
Polymorph: Dynamic Difficulty Adjustment Through Level
Generation

Martin Jennings-Teats, Gillian Smith, Noah Wardrip-Fruin
Expressive Intelligence Studio

University of California, Santa Cruz
Santa Cruz, CA, USA

{mjennin1, gsmith, nwf}@soe.ucsc.edu

ABSTRACT
Players begin games at different skill levels and develop their skill
at different rates so that even the best-designed games are
uninterestingly easy for some players and frustratingly difficult for
others. A proposed answer to this challenge is Dynamic Difficulty
Adjustment (DDA), a general category of approaches that alter
games during play, in response to player performance. However,
nearly all these techniques are focused on basic parameter
tweaking, while the difficulty of many games is connected to
aspects that are more challenging to adjust dynamically, such as
level design. Further, most DDA techniques are based on designer
intuition, which may not reflect actual play patterns. Responding
to these challenges, we present Polymorph, which employs
techniques from level generation and machine learning to
understand game component difficulty and player skill,
dynamically constructing a 2D platformer game with continually-
appropriate challenge. We believe this will create a play
experience that is unique because the changes are both
personalized and structural, while also providing an example of a
promising new research and development approach.

Categories and Subject Descriptors
K.8.0 [Personal Computing]: General – Games. I.2.6 [Artificial
Intelligence]: Learning.

General Terms
Design, Human Factors.

Keywords
Games, level design, dynamic difficulty adjustment, procedural
content generation.

1. INTRODUCTION
The classic 2D side-scrolling platformer is a genre of games that
focuses on jumping dexterity and precise timing to get past
obstacles in fairly linear levels; for example, Super Mario Bros
[8]. The game levels are designed to be difficult and unforgiving,
so the player is only able to complete a level after playing it
partway through multiple times to learn the exact necessary
pattern of actions. This genre of game has been very popular, but

it cannot be said to cater to every player's experience and abilities.
This is one example of the types of problems that can be
addressed with Dynamic Difficulty Adjustment (DDA).
This paper describes the vision and implementation of Polymorph.
The goal of Polymorph is to automatically generate 2D platformer
levels during play as a means of dynamic difficulty adjustment.
Specifically, rather than being authored by hand, game levels will
be procedurally generated as the player moves through the level,
one chunk at a time as needed. The generation of these chunks
will be customized to match the player's performance, so that each
player will be presented with a level that provides a challenge
appropriate to their skill. This is not to say that the player will
never die in a tough section or breeze through an easy section, but
the game will correct for this in the next section, hopefully
avoiding difficulty-related player frustration and boredom and
providing an example of a promising new approach to DDA.
We tackle the DDA problem by creating a statistical model of
difficulty in 2D platformer levels along with a model of the
player's current skill level. These models are gleaned with
machine learning techniques from play traces collected with a
game-like tool. The models are used to select the appropriate level
segment for a player's current performance. The level segments
are generated automatically using a variation on the work of [14],
which is described in more detail in section 2.2.
This paper shows how a game can be designed to accommodate
the skill and experience of every individual player by
incorporating machine learning techniques and dynamic level
generation. This is an advance on prior work in dynamic difficulty
adjustment, which has for the most part avoided adaptive level
design, and in procedural level generation, which has mainly
focused on creating full levels for replayability. Polymorph is a
work in progress: a data collection tool, the level generator, the
game engine, and a pilot study have been completed.

2. RELATED WORK

2.1 Dynamic Difficulty Adjustment
Game designers nearly always strive to create games in which the
difficulty of the obstacles presented to the player is appropriate for
the player's skill level. As a player's skill improves through
practice, a well designed game will present more formidable
difficulties so that the player is never bored by overly easy
gameplay or frustrated by overly difficult gameplay [3] [6]. This
in itself is a very challenging design task however, and game
designers spend great effort making sure that their game is well
balanced so that challenges will be appropriate for players'
abilities. Even so, designers are usually not able to accommodate

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PCGames 2010, June 18, Monterey, CA, USA
Copyright 2010 ACM 978-1-4503-0023-0/10/06... $10.00

every player's skill level, and frustrating mismatches between a
player's skill and a game's difficulty are common [5] [12].

