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ABSTRACT
In this article, we present an experimental approach to using pa-
rameterized Generative Adversarial Networks (GANs) to produce
levels for the puzzle game Lily’s Garden1. We extract two condition-
vectors from the real levels in an effort to control the details of the
GAN’s outputs.
While the GANs performs well in approximating the first condition
(map-shape), they struggle to approximate the second condition
(piece distribution). We hypothesize that this might be improved
by trying out alternative architectures for both the Generator and
Discriminator of the GANs.
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1 INTRODUCTION
PCG can be defined as the generation of content for a game by algo-
rithmswhich require little to no supervision by a game-designer [13,
p. 1]. As content production is an often tedious and time-consuming
task, game-companies are increasingly utilizing PCG in an effort to
alleviate some of the pressure of having human designers create all
of the content within games. But content production often relies
on domain specific knowledge - in order to create levels that are
playable and continually enjoyable as they enter into the customers

1https://tactilegames.com/lilys-garden/
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overall experience of the game - and in light of this requirement it
is often challenging to automate the entirety of the content produc-
tion with algorithms. However, this is exactly what researchers are
attempting in a relatively new paradigm in PCG called Procedural
Content Generation via Machine Learning (PCGML).

In recent years we have seen studies in PCGML using Generative
Adversarial Networks (GAN). However, GANs are generally not
great at upholding the constraints needed for necessary content
used in games [19]. Previous studies have used different methods
to overcome the challenges of keeping the content functional for
games by using evolutionary algorithms and capturing informa-
tion about spatial relationships in levels [19, 20]. In this study we
are drawing inspiration from mixed-initiative generation where
humans and computers interact to pull the content in a certain
direction, specifically computer-aided design tools like Sentient
Sketchbook [8, 13].

A natural extension to our work could therefore be to create a
tool that can aid the content producers in speeding up the process
of generating game-levels for the puzzle-game Lily’s Garden. To do
this we present a preliminary study of using Conditional Generative
Adversarial Networks to generate a draft of levels based on the
variables of the game that we believe to be domain specific.

2 RELATEDWORK
2.1 Procedural Content Generation
Procedural Content Generation (PCG) focuses on using algorithms
to produce various types of content that is used for games [13, p.
1]. Content include levels, quests, textures and the PCG methods
used are usually specialized in doing one particular type of task,
but Shaker et. al have also suggested multi-content PCG, as an
alternative path [13, p. 5].

Throughout the existence of PCG the motivation behind using it
has changed. In the early days of video games PCs didn’t have a lot
of storage space, so instead of saving different game layouts, they
could be randomly generated [13, p. 4]. Today, game development
for AAA games has become more expansive which requires more
designers and time. As such, if algorithms alleviate the need for
increasing staff or help make designers more efficient it would
certainly be beneficial, which is also true for smaller teams [13,
p. 3]. Another aspect of today’s use of PCG is the possibility of
personalizing content for players to keep them engaged, which
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could span from different scenarios that a player enjoys, to the
difficulty or patterns in a platform game that a player keeps going
back to [14, 18].

In recent years a new paradigm in PCG has emerged, Procedural
Content Generation via Machine Learning (PCGML) [17]. This
paradigm separates itself from PCG in the sense that while PCG
approaches use machine learning models, PCGML samples directly
from the model, based on existing distributions of content [17].
Examples of this paradigm includes Snodgrass & Ontañón’s work,
in which they use Constrained Multi-Dimensional Markov Chains
in order to control the generation of both levels for the games Super
Mario Bros and Kid Icarus [15]. Another example is Sarkar et. al’s.
use of Variational Autoencoders for Controllable Level Blending
between Games [12], Sarkars work is especially interesting in that
they seek to optimize for multiple different features, which has a
lot of commonality with the line of inquiry that we are pursuing.

This consequently is the paradigm of PCG that we are working
under, with a focus on Generative Adversarial Networks which we
will briefly describe next.

