
Two-step Constructive Approaches for Dungeon Generation
Michael Cerny Green
Game Innovation Lab
New York University

Brooklyn, NY
mcg520@nyu.edu

Ahmed Khalifa
Game Innovation Lab
New York University

Brooklyn, NY
ahmed@akhalifa.com

Athoug Alsoughayer
Game Innovation Lab
New York University

Brooklyn, NY

Divyesh Surana
Game Innovation Lab
New York University

Brooklyn, NY

Antonios Liapis
Institute of Digital Games

University of Malta
Msida, Malta

antonios.liapis@um.edu.mt

Julian Togelius
Game Innovation Lab
New York University

Brooklyn, NY
julian@togelius.com

ABSTRACT
This paper presents a two-step generative approach for creating
dungeons in the rogue-like puzzle game MiniDungeons 2. Gener-
ation is split into two steps, initially producing the architectural
layout of the level as its walls and floor tiles, and then furnishing it
with game objects representing the player’s start and goal position,
challenges and rewards. Three layout creators and three furnishers
are introduced in this paper, which can be combined in different
ways in the two-step generative process for producing diverse dun-
geons levels. Layout creators generate the floors and walls of a level,
while furnishers populate it with monsters, traps, and treasures.
We test the generated levels on several expressivity measures, and
in simulations with procedural persona agents.

CCS CONCEPTS
• Computing methodologies → Planning for deterministic ac-
tions; Game tree search; • Applied computing → Computer
games.

KEYWORDS
procedural content generation, level generation, automated game
playing, expressive range analysis

ACM Reference Format:
Michael CernyGreen, AhmedKhalifa, AthougAlsoughayer, Divyesh Surana,
Antonios Liapis, and Julian Togelius. 2019. Two-step Constructive Ap-
proaches for Dungeon Generation. In The Fourteenth International Con-
ference on the Foundations of Digital Games (FDG ’19), August 26–30, 2019,
San Luis Obispo, CA, USA. ACM, New York, NY, USA, 7 pages. https://doi.
org/10.1145/3337722.3341847

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7217-6/19/08. . . $15.00
https://doi.org/10.1145/3337722.3341847

1 INTRODUCTION
While research on level generation focuses on level generators
based on stochastic search [14], constraint solving [11, 12], or ma-
chine learning [13], level generation in published games is mostly
carried out via constructive algorithms. Unlike generate-and-test
processes, constructive generators do not evaluate and re-generate
output; for example, cellular automata and grammars can be used
for constructive generation, as well as more freeform approaches
such as diggers [10]. Such generators are computationally light-
weight since they do not evaluate their generated output. This
allows games to quickly create endless variations to game-play
by generating maps as in Minecraft (Mojang 2011), weapons as in
Borderlands (Gearbox 2009) or NPCs as in Skyrim (Bethesda 2011)
in real-time. However, choosing the right algorithm for the design
constraints seems to be an art rather than a science. A better under-
standing of the properties of different families of generators as well
as how they can be combined could help advance this situation.

One way to better understand the properties of constructive gen-
eration techniques is to systematically investigate their differing
performance when applied to different aspects of level generation.
For example, we can divide up the task of generating a level into
different phases and use different constructive algorithms for each
phase. Multi-agent generation processes have been explored for ter-
rain generation [4]; however, in this case, generation was controlled
by multiple agents given explicit areas/types of terrain to generate,
and agents could manipulate each others’ finished products. In this
paper, the second step of the process builds off of—but does not
attempt to change—the result of the first.

