphs are similar.

4.5 Actions
We have evaluated three different approaches constructing actions
that the player can select to continue the story. The analytical and
the mask-based approach both aim to generate concrete actions.
The generative approach produces the most appropriate sentence
that continues the story without necessarily containing an activity.
Table 2 gives an overview of the observed characteristics of each
method. The analytical approach is certainly the one that can and
must be controlled most. It allows a more targeted interaction with
people and objects. Partially, the actions get implausible because
1We measure mood by applying the bert-base-multilingual-uncased-sentiment model
by NLP Town [18]

Analytical Mask-based Generative
Controllability high medium low

Diversity low medium high
Interactivity high high low
Complexity high low low
Authenticity medium high high

Table 2: Three approaches to dynamic action generation.

Figure 8: Development of coherence for the different lan-
guage models in stories with a length of 100 paragraphs.

interactions with non-material objects can occur, e.g., take love.
Also, actions are often repeated, which is why a list of already
generated actions was kept in the implementation, allowing to hide
already offered actions. Repeated actions have not been negatively
noticed with the mask-based and generative approaches.

In our tests, the mask-based approach offered a good balance
between controllability and variety. The generative approach tends
to create a narrative out of the text adventure that is more a novel
and less a game.

Actions in which objects could be picked up were very rare in
our tests. This results in an even lower probability of being able
to combine two objects. As mentioned in Section 3.2.2 synonyms
for the verb take were used to increase the frequency of such an
action. The use of the wordnet corpus [16] turned out to be difficult,
because the synonyms for take can have other meanings than taking
objects. For this reason, a curated, static list of matching synonyms
was created and used.

4.6 Different Language Models
We have analyzed the various language models for their coherence
using the Topic Model Coherence described above. In each case,
stories with one possible action and a length of one hundred para-
graphs were considered. Figure 8 describes, similar to the previous
figures, the context of the topics extracted from the paragraphs
via LDA. The consideration is done holistically and not sequen-
tially from two consecutive paragraphs. It shows that GPT-2 small
achieves the highest average coherence. The models medium, large
and xl are quite close to each other, and the model DistilGPT-2
achieves a visibly lower coherence in the generated example sto-
ries. This can be explained by the fact that GPT-2 small is able to
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establish a logical connection between the paragraphs (which is
apparently difficult for DistilGPT-2), but due to its limited domain
it deals more often with the same topics. The variety of contents of
medium, large and xl seems to have the effect that the models tend
to change subjects frequently.

5 EVALUATION
To determine whether our method can effectively tell more credible,
coherent stories, sample Twine stories with a length of ten para-
graphs were generated for play testing. Players were told to pay
explicit attention to the coherence and credibility of actions after
each paragraph. Half of the games contained neither a unification
of characters nor control sentences. The other half did. 100% of all
players found the games with activated coherence control were
more credible and realistic. 40% noted, however, that the character
behavior is implausible from time to time.

Figure 9: Evaluation of action generation methods

80% of the test players pointed out that especially the interaction
with objects and inventory created a feeling of immersion. It also
emphasized the character of a game as opposed to a simple narrative.
The evaluation of the action generation methods show that the
formulation of the mask-based approach was preferred (see Figure
9). Contrary, the credibility and diversity of the generative actions
were perceived most distinctly. However, the players stated in the
freeform feedback that the game drifted more into the literary realm
by using actions entirely generated by a language model.

6 CONCLUSION
We have shown a practical approach to creating procedural, inter-
active stories for games based on five different language models.
Three approaches to a creative and credible action generation were
evaluated in terms of their diversity and controllability. It could be
shown that an analysis of the previous texts via a classical NER,
WordNet Synsets and the subsequent application of a mask-based
approach to find a suiting verb leads to the most credible and yet
controllable actions that can be offered to the player to continue the
story of the game. By limiting the number of different characters
and using control sets, we were able to improve the coherence of
the stories. We have measured this coherence based on LDA and
Topic Model Coherence. We believe that the use of language mod-
els trained via neural networks will give a boost to the procedural
generation of stories for text-based games.
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