As described briefly above, Dynamic Difficulty Adjustment
(DDA) is a term for techniques in which games automatically alter
themselves in some way to better fit the skill levels of the players.
This is common in the genre of racing games with the practice of
“rubber banding”, wherein players in last place are granted an
increased maximum speed [5]. DDA is rarely used in other game
genres, but there are some notable exceptions. One of the most
complex examples of DDA in a commercial game is the first-
person shooter SiN Episodes. It uses a statistical model of player
performance with “advisor” sub-systems that adjust attributes
such as the number of concurrent enemies, the damage and
accuracy of the enemies' weapons, and the enemies' tendency
toward throwing grenades [7] [13]. Hunicke created the Hamlet
system, which uses sets of probabilities to determine the
appropriate time to intervene in a first-person shooter by giving
the player more ammo or a health boost [5]. What these DDA
strategies all have in common is that the intervention into the
game is primarily through a numeric attribute adjustment. In
contrast, the dynamic changes made by Polymorph are structural
rather than numeric in nature.

An alternative method of intervention, on which this paper is
focused, is the modification of the level design. For example, Left
4 Dead changes the location and frequency of spawn points for
enemies and items based on player performance, which can have a
significant impact on player experience but is not a substantial
change in the structural design of the levels [2] [18]. Pedersen et
al. created a version of Infinite Super Mario Bros from which they
derived a statistical model of player challenge and frustration,
among other emotional states [11]. Using their evolutionary
algorithms, this model could be used to generate levels for a
particular level of player challenge, which is the closest work (of
which we are aware) to the approach of Polymorph [10].
However, it is not designed to be dynamic during play, unlike
Polymorph, which generates sections of a level ahead of the
player's movement, allowing a level to change in difficulty from
start to finish in response to changes in the player's performance.

2.2 Procedural Level Generation
Procedural level generation has been used in games for decades,
with popular RPGs such as Rogue and Diablo, as well as some 2D
platformers such as Spelunky [1] [17] [19]. These games typically
work by fitting together hand-authored level chunks into random
combinations. Pedersen et al.'s variation on Infinite Super Mario
Bros also works on this principle, combining level chunks to
create a level that is measured according to a statistical model of
the emotions it would evoke in a player [10]. This work, along
with Togelius et al.'s 2007 work on generating tracks for racing
games, uses an evolutionary algorithm to iteratively create similar
levels with slight modifications [15]. These approaches differ
from Polymorph by generating geometry in larger granularity, as
well as in Polymorph's unique learning features (see section 4).

Smith et al. created a generator for 2D platformer levels based on
a model of player action-rhythm, which is the basis for the level
generation done in this project. This approach starts with a rhythm

Figure 1. Several possible mappings of geometry onto rhythm.

of desired player actions, such as run, jump or wait. The generator
then chooses from sets of geometry that can fulfill each of these
actions—the same starting rhythm can produce many distinct
level designs depending on the geometry selected for each action,
as shown in figure 1. Because the generation is based on player
actions and their associated level geometry, it has a finer
granularity of control over the level design than the previously
mentioned techniques which use hand-authored level chunks [14].
All of these strategies for level generation have been offline full-
level generation techniques, meaning that they create an entire
playable level as a whole—usually ahead of time, rather than
generating parts of the level during play [16]. This is because a
primary motivation for procedural level generation has been to
create improved replayability for a game, which can be
accomplished by giving the player a new level each time through.
This is an effective strategy for creating engaging game
experiences, but online level generation, in which the player's
behavior alters the level as they play, is a much more dynamic
approach to the core challenge to which Polymorph responds:
difficulty adjustment.