2.2 Generative Adversarial Networks
Generative Adversarial Networks (GAN) is a collection of architec-
tures introduced by Ian Goodfellow et al. [4]. in 2014. The basic
idea is that two neural networks, a generator and discriminator, are
competing against each other in a mini-max game, where the gener-
ator tries to fool the discriminator into predicting its output as real,
and the job of the discriminator is to distinguish the fake samples
of the generator from real samples of data [3, 4]. The two models
are trained simultaneously and theoretically the mini-max game
should lead to convergence. However, there are multiple challenges
when balancing the architecture which has been a focus point in the
continued research on the subject [3]. Multiple improvements has
beenmade to the GAN architecture, such as the Deep Convolutional
GANs [10], which is broadly considered a general improvement on
the original model.

2.3 PCGML and GAN
Since the GAN architecture was presented in 2014, we are aware of
three articles using GANs to generate content for games [2, 19, 20].
Giacomello et al. (2018) use levels from the original DOOM by
extracting topological features and level images to generate new
levels with two different GANs-architectures. The purpose is to
evaluate the networks performance in generating levels similar to
human designed ones, with both training on level images and one
conditioned on the topological features as well [2].

Volz et al. (2018) train a GAN on mario levels and uses an evolu-
tionary algorithm on the latent space to improve properties relating
to difficulty, and playability is also checked using a player agent
[20].

Torrado et al. (2019) aim to mitigate common problems in PCG
like data scarcity and generating functional content for games by
implementing Self-attention to make sure that objects required for
functionality (in their case a key and door) is to be found within a
synthetic level, and adding playable examples of generated content
to the training loop for their GAN [19].

Figure 1: Lily’s Garden level 108 at the initial state.

Our approach uses some of the same ideas shown in the afore-
mentioned articles, but we explore them in the context of possibly
creating a mixed-initiative design-tool between GANs and game
level designers at a later stage.

3 METHOD
In this section, we will first give the reader an impression of what
the game Lily’s Garden is about. Secondly we will describe the
way that we represent the game levels as data to be used in GANs.
Thirdly we discuss the important variables, specific to the puzzle-
game genre, and finally we describe the GAN-algorithms that we
have implemented in our project.

3.1 A Lily’s Garden tutorial

Table 1: Table viewing a Term, its visualization, andwhether
or not it is clickable.

Unique Pieces Clickable

Color Island Clickable

Blockers Non-Clickable

Lily’s Garden is a puzzle game where the player has to collect
a certain amount of the pieces located on the game-board (see left
column in fig. 1). Collecting pieces can be done by connecting
two or more clickable-pieces of the same color (For example the
7 red connected pieces in the top left quadrant of fig. 1) which
makes them clickable (referred to as color-islands). However, some
pieces are not themselves clickable (referred to as blockers). This
is for example the bushes in fig. 1 and in this case, the only way
to collect them is by clicking on a color-island touching upon the
non-clickable piece. While there are some other categories of pieces,
the color-islands and blockers are the most important types and we
will limit ourselves to focusing on those for the remainder of the
article.

3.2 Data representation
3.2.1 The Representation Challenge: Within PCGML there isn’t
a general agreement on how to represent the game structure [17,
p.11], but most examples we have seen seem to represent each
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Figure 2: Reduced Representation of level 108

Figure 3: 8 randomly selected level-shapes from Lily’s Garden, visualized as heatmaps.

distinct piece in a game-level by a distinct channel within a 3D
matrix [2, 19, 20]. However, Lily’s Garden has 56 unique pieces
and vastly more combinations of unique pieces stacked upon each
other. By comparison (and to our understanding) Volz et. al. [20]
represented an entire Super Mario Bros level with just 10 unique
piece representations.