Many mobile games use procedural content generation (PCG) to
quickly generate content—with varying degrees of success. Flappy
Bird (dotGears 2013), Doodle Jump (Lima Sky 2009), Downwell
(Moppin 2015), Polytopia (Midjiwan AB 2016), and Temple Run
(Imangi Studios 2011) are just a few of many examples. This paper
compares several constructive generation approaches that produce
levels for the rogue-like puzzle game MiniDungeons 2 [8]. The fast
generation afforded by constructive approaches allows the game
to create new levels with minimal lag even on a mobile device, for
which MiniDungeons 2 is intended. The novelty of this approach is
the use and analysis of a two-step process for generating the level’s
architecture first, using a standalone layout creator, and distribut-
ing the game objects on that architecture based on game-specific

https://doi.org/10.1145/3337722.3341847
https://doi.org/10.1145/3337722.3341847
https://doi.org/10.1145/3337722.3341847

FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA Green et al.

rules using a furnisher. This allows for different combinations of
creators and furnishers and can also work with manually created
architectures (furnished automatically) or vice versa.While creators
only place walls or floor tiles and use tried-and-tested algorithms
popular in rogue-like dungeon generation [10], furnishers must
account for the interactions and dynamics of different game objects.
Moreover, since constructive generators do not test the final result,
the rules used in the different furnishers must ensure that the level
can be completed but also viable for different playstyles. To test the
latter, artificial agents acting as play personas from prior work [6]
are used to test the generated levels. The variety of personas allows
us to assess the generated content from multiple perspectives.

The contributions of this paper include the division of dungeon
generation into two phases and several algorithms that work in
each phase; a novel agent-based furnisher; and play-testing the
resulting levels with procedural personas.

2 BACKGROUND
We start our exploration in procedural level generation of Minidun-
geons 2 by reviewing how constructive map generation has been
done in other games. Based on Shaker et al. [10], popular methods
for generating dungeons include binary state partitioning, cellular
automata and digger agents. A digger agent is placed in a dungeon
filled with impassable blocks (often in a random position), and
removes the block it is in while moving to adjacent tiles follow-
ing random or rule-based strategies. Cellular automata are popular
methods used to generate organic and smooth-lookingmaps, includ-
ing islands and caves [9]. Cellular automata work in iterative steps;
in each step they change a tile based on patterns in its adjacent tiles.
Rules regarding adjacent tiles and how they affect the current tiles
can be elaborate or include stochasticity; the most straightforward
way to create caves, however, is to change the current tile to match
the majority of its adjacent tiles [10].

Grammars have proven to be successful in generating adventure
game levels due to their formal structure which can be intuitively in-
terpreted and edited by human designers. Dormans [5] uses graphs
to generate missions as an initial description of a level, then trans-
forming that into the rendered space. The whole process can result
in a highly automated yet controlled way for map generation. This
research was extended with a highly controllable automated system
of model transformations [5].

While constructive methods take a straightforward approach to
generation and have a long history in the game industry, to the best
of our knowledge no one has extensively analyzed the combination
of different methods that iteratively generate map layouts and
distribute game objects. This paper presents nine unique creator-
furnisher combinations and analyzes patterns in resulting levels.

3 THE MINIDUNGEONS 2 GAME
Minidungeons 2 (MD2) is a 2D rogue-like dungeon crawler [8]
in which the player controls a hero and tries to find the exit of a
dungeon, while encountering a variety of monsters and objects
along the way. The level is set on a 10×20 tile grid, where each
tile is either impassible (wall) or passable (floor). Floor tiles can
contain interactable objects (treasures, potions, traps, portals) or
game characters, subdivided into enemies (goblins, goblin mages,

Goblin Move towards hero if in LOS
Goblin Mage Hurl bolts at hero in LOS if within 3 tiles
Blob Move toward closest hero or potion if in LOS; power

up if colliding with potion or another blob (removing
collided object)

Ogre Move towards closest hero or treasure if in LOS; empty
treasure if colliding with it

Minitaur Move towards hero anywhere in the dungeon, follow-
ing A* pathfinding; can not be killed, only stunned for
3 rounds

Table 1: Movement strategies of monsters.

blobs, ogres, minitaurs) and the hero controlled by the player. LOS
stands for Line of Sight, i.e. if this entity has a clear sight-line to
the designated target.

