
Modeling Urban Environments from Geospatial Data

A Pipeline for Procedural Modeling

Diego Jesus
Faculdade de Engenharia,

Universidade do Porto
Rua Dr. Roberto Frias s/n
4200-465 Porto, Portugal
diego.jesus@fe.up.pt

Antonio Coelho
INESC TEC / DEI, Faculdade
de Engenharia, Universidade

do Porto
Rua Dr. Roberto Frias s/n
4200-465 Porto, Portugal

acoelho@fe.up.pt
Carlos Rebelo

3Decide / Palcos da Realidade
Praca Coronel Pacheco, 2
4050-453 Porto, Portugal

carlos.rebelo@3decide.com

Andre Cardoso
3Decide / Palcos da Realidade

Praca Coronel Pacheco, 2
4050-453 Porto, Portugal

andre.cardoso@3decide.com

ABSTRACT
In game development there is often the need to generate
realistic urban environments, i.e. 3D virtual environments
that replicate existing urban areas. However, modeling such
spaces using traditional techniques is both too slow and
too expensive. A good solution is the use of procedural
modeling techniques to automate the process. However these
techniques require large amounts of geospatial data, which
are usually stored in Geographic Information Systems (GIS).

This paper presents a pipeline for the integration of both
geometric and semantic data from GIS data sources into
procedural modeling techniques used for the generation of
3D virtual urban environments. GIS data can already be used
in procedural modeling tools but these do not provide an easy
and uniform way to incorporate semantic information from
different data sources. To solve this problem, the proposed
pipeline is capable of transforming semantic and geometric
information from different sources into 3D environments that
replicate specific urban areas.

Categories and Subject Descriptors
I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Modeling packages, Geometric algo-
rithms, languages, and systems; I.3.7 [Computer Graph-
ics]: Three-Dimensional Graphics and Realism—Virtual re-
ality ; H.2.8 [Database Management]: Database Applica-
tions—Spatial databases and GIS

General Terms
Computer Graphics, Geospatial Systems

Keywords
Procedural modeling, GIS, Virtual urban environments

1. INTRODUCTION
Procedural modeling techniques can be used for the gen-
eration of virtual urban environments, reducing both the
amount of time and money that would be spent creating the
3D models populating these environments (houses, roads,
urban furniture, etc). This is an obvious advantage over
traditional modeling techniques for the game development
process. Research in this area has provided good results
in the generation of fictional urban environments. However,
there are still some issues when using these techniques for the
modeling of existing urban spaces. The main reason is that
procedural modeling techniques require a great amount of
semantic information to produce environments that resemble
closely enough the real ones. Often, the lack of information is
solved with the introduction of some randomness in the pro-
cess. This technique may, however, result in an unpredictable
set of models that may look different from reality.

City municipalities often store information about their ur-
ban space in GIS. This data can be accessed and processed
in order to recreate existing urban spaces. Since different
municipalities usually have different data models, feeding
directly this data to the procedural modeling mechanisms
leads to the need of adapting the modeling processes for each
new case. Also, when generating an urban area containing
elements belonging to distinct municipalities, we may need
to have production rules to generate similar elements from
each data source.

In order to provide a more structured solution, the proposed
pipeline first maps the original data into an Unified Model.
Since different municipalities may have distinct amounts
of information for each feature, there might be a need to
amplify some of the data. This way all elements that feed
the modeling processes are mapped to an uniform level of
associated semantic data. Only then, all the normalized data
is fed to the procedural modeling tool in order to generate



models that represent the urban area.

This paper is organized as follows: section 2 makes a brief
overview of related work and section 3 presents the pipeline
proposed, describing the Data Mapping, Data Conversion and
Amplification, and the Procedural Modeling steps. Section 4
presents an overview of the pipeline’s distributed architecture
and in section 5 we discuss the results obtained. In Section
6 we provide the conclusions and future work.