3.2.2 Reducing the number of channels: In order to reduce the
complexity of cleaning, visualizing and analysing the data, we
therefore decided to reduce the data representation into 8 distinct
piece-types: (1) Cell-layer, indicating the levels shape, and where
other unique pieces are allowed to be placed. (2) Blocker-layer (3)-
(8) color-layers 1-6. - We realize doing this is to reduce the problem
we were originally trying to solve, but an important feature of the
human-made levels are, that the main way to start a level is by
clicking on a color-island and thus the basic but important feature
of startability is maintained.

Fig. 2 shows the reduced representation which has some key
differences from the original. The bubble pieces are not visible in
our representation and the bushes are represented with 1 blocker
piece, you might also notice that the piece placement is not exactly
the same, this is because the game state are generated on different
random seeds. The first two dimensions of the levels are originally
(9,13), but we increase it to (9,15) by padding with empty values.
This is done to be able to apply transposed convolutional layers in
our generator, which makes it possible to go from (3,5) up to the
(9,15) size. The third dimension is the number of unique pieces in our
representation, which gives us a final multi-channel representation
of 15x9x8.

3.3 Important variables
Every game has some defining variables which are important to the
functionality of a level and further the player experience. In this
section we will briefly mention those that we consider important
in Lily’s Garden.

3.3.1 Shape: Shape is important because it determineswhere pieces
can spawn on the screen and further because it limits where the
player can interact with the level.

It is for this reason that an entire unique piece-type in our data-
representation is indicatory of the level shape (the cell-layer). Addi-
tionally, given the many varieties of shapes there exists within the
human made levels (see fig. 3) we found it reasonable to assume
that in a PCG-context, a variable that game-designers might want
to control is the level-shape.

3.3.2 Piece Distribution. The distribution of pieces in a level is also
an important variable. In fig. 1 for example, it is evident that some
pieces, such as the red- and orange-cookies (henceforth referred to
as clickable-types), are more dominating than the pink or the block-
ers underneath. In Lily’s Garden there generally are a lot of unique
pieces and while the most re-occurring pieces are the clickable-type,
a level is often dominated by clickable- and some particular blocker
types. While the clickable pieces are typically clustered into color-
islands - with some additionally lonely pieces being scattered across
the board - the blockers typically make up some local shapes within
the global shape. Given their visual importance, as well as role in the
functionality of a level, we also found the piece-distribution a plau-
sible variable that game-designers might want to be able to control.

3.4 Train and test set
We had access to 655 unique levels of Lily’s Garden. But to increase
the amount of data even further, we flipped the levels horizontally,
vertically and diagonally in each channel, giving us 2620 levels. We
then used 85% of the levels for training and 7.5% (196 levels) for test
and validation set respectively. While we do not use the validation
set in this article, they are stored for possible future work.

3.5 GAN architectures
In this article, we have developed two types of GANs: 1. The
Wasserstein GAN using Gradient Penalty with Parametric Embed-
dings (WGAN-GP-PE) and the Conditional Wasserstein GAN using
Gradient Penalty (CWGAN-GP). The exact architecture of the gener-
ators and critics can be accessed here2. Let us unpack these models
a few terms at a time:

2https://github.com/DresRumler/pcg-workshop-visualizations
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Figure 4: WGAN-GP-PE and CWGAN-GP, the red lines are only included in the CWGAN-GP model. The level-shape and the
piece-distribution of each level is extracted as conditions. The piece-distribution-vector is generated by counting the amount
of 1’s in the blocker- and color-channels and assigning each value to an index in the condition vector. Each number is then
divided by 135 (total possible size of a level) to normalize the values between 0-1, indicating the proportion of the level that a
particular channel inhabits.

3.5.1 Wasserstein and Gradient Penalty: As the name may suggest
we utilize the wasserstein-loss function which was suggested by
Arjovsky et. al. as a general improvement over cross-entropy and
leads to more stable training of GANs [1]. Further we use Gradient
Penalty as suggested by Gulrajani et. al. as a general improvement
to the wasserstein-loss, stabilizing the gradients and theoretically
approximating the real data distribution better [5]. In practice, this
also proved to be the case for us.