All game characters have a preset number of hit-points (HP) and
deal damage when they collide with the hero or each other; goblin
mages also hurl bolts that deal damage at range. When a game
character runs out of HP, they die. To win, the player must move
the hero to the exit without dying; the hero moves to adjacent
tiles, except if stepping into a portal in which case it instantly
transports to the other portal (a level has two portals, or none).
Unlike its predecessor [7], inMD2monsters’ damage andmovement
behaviors are deterministic (see Table 1). This brings MD2 closer to
a puzzle game where the player must plan ahead how to reach the
exit without dying as well as collecting as much treasure or killing
as many monsters as possible. The personas used in the analysis
of the creator-furnisher combinations are done using agents from
another project in Minidungeons 2 [6].

4 CONSTRUCTIVE GENERATORS FOR MD2
The generative process forMD2 levels is split into two steps: the first
step generates the architectural layout of the dungeon; the second
step furnishes it with game objects and monsters. Three generators
are built for the first step, identified as layout creators, and determine
which tiles in the dungeon will be passable (floor) or impassable
(wall). Once the layout has been created (in whichever fashion), it
is furnished with game objects (monsters, treasure, potions, traps,
portals, the entrance and the exit). Three furnishers are introduced
and evaluated in this paper, identified as Game Element furnishers.

4.1 Layout Creators
Based on Shaker et al. [10], three layout creators were designed
following popular methods for constructive approaches: constraint-
based, cellular automata, and agent-based creators. All creators
ignore the border of the 10×20 MD2 grid which is always filled
with walls, and operate on a grid of 8×18 tiles.

4.1.1 Constraint-based: The constraint-based creator (CC) is in-
spired by the TinyKeep dungeon generator and collision detection
systems [1]. The generator spawns a random number of rooms
with a random width and height. At every step, the locations of the
rooms are modified by separating colliding rooms from each other,
either until no more collisions occur and all the rooms are within
the bounds of the map or until 100 iterations have passed. This

Two-step Constructive Approaches for Dungeon Generation FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA

Entrance Always within 8 tiles of one end of the LP
Exit Within 5 tiles of the opposite end of the LP from the

entrance
Treasure
Chests

Surrounded by 2 or more walls, with a preference
towards 3 walls

Potions Scattered randomly across the map
Portals One placed 5-10 tiles from Entrance, the other 5-10

tiles from Exit; at least 10 tiles from each other
Traps On or around (within 1 tile) the shortest path between

the Entrance and Exit
Goblins One side be a wall
Goblin Mages Must be adjacent to a Goblin
Ogres 4-8 tiles away from a Treasure chest in LOS
Blobs 4-8 tiles away from a Potion in LOS
Minitaur 4-8 tiles away from Entrance

Table 2: Constraint-based furnisher object placement rules

generator initializes anywhere from 8 to 16 rooms with a width
between 4 to 6 tiles and a height between 4 to 8 tiles.

4.1.2 Cellular Automata: Based on the binary cellular automata
cave generator in Shaker et al. [10], the MD2 cellular automata
creator (CAC) initially populates all 8×18 tiles with either wall (45%
chance) or floor tiles. Cellular automata changes each tile’s type to
the type of the majority of its neighbors (considering the 8 closest
neighboring tiles). In MD2, this resulted in a single ‘island’ of floor
tiles in the center. To counter this, a rule was added that checks if
the map consists of more than 75% floor tiles, in which case the map
is filled with more wall tiles and another step of cellular automata
is applied. This process will continue until there are less than 75%
floor tiles. This method can create multiple isolated ‘islands’ of free
space, which the player would be unable to reach. The largest empty
space takes precedence. Any smaller islands (defined as isolated,
empty tiles smaller than the largest space) are filled with walls.