2. RELATED WORK
Procedural content generation (PCG) refers to creating game
content automatically, through algorithmic means. Proce-
dural modeling of urban environments is a subset of this
research area that focuses on generating 3D models of the
distinct elements that compose an urban environment (build-
ings, roads, urban furniture, etc). This line of research
originates from the work of Parish and Muller [9], where the
generation of the virtual urban environments were based on
L-systems. This mathematical tool, introduced in [4], was
originally designed to model the growth process of simple
multicellular organisms such as algae and fungi and that was
later adapted to model plants [8]. As such, L-Systems are
preferably used in growth processes in open spaces. Build-
ings, however, tend to have more strict spatial limitations
like a bounding volume. To solve this limitation, split and
control grammars were introduced [11] based in the concept
of shape. The former subdivides the spaces in each deriva-
tion step until terminal symbols are found, representing the
geometry, while the latter influences the choice of the rules
to apply in the derivation process. This concept was further
refined, leading to the CGA Shape Grammar (Computer
Generated Architecture) [7]. This grammar is capable of
producing extensive architectural models with high detail.
The implementation of CGA Grammar is integrated in the
CityEngine modeling tool.

A common limitation in these methods is the reduced or
nonexistence of spatial awareness, meaning that these sys-
tems are not well adapted to perform queries to an object’s
surroundings. Geospatial L-Systems [3] were introduced to
solve this limitation, as an extension of parametric L-Systems
combining the potencial of data amplification provided by
L-Systems with the spatial awareness of GIS. Procedural
modeling techniques based on formal grammars require the
development of production rules that incorporate knowledge
on the modeling process. This is a complex process for which
some visual authoring tools have been proposed [5].

Other alternatives have been proposed to enable designers to
concentrate on stating what they want to create instead of on
describing how they should model it. These approaches range
from interactive system for synthesizing urban layouts by
example [1], designing an underlying tensor field for editing
the graph representing the street network [2] and to interac-
tive procedural sketching using the framework SketchaWorld
[10].

CityEngine allows the creation of attribute layers that asso-
ciate a value to a specific position in the terrain. These values
can be associated with different production rules parameters
which in turn influence the appearance of the urban space.
With these layers the user is able to control the growth of

road networks, selections and attributes of the production
rules of the CGA grammar [7]. But the limitation of using
values in raster maps reduces the amount of semantic infor-
mation that can be used. However, this tool is also able to
import GIS files with geometry and semantic data directly,
feeding such data to the rules’ attributes. This is also the
approach followed by Geospatial L-Systems [3]. Nonethe-
less, this implies the creation of specific rules for each case,
or at least the modification of existing ones, leading to an
increased effort.

To facilitate the procedural modeling of urban spaces from
different GIS data, an Urban Ontology was introduced in [6].
Furthermore, since each municipality might have different
amounts of semantic data for the same type of urban elements,
this led to the creation of the Level of Mapping (LOM)
concept, which indicates the minimum required information
for each type of urban elements.

The work herein described provides a set of tools and pro-
cesses capable of gathering GIS data from several sources,
and efficiently generating 3D environments through the use
of procedural modeling techniques. By using GIS data main-
tained by city municipalities, it is possible to produce virtual
urban environments that closely resemble real cityscapes
using procedural modeling techniques.

3. PIPELINE FOR GEOSPATIAL DATA
To meet the research goals, we propose a pipeline capable
of generating accurate 3D environments based on GIS data
incorporating semantic attributes. This pipeline can be im-
plemented in a distributed architecture and can be easily
integrated into procedural modeling tools, provided they
have an interface that allows such integration. The modeling
tool selected as a case study was CityEngine. The pipeline
consists in the sequential execution of three processes: Data
Mapping, Data Conversion and Amplification, and Procedu-
ral Modeling. Figure 1 shows an overview of the proposed
pipeline and its several steps.

The Data Mapping stage is responsible for mapping the
original GIS data into an unified data model based on an
Urban Ontology [6]. This is a necessary step due to the
fact that different municipalities might have different data
models containing distinct sets of information. Without
this mapping, the rest of the pipeline would become very
vulnerable to such differences, leading to the need of creating
different processes for every municipality.

After the conclusion of the Data Mapping stage, the semantic
and geometric information regarding the municipality’s urban
elements is stored in the unified model. However, as stated
previously, the amount of information present in the original
data can be different for each municipality, which leads to
different LOMs [6]. A LOM is a level of modeling, i.e. a
measure of the potential of the data to achieve a specific level
of visual fidelity. To maintain the same procedural modeling
processes in the next stage of the pipeline, these should be
provided with the same amount of semantic information for
every element, i.e., a specific LOM. As such, the need to
convert and amplify existing data arises.