3.5.2 Conditonal and Parametric Embeddings: Traditionally GANs
[4] only get the random-vector z (drawn from some normal distri-
bution) as an input-vector. However, if one wants to control the
output of the generator towards producing specific types of images,
one has to introduce conditions as suggested by Mirza et. al. [9]. In
our case, the conditions are the level-shape and piece-distribution,
which we described in section 3.3. As can be seen in fig. 4 we use
both variables as input to the model. In the case of the WGAN-GP-
PE we only feed the generator the variables (the red-lines in fig. 4
are not included), where in the CWGAN-GP we also feed them to
the discriminator (the red-lines in fig. 4 are included). This is the
only difference between the models, but given that the discrimina-
tor is actually not taking the conditional vectors into consideration
in the WGAN-GP-PE-model, we decided to define the conditional
vectors in this case as Parametric Embeddings.

3.5.3 Hyperparameters.

• Loss-function: Wasserstein Loss.
• Critic trained 5 times for every 1 time Generator is trained.
• Optimizer: Adam with learning rate 0.0001, beta term 1 and
2 equal to 0.5 and 0.9 respectively.

• Batch-size: 32 levels.
• Epochs: 300

4 EXPERIMENTS
Most GAN-literature has concerned itself with producing realistic
looking images of human-faces3 and more generally objects from
the ImageNet4. As such, the most used evaluation metrics, such as
the Inception-score [11] and the Fréchet Inception Score [7] is also
mainly useful in this context of measuring how realistic looking an
image is.

To judge the quality of a game-level however - and specifically
for Lily’s Garden - is quite a different task and we have therefore
run 7 distinct experiments which seeks to test the quality of our
generators from numerous different angles.

4.1 Data distribution approximation of the
generators

Firstly, we investigate how well our generators has approximated
the data distribution of the training set, by looking at the propor-
tion of pieces that the generated data sets and training set contain
respectively. We have generated 250 samples for each level in the
test set (of 196 levels) Which gives us a total of 49.000 synthetic
levels for each of the generators.

From fig. 5 and tab. 2, it is clear that both generators have ap-
proximated the training distribution pretty well with regards to the
number of pieces that each cell-layer contains. However, the color
layers seem to be on the low side of the training-set consistently,
while the cell-layer is slightly over represented.

3http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
4http://image-net.org/
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Figure 5: Distributions of the Training Set, WGAN-GP-PE and CWGAN-GP respectively. X-axis ranges between 0 and 135 and
Y-axis is the proportion of piece-amount that falls within a given range.

Table 2: 0.5’th quantile and standard error

Layer Training Set WGAN-GP-PE CWGAN-GP

Cell 81±17
14 84±18

14 84±17
15

Blocker 34±17
19 32±16

17 33±22
22

Color 0±11
0 0±4

0 0±9
0

Color 2 9±6
9 6±7

4 5±6
3

Color 3 9±6
5 7±6

4 7±6
4

Color 4 9±5
5 6±5

3 7±6
4

Color 5 6±6
6 4±5

3 4±5
3

Color 6 0±5
0 1±4

1 0±3
0

The generators must be said to have come close to the training-
data distribution with respect to the proportion of pieces, but
whether this translates into levels that share commonalities to
the training set is what we will turn our attention to now.

4.2 Visual Quality
In this experiment, we compare the training set levels, to the closest
and farthest synthetic levels measured in wasserstein-distance, the
same metric used for the generators cost-function.

4.2.1 Piece distributions. The most obvious difference between
the training- and synthetic-set examples in fig. 6a & 6b, is how
representative empty board pieces (represented with the green
color) is. In the training-set examples, only 2 out of 10 levels contains
empty pieces, whereas every synthetic-level contains some empty
pieces. Considering that both generators has been trained on the
piece-distribution vectors of the training-set, the presence of empty
pieces in every synthetic level, suggests that the generators has
failed to utilize the piece-distribution vectors as we intended. We
will return to this observation in section 4.4.