4.1.3 Agent-based: The agent-based creator (AC) was formulated
much like the digger agent described by Shaker et al. [10]. The 8×18
tile grid initially is filled with walls. The agent is then placed on a
random tile, converting it to a floor tile. The agent then randomly
selects a direction to travel in, moves forward one tile and converts
it into a floor tile. The process continues in steps; in every step the
agent has a chance to change direction, increasing the probability
(+5%) each step that it does not. This process continues until the
map contains a number of floor tiles, which is randomly selected
in the beginning to be within the range of 75 to 95 tiles.

4.2 Game Element Furnishers
Once the architecture is created by one of the above generators (or
by a human creator), all game elements are added through another
process identified as the furnisher. Three furnishers are used in
this paper; their differences are primarily in the rules for placing
objects, and whether objects can change their location after being
placed. Game elements added by the furnishers are the entrance
(where the hero starts from), exit, treasures, potions, portals, traps
and monsters.

Entrance/Exit Any tile where the other object is not present in a 5
tile neighborhood

Treasure
Chests

At least 3 neighbors must be walls using 1 tile neigh-
borhood

Potions At most 3 neighbors are populated with objects using
1 tile neighborhood

Portals One portal must neighbor the Entrance, the other por-
tal must neighbor the Exit using 3 tile neighborhood

Traps 5 or more neighbors must be populated with walls or
other objects using 1 tile neighborhood

Goblins 4 or more neighbors are walls using 1 tile neighbor-
hood, and none of the tiles in a 3 tile neighborhood
are goblins

Goblin Mages 1 or more neighbors must be a Goblin using 3 tiles
neighborhood

Ogres None of the tiles in 1 tile neighborhood can be walls
Blobs At least 1 of the tiles in a 3 tile neighborhood is a

Potion
Minitaur 1 of the tiles in a 3 tile neighborhood is the Entrance

Table 3: Cellular Automata furnisher object placement rules

4.2.1 Constraint-based: In the constraint-based furnisher (CF),
each game element is constrained to areas of the map with specific
characteristics. Before placing any object, the furnisher finds the
longest path (LP) that exists between any two points on the map.
Elements are added iteratively, with specific elements such as the
entrance and exit added first. As each element is added, the map is
scanned for suitable locations that satisfy that element’s constraints.
The furnisher then randomly selects a suitable location among these
to place the element. In-depth rules are found in Table 2.

4.2.2 Cellular Automata: Similar to the CA creator, the cellular
automata furnisher (CAF) populates a map with game objects based
on each tile’s state and its neighboring tiles’ states. The difference
between the furnisher and the creator is that the furnisher visits
tiles in random order instead of sequential, has a variable size
neighborhood which allows CAF to access tiles that are more than
1 tile away, and has a restriction on the number of each placed
object (one entrance, two traps, etc) so it will not overpopulate
the dungeon. All floor tiles in the map are checked iteratively; if
the tile is empty and fulfills the neighborhood requirements of
Table 3, the corresponding game object is added to map. Since the
neighborhood requirements are mutually exclusive, a tile can have
only one object type.

4.2.3 Agent-based: The Agent-based furnisher (AF) differs from
previous ones as each object takes turns moving around the map by
itself. Every game element is given its own heuristic for movement
priorities (see Table 4) and is randomly placed somewhere on the
map. Every “turn”, all objects move around the map according to
what they see and their proximity to other objects. For example,
treasures actively seek out Goblins to guard them, and Goblins
attempt to hide from other Goblins. All objects operate on a sim-
ple one-step-lookahead. After 45 turns of movement (based on
preliminary testing), the map is considered furnished.

FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA Green et al.

Entrance/Exit Move as far apart from each other as possible
Treasure
Chests

Moves closer to goblins in Line-Of-Sight (LOS)

Potions Move randomly around the map
Portals Move as far apart from each other, the Entrance, and

the Exit
Traps Move away from other traps and goblins in LOS. Move

towards treasure in LOS
Goblins Move away from other goblins in LOS
Goblin Mages Move toward goblins in LOS and away from other

Goblin-Mages within LOS
Ogres Move away from Ogres in LOS (within 6 tiles), and

move within 4 tiles of Treasure in LOS
Blobs Move within 4 tiles of other Blobs and Potions in LOS
Minitaur Move as far away as possible from the Entrance and

Exit
Table 4: Agent-Based furnisher object placement rules

5 EVALUATION
In order to evaluate the different patterns favored by each of the
three creators and the three furnishers, each creator produces 1000
layouts for each furnisher, which then furnishes each layout once.
The result is 9000 MD2 levels for all creator-furnisher combinations.
Statistical tests in this section use p < 0.05 via Student’s two-tailed
t-test assuming unequal variance.