The final step is responsible for the procedural modeling



Municipality
A

Municipality
B

Municipality
C

Unified Model
Procedural
ModelingData Mapping Data Conversion

and Amplification

Other
Resources

Production
Rules

3D Models Game Engine

Figure 1: Overview of the proposed Pipeline

of the urban space itself and is conducted by a procedural
modeling tool such as CityEngine. This takes the geometric
and semantic data provided by previous steps and generates
three dimensional models representing the city environment.
Several procedural modeling tools could be used as long as
they provide a means of external manipulation (e.g. through
some sort of API ).

Each of these steps in the pipeline will be discussed in more
detail in the following sections.

3.1 Data Mapping
As previously mentioned, different municipalities might have
different data models. On the other hand, it is also possible
that the information contained in their Geographic Informa-
tion Systems is incomplete or in a format that makes the
Data Mapping process complex. There may also exist the
need to relate several pieces of information or geometries in
order to obtain new sets of data that are richer and more
complete. For this reason, a flexible method to work on
different scenarios is demanded.

To solve this problem, we introduce the concept of Mapping
Module. Mapping Modules are capable of accessing GIS data
sources and convert the stored data relative to a single type
of urban entities into a format compatible with the Unified
Model and store the new information in such model. They
are also responsible for providing the transformed data to
other modules depending on it. This kind of dependency
requires the modules to be executed in a specific order, where
one module can only depend on information provided by
previously executed Modules. Which modules are executed,
and in which order, is specified externally by the user, as it
is specific to each situation.

As mentioned, one module is responsible for mapping one,
and only one, type of urban elements. However, these ele-
ments aren’t always stored in the same manner, leading to
the need that different modules process the same kind of en-
tity. The set of mapping modules that execute the mapping
of the same type of entities is called a Family of Modules.
Each family provides methods that allow other Modules to
query the processed data. There are several Families in the
system, corresponding directly to the types of entities in
the Unified Model, specified in [6]. There are, for example,
Families dedicated to mapping of buildings, roads, vegetation

and other urban entities.

Consider, for example, the data relative to the city terrain.
One municipality might store such information as a cloud
of points with height data associated, while another might
store contour lines. There is clearly a need for two different
algorithms to process each format and, as such, two modules
must be implemented. Since they map the same kind of data,
they belong to the same Family of Modules, in this case the
Terrain Family. After processing the respective data, both
Modules can be queried, in the same fashion, for the height
of a specific point in the terrain.

The Family of Modules concept creates a logic separation
between different modules, since one module does not need
to know about the specific implementation of the possible
modules on which it depends. All it needs to know is what
Family it belongs to and then, call the respective methods.
The system maintains a registry of modules allowing the
search for Modules based on their family. Since it would
make little sense mapping the same kind of elements more
than once, the system only allows, at most, one module of
each Family to be executed at a given time.

The execution of a module starts with the retrieval of all
the information from the data source. Afterwards, it pro-
cesses this information, communicating with other modules
if necessary. Finally it stores the created elements in the
Unified Model. Although it is possible to process the data
while reading from the source, it may be desirable to treat
the information as a whole and infer relations between all
the urban elements. The processing phase works on both the
geometric data (e.g., building lots) and the semantic data,
and creates new entities with an axiom – which will be fed to
the procedural modeling on a following stage – and a set of
attributes. However, in simple cases where a complex algo-
rithmic component is not needed, the mapping module can
be externally configured to create new attributes based on
one of two actions: Copy and Set. The former, simply copies
some data from the original data source to a new attribute,
while the latter sets a new attribute with a specified value.

Sometimes, municipalities may store data that may prove to
be uninteresting, such as information about buildings that
are not yet built. If this data was allowed to be mapped
into the Unified Model, it could lead to unexpected results



like overlapping buildings or other incorrect urban elements.
As such, mapping modules can be configured with filters to
remove those elements from the process.

The mapping modules can also be configured by means of a
XML file, allowing that an arbitrary number of parameters
to be passed to the specific algorithms and filters. This way,
even if there is a need to develop new modules for different
situations, if the algorithms are general enough and can
be configured through the XML file, in the long term we
expect to gather a collection of modules for the most common
scenarios.

By the end of the Data Mapping stage, the Unified Model
contains all the new urban elements needed to correctly
model the urban environment. Each of these elements will
be in a specific LOM, based on the amount of information
that could be extracted from the GIS data source.

3.2 Data Conversion and Amplification
To facilitate the procedural modeling processes, these expect
to be fed with the same amount of information for a given
type of urban element. In other words, they expect the same
LOM for all elements of a given type. However, as has seen
before, these may be stored in the Unified Model with an
arbitrary Level of Mapping. Thus, a mechanism to convert
entities between different LOMs is required and, as such, the
concept of LOM Converter is introduced.