4.2.2 Symmetry. Another important aspect of the training levels,
seems to be the symmetric smaller shapes within the level-shapes.
Once again, both the generators seems to underperform in compar-
ison to the training-set. However, the CWGAN-GP does seem to be
a general improvement over the WGAN-GP-PE in this respect. A

statement we base on the observations that: the synthetic levels of
the CWGAN-GP has more clear-cut vertical and horizontal borders
between the blocker-and color pieces. Further, the CWGAN-GP
produces these pyramidic-shapes (see row 4, column3 (refered to
as (4,3), and (5,6) in fig. 6b, which seems to suggest that the model
has also adapted well to diagonal lines (see fig. 6b).

4.3 Effect of level-shape-conditional vector -
Likely Playable

In this experiment, we test how well our models are reproducing
the level-shapes it is given as inputs. To do this, we extract the
cell-layer of the produced levels and compare them to the original
input level-shape.

From fig. 7 it is clear that our CWGAN-GP approximates the
real level shape quite well, albeit not perfectly. Notice that we have
not rounded the synthetic values, and thus the green pieces in the
images indicate where our CWGAN-GP is uncertain of whether
to place a piece. While this mean our models are not perfect, it is
worth noting how many of the pieces that the network is absolutely
certain (1 on a scale of -1 to 1) should be placed in the spot. But how
far from perfect are our models generally? To test this we generate
250 levels for each level-shape and condition-vector. We then count
the number of times a level has failed and succeeded to fill in a
desired spot (underfilled/overfilled) and report the average. The
results are summarized in table 3.

Table 3: Average under and overfilling of the generators
levelshapes.

WGAN-GP-PE CWGAN-GP

Avg. underfilled 1.67 0.18
Avg. overfilled 2.07 0.085

Table 3 shows us that the CWGAN-GP approximates the level-
shape-condition much better than the WGAN-GP-PE, which indi-
cates that feeding the level-shape conditional vector to the discrim-
inator as well, has helped the generator in better approximating
the real shape. Nevertheless, 18% of the CWGAN-GP levels are
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(a) WGAN-GP-PE (b) CWGAN

Figure 6: Test levels compared to the closest- and farthest synthetic level of the Generators in Wasserstein distance.

Figure 7: A test-set real level-shape compared to the level-
shape of 4 versions of the same synthetic levels of our
CWGAN-GP

underfilled and 8.5% is overfilled and as such there is room for
improvement.

4.4 Effect of piece-distribution-conditional
vector

In this experiment we test how well our models utilize the piece-
distribution-vector. Recall that we feed a conditional-vector of size
7 (blocker- and color distributions) to the generator in both models
and also the discriminator in our CWGAN-GP model. To test how
it adjusts to the information in the vector, we will produce 100
new levels for each level in the test-set. We will then retrieve the
distribution-vector for each of the produced levels and subtract
the real distribution vector from the derived distributions-vectors.
Ideally, the error should be close to 0, because this would mean that
our models are recreating the distributions perfectly.

From the violinplots in fig. 8 it does not seem like themodels have
approximated the conditional vector. However, we hypothesize that
this might have to do with the fact that we reduced a lot of unique
pieces into the single piece blocker and thus our models might have
learned that there are generally a lot of blocker-pieces, which it
tries to distribute on every generated level.

4.5 Testing Color-Islands
We test Color-islands because it is indicative of whether there is
anything clickable on a level to begin with and thus whether the
level is startable. We test this by producing 250 generated levels for
each level in the test-set (a batch), and we then count the number
of color islands within each level.

Fig. 9, shows that both the WGAN-GP-PE and CWGAN-GP has
approximated the distribution of training-set closesly, although
with some important differences.

4.5.1 0 color-islands. From fig. 9 it is clear that the minimum
amount of color islands in a training-set level is 1. By contrast,
the synthetic levels of the WGAN-GP-PE contains ca. 5.5% levels
with no color islands, and the CWGAN-GP contains a little less
than 4%. This effectively means that the generators both generate
levels that are unstartable and thus by extension unplayable.