5.1 Differences between generators
Figure 1 shows three layouts created by the three creators, which
are then furnished by each of the three furnishers. There are several
consistent patterns among generator combinations: levels always
have around 20 game elements (monsters comprise slightly less
than half of those), potions are a bit more than half the number of
monsters and a bit less than double the number of treasure chests.
Differences in the layouts are also obvious, while the way in which
each layout affects each furnisher less so. This section attempts to
quantitatively analyze these patterns in creators, furnishers, and
their combination.

5.1.1 Layout Creators: Observing the layouts created by each cre-
ator, we decided to use the number of floor tiles, the length of the
longest path between the player’s starting position and the exit,
and the number of wall chunks as metrics to analyze the gener-
ated layouts. The number of floor tiles just counts the number of
empty tiles in the generated map, the longest path length calculates
the number of moves that a player needs to traverse the map, and
the number of wall chunks calculates the number of isolated wall
segments in the generated layouts.

Figure 2 shows the expressive range of our three layout creators.
It is obvious that the constrained-based creator generates levels
with the longest path compared to the other two techniques. Also,
it generates maps with the lowest number of isolated wall chunks.
We think that the constraints satisfaction guarantees that rooms
are not cutting each other, allowing for a longer path and fewer
isolated wall chunks. On the other hand, CAC creates maps with
the highest number of empty tiles which is due to the rules which
govern the growth of cellular automata. Both AC and CAC generate

(a) CC-CF (b) CC-CAF (c) CC-AF

(d) CAC-CF (e) CAC-CAF (f) CAC-AF

(g) AC-CF (h) AC-CAF (i) AC-AF

Figure 1: Generated MD2 levels for different furnishers (one
per column) on the same layout per creator (one per row).

maps with high amounts of isolated chunks, most likely due to the
ability of the agent to cross its own path and the extra wall-seeding
function in CA.

5.1.2 Furnishers: The different combinations of creators and fur-
nishers result in 9000 MD2 levels, out of which 3000 levels are
generated by each creator (and different furnishers) and 3000 levels
by each furnisher (and different creators). In order to assess how
each algorithm affects the placement of game elements, these levels
are grouped by creator or furnisher and their average metrics are
compared with those of other creators or furnishers respectively. A
broad range of metrics has been explored, including the number
and ratio of all game elements, the path from entrance to exit and

Two-step Constructive Approaches for Dungeon Generation FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA

10 20 30 40 50
Longest Path Length

50

60

70

80

90

100

110

120

130

140

Nu
m

be
r o

f E
m

pt
y

Ti
le

s

10 20 30 40 50
Longest Path Length

50

60

70

80

90

100

110

120

130

140

Nu
m

be
r o

f E
m

pt
y

Ti
le

s

10 20 30 40 50
Longest Path Length

50

60

70

80

90

100

110

120

130

140

Nu
m

be
r o

f E
m

pt
y

Ti
le

s

1 3 5 7 9 11 13
Number of Wall Chunks

50

60

70

80

90

100

110

120

130

140

Nu
m

be
r o

f E
m

pt
y

Ti
le

s

1 3 5 7 9 11 13
Number of Wall Chunks

50

60

70

80

90

100

110

120

130

140

Nu
m

be
r o

f E
m

pt
y

Ti
le

s

1 3 5 7 9 11 13
Number of Wall Chunks

50

60

70

80

90

100

110

120

130

140
Nu

m
be

r o
f E

m
pt

y
Ti

le
s

1 3 5 7 9 11 13
Number of Wall Chunks

10

20

30

40

50

Lo
ng

es
t P

at
h

Le
ng

th

(a) CC

1 3 5 7 9 11 13
Number of Wall Chunks

10

20

30

40

50

Lo
ng

es
t P

at
h

Le
ng

th

(b) CAC

1 3 5 7 9 11 13
Number of Wall Chunks

10

20

30

40

50

Lo
ng

es
t P

at
h

Le
ng

th

(c) AC

Figure 2: The expressive range of the three different creators
using the number of empty tiles, the longest path length,
and the number of wall chunks.

the number of potions or treasures which are guarded (i.e. their
paths from the entrance are blocked by a monster). For the sake of
brevity, only a subset of significant differences are reported here.

Grouping MD2 levels by furnisher, Figure 3 shows the expres-
sive range of these furnishers. We used the distance between the
entrance and the various game objects as metrics for the analysis.
The obvious difference that can be observed is that CAF has the
smallest distance from entrance to exit or portal exit, compared to
the two other furnishers. This is expected as CAF is the only fur-
nisher which places both entrance and exit randomly with the only
control being on neighboring tiles, while other generators either
greedily maximize the distance between entrance and exit (AF) or
place them along the longest path (CF). Similarly, the agent-based

0 5 10 15 20 25 30 35 40
Distance from Entrance

Goblin
Mage
Blob
Ogre

Minitaur
Treasure

Potion
Portal Entrance

Portal Exit
Exit

(a) Constraint-based Furnisher

0 5 10 15 20 25 30 35 40
Distance from Entrance

Goblin
Mage
Blob
Ogre

Minitaur
Treasure

Potion
Portal Entrance

Portal Exit
Exit

(b) CA Furnisher

0 5 10 15 20 25 30 35 40
Distance from Entrance

Goblin
Mage
Blob
Ogre

Minitaur
Treasure

Potion
Portal Entrance

Portal Exit
Exit

(c) Agent-based Furnisher

Figure 3: Expressive range of the shortest distance from the
entrance to all other game objects for each furnisher agent.

furnisher has the largest entrance-minitaur distance compared to
the other two techniques. In maps furnished by AF, the minitaur is
most always able to maximize the distance between the entrance
and itself.

5.2 Playability metrics
While structural differences shed light on the physical appearance
of the levels, how these differences affect gameplay is an important
next question. In order to gain some insight on how players would
interact with generated levels, a number of artificial agents designed
to represent different playstyles were used to playtest a sample of
the 1000 levels generated for each creator-furnisher combination.
These artificial agents, named procedural personas, use a variant of
Monte-Carlo tree search [2] with an evolved exploration strategy
described by [6]. Three personas are used in this paper: the runner
(which prioritizes reaching the exit with fewest actions), the mon-
ster killer (which prioritizes killing the most monsters and reaching
the exit) and the treasure collector (which prioritizes collecting
the most treasure and reaching the exit). To limit simulation times,
results are calculated on simulations of procedural personas in the
100 first levels generated by each creator-furnisher combination.

Figure 4 summarizes three important metrics which are targeted
explicitly by the personas (one each). An initial observation is that
completion rates are high for runner and killer personas. Unsurpris-
ingly, personas perform well on the metric they prioritize: runners
reach the exit, monster killers (MK) kill more monsters, and trea-
sure collectors (TC) collect more treasures. However, the differences
between them are more prominent for some generators than for

FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA Green et al.