LOM Converters are responsible for converting data between
different levels of information, guaranteeing that the entities
affected are output with a specific Level of Mapping. This
is, they ensure the entities will have at least the minimum
semantic information required by the given LOM. Figure 2
shows a possible building modeled in LOM 1 and the same
building after the LOM Converter was applied. LOM 1 only
contains information regarding the building’s volume while
LOM4 contains information that is much more complete.

Conversor LOM
Buildings

LOM1 --> LOM4

Mapeamento de fontes de dados diversas para a ontologia urbana

Figura 5.1: Diferentes níveis de mapeamento para uma entidade Building

de mapeamento distintos, e é mapeada para o modelo de dados Building. A figura 5.1
ilustra os diferentes níveis de mapeamento para esta entidade.

O nível de mapeamento LOM refere-se à informação mínima que uma entidade Buil-
ding deve possuir. Sendo assim, entende-se como LOM0 um Building que possui apenas
a informação geométrica da sua base. Por sua vez, o LOM1 inclui, para além da base
geométrica, a informação da altura do Building. Através destas duas informações é possí-
vel realizar a extrusão do Building, permitindo obter a representação da entidade através
de um modelo de blocos. O LOM2 contém a informação semântica das fachadas que,
por sua vez, são constituídas por objectos do tipo Opening, tais como janelas ou por-
tas. A este nível, também é possível representar a informação dos telhados. O LOM3
distingue-se do LOM2, na medida em que a informação se encontra dividida por andares
e não pelas suas fachadas. Isto significa que uma entidade Building mapeada em LOM3
se encontra dividida por andares, onde cada andar tem as suas próprias fachadas. Deste
modo, cada andar constituinte de um Building possui as suas próprias propriedades, como
por exemplo, uma aparência única, permitindo uma maior caracterização do edifício. Fi-
nalmente, o LOM4 compreende a informação completa de uma entidade Building e vai
mais ao pormenor. Este nível de mapeamento inclui a informação sobre os componentes
característicos de um edifício, tais como chaminés, caleiras, entre outros. Um nível de
mapeamento seguinte poderia incluir a informação semântica dos interiores do Building,
isto é, a informação sobre as divisões internas de um edifício. Essa informação poderia
ser, por exemplo, o número de divisões de um andar, como essas divisões se encontram
distribuídas e que mobiliário contém cada divisão.

Na figura 5.2 é possível visualizar a árvore hierárquica para um mapeamento de nível
dois (LOM2). O Building é composto por quatro fachadas. Cada fachada é representada,
em termos semânticos, pela classe WallSurface. A fachada pode ter objectos do tipo Ope-
ning, tais como janelas e/ou portas. Na ilustração, a fachada frontal do edifício possui
uma porta e doze janelas. Neste tipo de mapeamento, é possível saber a que fachada um

48

Mapeamento de fontes de dados diversas para a ontologia urbana

Figura 5.1: Diferentes níveis de mapeamento para uma entidade Building

de mapeamento distintos, e é mapeada para o modelo de dados Building. A figura 5.1
ilustra os diferentes níveis de mapeamento para esta entidade.

O nível de mapeamento LOM refere-se à informação mínima que uma entidade Buil-
ding deve possuir. Sendo assim, entende-se como LOM0 um Building que possui apenas
a informação geométrica da sua base. Por sua vez, o LOM1 inclui, para além da base
geométrica, a informação da altura do Building. Através destas duas informações é possí-
vel realizar a extrusão do Building, permitindo obter a representação da entidade através
de um modelo de blocos. O LOM2 contém a informação semântica das fachadas que,
por sua vez, são constituídas por objectos do tipo Opening, tais como janelas ou por-
tas. A este nível, também é possível representar a informação dos telhados. O LOM3
distingue-se do LOM2, na medida em que a informação se encontra dividida por andares
e não pelas suas fachadas. Isto significa que uma entidade Building mapeada em LOM3
se encontra dividida por andares, onde cada andar tem as suas próprias fachadas. Deste
modo, cada andar constituinte de um Building possui as suas próprias propriedades, como
por exemplo, uma aparência única, permitindo uma maior caracterização do edifício. Fi-
nalmente, o LOM4 compreende a informação completa de uma entidade Building e vai
mais ao pormenor. Este nível de mapeamento inclui a informação sobre os componentes
característicos de um edifício, tais como chaminés, caleiras, entre outros. Um nível de
mapeamento seguinte poderia incluir a informação semântica dos interiores do Building,
isto é, a informação sobre as divisões internas de um edifício. Essa informação poderia
ser, por exemplo, o número de divisões de um andar, como essas divisões se encontram
distribuídas e que mobiliário contém cada divisão.