4.5.2 Largest proportions of color-islands. Both the generators
tends to produce less color-islands than are in the training set.
For the WGAN-GP-PE ca. 16% of the levels has 3 color islands in
them, but for the CWGAN-GP the highest proportion of levels are
12% at 4 color islands. By contrast, the largest proportion (ca. 12%)
of levels in the training set has 7 color-islands in them.

4.6 Testing Broken pieces
We test Broken pieces by seeing if our model places any blocker-
or color-piece outside the perimeter of the generated cell-layer.
Like the preceding tests, this is done by producing batches of 250
generated levels and seeing how many of the levels within a batch
are broken.

Our WGAN-GP-PE produces 46% levels that are not broken from
the beginning, while our CWGAN-GP produces 66% (see fig. 10).
Evidently our generators struggles more with this test than the
color-island test.

Interestingly, while we found that the piece-distribution vector
did not contribute much to the actual distribution of tiles in the syn-
thetic levels (see sec. 4.4), the piece-distribution vector does seem
to help improve the CWGAN-GP to generating 66% non-broken
levels from the beginning. Recall that the main difference between
the WGAN-GP-PE and the CWGAN-GP, is that the discriminator
network is also fed the piece-distribution vector in the CWGAN-GP.
Thus while the piece-distribution vector is not necessarily work-
ing the way we intended, it does seem to effect the quality of the
synthetic levels, when the discriminator also gets to take it into
account.

4.7 Expressive Range
In this section, we test the expressive range [16] of the generators,
in comparison to training set in two different experiments.
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Figure 8: Violinplots of each index in the distribution-vector, showing the error between real- and vectors derived from gen-
erated levels.

Figure 9: Bar Graphs showing the distribution of color-islands in train-set, WGAN-GP-PE- and CWGAN-GP synthetic-set
respectively.

Figure 10: Bargraphs showing the proportion of n-broken pieces in the 49000 synthetic levels generated forWGAN-GP-PE and
CWGAN-GP respectively.
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Figure 11: 2DHeatmaps, showing the expressive ranges of number of unique pieces and number color islands within the train-
WGAN-GP-PE- and CWGAN-GP-set of levels respectively.

Figure 12: 2D Heatmaps, showing the expressive ranges of the horizontal- and vertical symmetry within the train-WGAN-GP-
PE and CWGAN-GP-set of levels respectively.

Firstly, we test the generators expressive ability over the number
of color islands and unique pieces in a level. Evidently, from fig. 11,
both generators tend to overestimate the number of unique pieces
in a level, but the WGAN-GP-PE more so than the CWGAN-GP.
The training-set is generally much more spread across the middle
of the heatmap, than the generators, which tend towards the lower
right corner with all colors represented but fewer color islands. In
other words, the training set usually has 5-7 unique pieces, whereas
both generators typically has 6-8, although the CWGAN-GP once
again is closer to the training-set than the WGAN-GP-PE.

Secondly, we test the generators ability to create symmetrical
levels by flipping the level-shapes (see fig. 12), first in the mid-
dle horizontal axis (X-coordinate) and secondly on the vertical
(Y-coordinate). We then measure the hamming-distance [6] and
use this as an indicator of how symmetrical a level is. Thus, if
a level is both symmetrical on the X- and Y-axis, the distance is
zero. Interestingly, the CWGAN-GP seems to adapt much better to
the training-set, than do the WGAN-GP-PE. This is especially so
since more than 20% (the colormap indicates the proportions) has a
hamming-distance of 0, both on the X- and Y-axis.