CC-CF

CC-CAF
CC-AF

CAC-CF

CAC-CAF

CAC-AF
AC-CF

AC-CAF
AC-AF

0.0

0.2

0.4

0.6

0.8

1.0

Co
m

pl
et

io
n

Ra
tio

Runner Killer Collector

CC-CF

CC-CAF
CC-AF

CAC-CF

CAC-CAF

CAC-AF
AC-CF

AC-CAF
AC-AF

0.0

0.2

0.4

0.6

0.8

Ki
lle

d
M

on
st

er
 R

at
io

CC-CF

CC-CAF
CC-AF

CAC-CF

CAC-CAF

CAC-AF
AC-CF

AC-CAF
AC-AF

0.0

0.1

0.2

0.3

Co
lle

ct
ed

 T
re

as
ur

e
Ra

tio

Figure 4:Metrics of each persona on playthroughs of 100 lev-
els; error bars show the 95% confidence interval.

others: maps generated by CC-CF combination are the hardest to
beat, and the biggest differences in treasures collected between
the TC persona and the other two personas are found in CAC-
CF combination. It is also notable that certain creator-furnisher
combinations result in generally more monsters killed (e.g. all com-
binations with CF), while levels by the cellular automata furnisher
generally result in fewer kills. Similarly, CA creators have the least
collected treasures for Runner and MK personas; on the other hand,
the starker differences with the TC persona in this metric are with
the constraint-based furnisher.

6 DISCUSSION
Driven by the objective needs of the MiniDungeons 2 game, which
must produce new content while also operating on a mobile device,
we designed and experimented with a multitude of computationally
lightweight generators. Since the generators populate the level in
steps, this allows for many combinations of patterns in the levels.
As shown in the experimental analysis, the different generators
introduce different patterns, and while visible differences in levels
of Figure 1 are mostly due to the layout creators, the number and
placement of game objects seem less sensitive to differences among
creators. Based on playthroughs of artificial agents, the generated
levels allow for different strategies— although some strategies do
not guarantee that the level can be finished. The CC-CF combina-
tion created the hardest maps for any persona to beat, suggesting
that they create more of a challenge than other combinations. Some
generator types in particular penalize or reward specific playstyles
(e.g. killing monsters in CAF levels) while some creators make a

clearer distinction between playstyles (treasure collection differ-
ences in CAC levels).

There are many directions for future work, but also on further
analysis on how the patterns of each step of the generative pipeline
affects patterns in the next. A more in-depth analysis using non-
linear or possibly even computer vision techniques such as deep
learning could shed more light on the dependencies of creator-
furnisher pairings. Another idea would be to take a note from
previous generative comparison work [3] to perform amore general
comparison of metrics. Moreover, the artificial agents can be used as
surrogate testers in order to fine-tune the placement rules of some
objects, so that for instance the chance that runners can complete
the generated levels increases while also increasing the number
of treasures collected by treasure collectors (that currently rarely
gain a third of all treasure in the level). We also believe that the
Agent-based furnisher offers a fresh approach to the old problem
of procedural map generation in games. In this paper, all agents
move using simple one-step-look-ahead, but future work could
install more rigorous tree search or localized optimization methods,
allowing these agents to interact with one another in complex ways.

7 CONCLUSION
This paper presented nine generative algorithms that decide either
on the architecture or on the game object distribution of levels
for MiniDungeons2. By combining these creators and furnishers, a
broad set of patterns emerges. Experiments have demonstrated how
levels created by different combinations of creators and furnishers
differ from each other, and how they affect the playthroughs of
artificial agents acting as surrogates of human players.

ACKNOWLEDGEMENTS
Michael Cerny Green acknowledges the financial support of the
SOE Fellowship from NYU Tandon School of Engineering. Ahmed
Khalifa acknowledges the financial support from NSF grant (Award
number 1717324 - "RI: Small: General Intelligence through Algo-
rithm Invention and Selection.").

REFERENCES
[1] Adonaac. 2015. Procedural Dungeon Generation Algorithm. http:

//gamasutra.com/blogs/AAdonaac/20150903/252889/Procedural_Dungeon_
Generation_Algorithm.php. Last Accessed: April 18, 2019.

[2] C. B. Browne, E. Powley, D.Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen,
S. Tavener, D. Perez, S. Samothrakis, and S. Colton. 2012. A Survey of Monte
Carlo Tree Search Methods. IEEE Transactions on Computational Intelligence and
AI in Games 4, 1 (March 2012), 1–43.