The game Charbitat is an example of online, real-time level
generation, where the player's preference for interacting with
certain elements will alter the game world to increase the
prevalence of that element [9]. This focus on the world’s elements
differs substantially from Polymorph’s focus on difficulty.

3. DATA COLLECTION MECHANISM
3.1 Tool
In order to generate parts of a level to match a player's skill level,
we need both a model of difficulty in our domain of 2D
platformer levels and a dynamic model of the player's current
performance. To answer these two questions—what makes a 2D
platformer level difficult or easy, and how do we determine if a
player is struggling or needs more of a challenge—we turn to a
strategy of mass data collection and statistical machine learning.
We created a data collection tool that asks a human player to play
a short (approximately 10 seconds) level segment, collecting data
on the level and the player's behavior along the way. The collected
data and its use as machine learning features are discussed in
more depth in section 4. After the player completes the level or
their character dies, they are asked to label the level segment by
answering the multiple choice question: how difficult was this
level segment? The label choices presented to the player are 1-
Easy through 6-Hard. Only data from players completing multiple
levels is considered in order to avoid subjective difficulty ratings.

The level segments are generated by an adaptation of the action
rhythm-based generator from [14], described briefly in section
2.2. We do not put any restrictions on the rhythms used to
generate level segments, since we want to consider all playable
segments. We believe that difficulty in interesting 2D platformer
levels comes largely from the combination of adjacent
components and not just from the presence or absence of a
particular component (see section 4). This belief is the reason we
limit the level segments to such a short length. With short level
segments, which don't contain too many level components, we
attempt to control which independent variables, in this case level
component interactions, might be resulting in the difficulty label
the player assigned to the segment. We recognize that not all
aspects of level challenge are captured by these short segments,
but we are focusing on the micro level of component
combinations rather than level-wide patterns or the introduction
of new mechanics.

One potential drawback to this method of data collection is that a
player might not have a good understanding of the game
mechanics their first time through a short segment and might
therefore rate it as more difficult than they would after they gained
more experience. However, we believe that this is representative
of playing a full game, where the player learns the game and
increases in skill as they progress, so that a player participating in
our data collection over many level segments will help us to
model difficulty for an average player. Also, this short level
segment seems ideal as the amount of granularity for custom,
player performance-based, generated level chunks as the player
progresses through a level of the final game. Each time the player
successfully passes through a segment of this length (or dies),
another segment of the same length will be generated and placed
in front of them.

The tool is Flash-based so that it can be easily distributed and
used through most web-browsers by many simultaneous players.
We have completed a pilot study with more than one hundred
undergraduate game design students from UC Santa Cruz,
allowing us to refine our instruments and the machine learning
features discussed in section 4. The preliminary data and resulting
refinements have been encouraging for the goal of the data
collection: to model player performance and difficulty in 2D
platformer levels. We are currently preparing to distribute the tool
much more widely to collect data from thousands of participants
over multiple level segment playthroughs.

3.2 Generate and Test
One of the early challenges in the development of Polymorph was
the tendency of the level generation algorithm to create many
more easy level segments than difficult level segments, though the
generator is capable of expressing levels across a wide range of
difficulty. This was due to the many possible rhythm-geometry
mappings that do not present a challenge for the player—a flat
surface with several short gaps, for instance. This was problematic
for the data collection mechanism, since the players assigned
labels for low difficulty levels far more often than for high
difficulty levels. The distribution of the data was therefore skewed
toward the low-difficulty end of the spectrum.

Figure 2. Part of a level segment in Polymorph's data
collection tool with the player character on the left. The
segment includes a jump up over a gap, a coin and a moving
enemy.
The distribution of level segments has been corrected by creating
several heuristic critic modules. When a level segment is first
generated, each of these critics will estimate its difficulty on a
particular metric. For example, one critic examines the level
segment's action-density, while another simply counts the number
of potentially deadly level components present, since some
components do not create the possibility of player death on their
own. Once all of the critics have examined the level segment, it is
classified into several estimated difficulty categories, which the
data collection tool samples for segments presented to the player
rather than choosing a random unplayed level segment, thus
modifying the distribution of segments so that it will be more
spread across the range of level difficulty. The critics only decide
which segments to show to players and are not considered for the
final ratings of challenge.