5 DISCUSSION AND FUTUREWORK
Summarizing our results it seems our models perform well in ap-
proximating the level-shape input, but badly with respect to the

distribution vector. Further, they perform well in the color island-
test but struggles with the broken piece-test. Generally it must also
be said that our CWGAN-GP outperforms the WGAN-GP-PE and
going forward it is likely more rewardable to focus our attention
towards the CWGAN-GP architecture. Let us look at the tests for
condition-vectors and color-islands/broken pieces separately:

5.1 The condition vectors
In our generator we concatenate the z-vector and the piece-
distribution vector. We then lead the concatenated result through
some densely connected layers, before reshaping it into a (9, 15, 7)
matrix, representative of the blocker- and color-layers in a level.
Finally we concatenate the level-shape and the (9, 15, 7) matrix
together. While we’re not certain that the concatenation of the
z-vector and piece-distribution-vector is the problem, it certainly
hasn’t proved to be a solution either. Conversely our model is adapt-
ing quite well to the level-shape, but this is also an input that can
be fed in and remain non-altered before we apply convolutions,
because it already has the (9, 15, 1)-shape. By contrast our z- and
piece-distribution-vector has to be led through some densely con-
nected layers in order to scale them up and into the (9, 15, 7) matrix.
This could incentivize a look into other forms of representation of
conditions with the closest example being Giacomello et al. (2018)
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which extracts a feature topology from DOOM levels, and in their
case the model responded positively to this addition [2].

A possible improvement to the distribution-condition-vector
might be to use some arithmetic operations on each of the layers,
thus more directly connecting each cell in the condition-vector to
the specific layer that it is meant to affect. This operation could be
done once or on numerous occasions throughout the convolutions,
so as to impose the importance of the distribution-condition-vector
more explicitly.

A completely other avenue of inquiry, that we would also like to
focus on in the future, is to focus on feedback from the intended
users to understand whether our current idea of parameters should
change in favour of other parameters. This would greatly improve
the likelihood of integrating GANs into mixed-initiative tools that
are actually likely to work for the intended users.

5.2 Color islands and broken pieces:
Testing for color-islands and broken pieces also give two very dif-
fering results. But it is worth considering the nature of these tests:
Testing color-islands is essentially a question of finding just 1 color-
layer in which 2 pieces are located next to each other. Likewise
for broken pieces just 1 piece has to be out of place, but where the
color-islands counts as a passing grade, the broken pieces count as
a failing. In some sense they can be seen as occupying two extremes
of a spectrum in which we could create others tests and it would
be instructive to try and formulate some tests that better breach
this divide. With our current representation we are also missing
an aspect of PCG regarding broken-pieces which goes beyond what
we are currently testing. In "Evolving Mario Levels in the Latent
Space of a Deep Convolutional Generative Adversarial Network"
by Volz et al. they present the prevalence of broken tubes in their
generated content for Mario, but in our content this simply isn’t
possible with our current representation but we presume that we
will encounter the same issue once we introduce 2x2 pieces (such
as the bushes in fig. 1) and this consequently will also be something
that needs attention in the future [20].

6 CONCLUSION
In this paper, we presented two GAN-architectures (WGAN-GP-PE
and CWGAN-GP) for producing simplified levels of the puzzle-
game Lily’s Garden. To test the synthetic levels generated by the
GANs, we test its ability to create levels, by testing whether the
GANs are reproducing the desired level-shape we feed them cor-
rectly, as well as the piece-distribution. Both GANs reproduce the
level-shape well, although the CWGAN-GP seems to be perform-
ing best, while they both fail to pick up our intended meaning for
the piece-distribution-vector. We further tested the functionality of
the produced levels, by testing whether the models are producing
levels with at least one color-island in them and further whether
the GANs produces any broken-pieces. Both models perform well
when tested for color islands, although the CWGAN-GP once again
seems to be performing best. Conversely both models struggles
when tested for broken pieces, although once again the CWGAN-
GP seems to be performing better than the WGAN-GP-PE. In the
future, it is therefore plausible that it is more feasible to continue
with the CWGAN-GP model. However, before too much time is

spend on optimizing for the variables we chose in this paper, it is
worth investigating whether the condition-vectors we chose are
also what game-designers might actually want or if entirely other
variables might be of greater importance.
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