[3] Michael Cook, Jeremy Gow, and Simon Colton. 2016. Danesh: Helping bridge
the gap between procedural generators and their output. (2016).

[4] Jonathon Doran and Ian Parberry. 2010. Controlled procedural terrain generation
using software agents. IEEE Transactions on Computational Intelligence and AI in
Games 2, 2 (2010), 111–119.

[5] Joris Dormans. 2011. Level design as model transformation: a strategy for auto-
mated content generation. In Proceedings of the 2nd International Workshop on
Procedural Content Generation in Games. ACM.

[6] Christoffer Holmgard, Michael Cerny Green, Antonios Liapis, and Julian Togelius.
2018. Automated playtesting with procedural personas with evolved heuristics.
IEEE Transactions on Games (2018).

[7] Christoffer Holmgård, Antonios Liapis, Julian Togelius, and Georgios N. Yan-
nakakis. 2014. Evolving Personas for Player Decision Modeling. In Proceedings of
the IEEE Conference on Computational Intelligence and Games.

[8] Christoffer Holmgard, Antonios Liapis, Julian Togelius, and Georgios N. Yan-
nakakis. 2016. MiniDungeons 2: An Experimental Game for Capturing and
Modeling Player Decisions. In Proceedings of the 10th Conference on the Founda-
tions of Digital Games.

http://gamasutra.com/blogs/AAdonaac/20150903/252889/Procedural_Dungeon_Generation_Algorithm.php
http://gamasutra.com/blogs/AAdonaac/20150903/252889/Procedural_Dungeon_Generation_Algorithm.php
http://gamasutra.com/blogs/AAdonaac/20150903/252889/Procedural_Dungeon_Generation_Algorithm.php

Two-step Constructive Approaches for Dungeon Generation FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA

[9] Lawrence Johnson, Georgios N Yannakakis, and Julian Togelius. 2010. Cellular
automata for real-time generation of infinite cave levels. In Proceedings of the
2010 Workshop on Procedural Content Generation in Games. ACM, 10.

[10] Noor Shaker, Antonios Liapis, Julian Togelius, Ricardo Lopes, and Rafael Bidarra.
2016. Constructive generation methods for dungeons and levels. In Procedural
Content Generation in Games: A Textbook and an Overview of Current Research,
Noor Shaker, Julian Togelius, and Mark J. Nelson (Eds.). Springer, 31–55.

[11] Adam M Smith and Michael Mateas. 2011. Answer set programming for pro-
cedural content generation: A design space approach. IEEE Transactions on
Computational Intelligence and AI in Games 3, 3 (2011), 187–200.

[12] Gillian Smith, Jim Whitehead, and Michael Mateas. 2011. Tanagra: Reactive plan-
ning and constraint solving for mixed-initiative level design. IEEE Transactions
on Computational Intelligence and AI in Games 3, 3 (2011), 201–215.

[13] Adam Summerville, Sam Snodgrass, Matthew Guzdial, Christoffer Holmgård,
Amy K Hoover, Aaron Isaksen, Andy Nealen, and Julian Togelius. 2018. Proce-
dural Content Generation via Machine Learning (PCGML). IEEE Transactions on
Games 10, 3 (2018), 257–270.

[14] Julian Togelius, Georgios N Yannakakis, Kenneth O Stanley, and Cameron Browne.
2011. Search-based procedural content generation: A taxonomy and survey. IEEE
Transactions on Computational Intelligence and AI in Games 3, 3 (2011), 172–186.

	Abstract
	1 Introduction
	2 Background
	3 The MiniDungeons 2 Game
	4 Constructive Generators for MD2
	4.1 Layout Creators
	4.2 Game Element Furnishers

	5 Evaluation
	5.1 Differences between generators
	5.2 Playability metrics

	6 Discussion
	7 Conclusion
	References