4. LEARNING FEATURES
The first statistical model that we want Polymorph to learn from
the collected data is a ranking of level segments according to their
difficulty. As mentioned previously, we believe that difficulty in
2D platformer levels is related to the combinations of adjacent
level components more than to the presence of a particular level
component. Using the example shown in figure 2, a gap by itself
is easy to overcome and a slow plodding enemy is not much of a
difficulty, but by placing the enemy on the landing platform of the
gap the level designer has created a much larger challenge for the
player, requiring more exact timing and prediction of the enemy's
movements. Therefore we have included as learning features not
only the number of occurrences of a particular level component,
but also the occurrences of any two-component adjacency in the
level segment. Using the example depicted in figure 2 once again,
the feature regarding the number of upward-rising gaps in the
segment is incremented, as is the feature regarding the number of
gap-enemy adjacencies. Other level segment-related features of
interest include the average gap width, the total change in altitude
of the platforms in the level and the width of the largest and
smallest platforms.

Polymorph also needs a statistical model of the player's current
skill level. The data collection tool keeps track of features
representing the player's behavior while playing. Some of the
more interesting features are the amount of time the player spends
standing still or moving backwards, the total completion time of

the level segment, the number of coins collected, and whether the
player died or completed the segment. The data collection tool
does not ask the player how well they think they were performing,
but we assume that this is implicit in their answer to how difficult
they think the level segment was.

Given the level-descriptive features we will apply a machine-
learned ranking algorithm such as Ranking SVM to rank all of the
level segments generated during play of the final game [4].
Meanwhile, Polymorph will be collecting the player behavior
features, which will be evaluated on a model trained with the data
from the collection tool. Then, before the player progresses into
the next segment of the level a new segment from the ranked list
will be chosen according to the model of the player's current skill
level. This way, as the player learns to play the game better and
improves their personal skill, the level will increase in difficulty
to compensate and maintain an appropriate challenge.
Alternatively, if it becomes clear that the player is struggling, the
next segment of the level will be chosen to reduce challenge.

5. CONCLUSION & FUTURE WORK
We have described the vision, completed work, and further plans
for dynamic difficulty adjustment in the game Polymorph. The
player-specific adjustment is achieved by procedurally generating
the level during play. At this time we have created the game
engine, the level generator, and the data collection tool, as well as
run a pilot study. To complete the game we will collect data on a
much larger scale with the online tool, and we will process the
data as discussed in section 4 to create models of level difficulty
and player performance. Final game polish will be applied, with
commissioned artwork and tweaking of the mechanics based on
evaluative playtests.

The largest challenge for the development of Polymorph has been
the task of designing features to collect from the generation of
level segments. The features need to be broad enough to represent
the difficulty of a level for an average player while remaining
specific enough to be generalizable to other, very different level
designs. We are confident in the features we have chosen, but we
do not claim to have created a perfect model of difficulty in 2D
platformer levels. Considering the pair-wise adjacencies of level
components will help to address the problem of difficulty arising
from the interaction of level components rather than from the
presence of individual components. However, in the analysis of
challenging hand-authored platformer levels it seems that the
interaction of more than two components is common. Creating
features to represent these more complicated interaction settings
would be an improvement and is a direction we would like to
pursue with future iterations of Polymorph.

Procedurally generating level segments online, in real-time as a
method of dynamic difficulty adjustment allows for intervention
that is both a structural change and personalized to the player's
skill and experience. We believe this will give Polymorph a
unique play experience and demonstrate the strength of
combining techniques from level generation and machine learning
for dynamic difficulty adjustment.

6. REFERENCES
[1] Blizzard Entertainment 1997. Diablo.

[2] Booth, M. 2009. The AI Systems of Left 4 Dead. Keynote,
Fifth Artificial Intelligence and Interactive Digital
Entertainment Conference (AIIDE ’09). Stanford, CA.
October 14 – 16, 2009.

[3] Fullerton, T., Swain, C., and Hoffman, S. 2004. Improving
player choices. Gamasutra (March 2004).
http://www.gamasutra.com/features/20040310/fullerton_01.s
html. Online Feb. 1, 2005.

[4] Herbrich, R., Graepel, T., and Obermayer, K. 2000. Large
Margin Rank Boundaries for Ordinal Regression. Advances
in Large Margin Classifiers, 115-132, Liu Press.

[5] Hunicke, R. 2005. The case for dynamic difficulty
adjustment in games. In Proceedings of the 2005 ACM
SIGCHI international Conference on Advances in Computer
Entertainment Technology (Valencia, Spain, June 15 - 17,
2005). ACE '05, vol. 265. ACM, New York, NY, 429-433.

[6] Juul, J. 2009. Fear of Failing? The Many Meanings of
Difficulty in Video Games. The Video Game Theory Reader
2, B. Perron and M. Wolf, Ed. Routledge, London.

[7] Kazemi, D. 2008. Metrics and Dynamic Difficulty in Ritual's
SiN Episodes. OrbusGameWorks.com.
http://orbusgameworks.com/blog/article/70/metrics-and-
dynamic-difficulty-in-rituals-sin-episodes-part-1

[8] Nintendo 1985. Super Mario Bros.
[9] Nitsche, M., Ashmore, C., Hankinson, W., Fitzpatrick, R.,

Kelly, J., and Margenau, K. 2006. Designing Procedural
Game Spaces: A Case Study. In Proceedings of FuturePlay
2006. London, Ontario. October 10 – 12, 2006.

[10] Pedersen, C., Togelius, J., and Yannakakis, G. 2009.
Modeling Player Experience in Super Mario Bros.
Proceedings of the 2009 IEEE Symposium on Computational
Intelligence and Games (Politecnico di Milano, Milano,
Italy, September 07-10, 2009).

[11] Persson, M. Infinite Mario Bros.
[12] Phillips, B. 2009. Staying Power: Rethinking Feedback to

Keep Players in the Game. Gamasutra.com.
http://www.gamasutra.com/view/feature/4171/staying_power
_rethinking_feedback_.php

[13] Ritual Entertainment 1998. SiN Episodes.
[14] Smith, G., Treanor, M., Whitehead, J., Mateas, M. 2009.

Rhythm-Based Level Generation for 2D Platformers.
Proceedings of the 2009 Int'l Conference on the Foundations
of Digital Games (Orlando, FL, USA, April 26-30, 2009).

[15] Togelius, J., De Nardi, R., and Lucas, S. 2007. Towards
automatic personalised content creation for racing games.
Proceedings of the 2007 IEEE Symposium on Computational
Intelligence and Games (2007).

[16] Togelius, J., Yannakakis, G., Stanley, K., and Browne, C.
2010. Search-based Procedural Content Generation. To be
presented at Evostar (Istanbul Technical University, Istanbul,
Turkey, April 07-09, 2010).

[17] Toy, M. and Wichman, G. 1980. Rogue.
[18] Valve Software. 2008. Left 4 Dead.
[19] Yu, D. 2009. Spelunky.

	1. INTRODUCTION
	2. RELATED WORK
	2.1 Dynamic Difficulty Adjustment
	2.2 Procedural Level Generation

	3. DATA COLLECTION MECHANISM
	3.1 Tool
	3.2 Generate and Test

	4. LEARNING FEATURES
	5. CONCLUSION & FUTURE WORK
	6. REFERENCES