Na figura 5.2 é possível visualizar a árvore hierárquica para um mapeamento de nível
dois (LOM2). O Building é composto por quatro fachadas. Cada fachada é representada,
em termos semânticos, pela classe WallSurface. A fachada pode ter objectos do tipo Ope-
ning, tais como janelas e/ou portas. Na ilustração, a fachada frontal do edifício possui
uma porta e doze janelas. Neste tipo de mapeamento, é possível saber a que fachada um

48

Figure 2: Building LOM 1 to LOM 4 Converter

Given that the definition of Level of Mapping [6] does not
impose a maximum level of information for a given LOM, the
conversion from higher LOMs to lower ones does not make
sense. However converting from lower LOMs to higher ones
requires the amplification of the existing information. This
can be achieved through the introduction of randomness in
this process, or with the use of heuristics.

Imagine the case where the production rules for buildings
need information regarding roof types but there is no such
information stored in the Unified Model. We can associate a

random roof type to every building. However, this may lead
to small houses with flat roofs or sky scrapers with gabble
roofs. Although it is possible, it may seem unfamiliar. A
better approach would be to define an heuristic and take into
account the building height.

On the other hand, it might be necessary to create new
production rules (e.g., because there is a need for a specific
architecture) which may expect to be fed with more infor-
mation. It is also possible that some attributes don’t belong
to any Level of Mapping. To accommodate for these sce-
narios, this stage in the pipeline can be configured through
a XML file specifying how new attributes can be created.
This file allows to specify random values for the attributes,
copy them from those present in the Unified Model and re-
late the existing information to infer new data through the
use of Data Amplification Operators which resemble those
of a programming language, including relational operators,
if-then-else statements and a domain specific operator which
allows to specify a building’s facade. This last one works by
allowing the user to indicate the number of existing openings
(windows and doors) in every floor and side of the building.

This way, the user can specify new data amplification mech-
anisms for specific cases. However, this file cannot alter the
attributes created by the LOM Converters. In the same fash-
ion, this file can also specify the file containing the production
rules to model an element. This is particularly important
when modeling monuments for instance.

This stage of the pipeline also takes the responsibility of ma-
nipulating CityEngine, turning it into a tool of the pipeline
thus reducing human interaction. In other words, this step
will control what operations CityEngine will execute with
the information it is consuming. Among these operations we
can name, for example, the creation of a shape or a street
segment, geometry generation, or the terrain alignment to a
set of shapes. These were called CityEngine Manipulation
Operators. However, different cases may need different oper-
ations to take place, in order to correctly generate the urban
environment. As such, these operations and their execution
sequence can be configured externally using a file.

3.3 Modeling Processes
The last stage in the proposed pipeline is the execution
of the procedural techniques which will generate the three
dimensional models representing the urban space. These
processes are fed with information from the previous steps.
Normally this information consists of a geometric axiom (the
shape) and a set of semantic attributes, but can also be a
terrain or an attribute map. An example of the latter is the
municipality’s land use map which can control the types of
buildings.

To create the three dimensional models representing the
space, the procedural techniques are controlled by a set of
CGA rule files, one for each type of urban elements. These,
as mentioned before, expect a set of attributes to be passed
from the earlier stages of the pipeline.

Often it is desirable to control the Level of Detail (LOD)
of the produced geometries, either for efficiency reasons or
to speed up the modeling process. As such, the production



rules provide an attribute to control the LOD. Also, several
levels were defined for each of the types of urban elements.

As seen before, it is possible to define the file responsible
for modeling an element. However, this can lead to CGA
code being duplicated among files. Imagine, for example,
that a city’s characteristic building is being modeled and,
therefore, needs a different rule file. Even though it may be
quite different from other buildings, it may contain similar
elements such as windows, doors or arcs, given they share
the same architectural style. These elements could have the
same code but are duplicated in both files. To prevent this,
a library for each type of element capable of being reused
was created. These libraries are simply CGA files which
have a rule that takes at least two parameters: the style
and the Level of Detail. The former can be the architectural
style in the case of building elements, or can be a type of
urban furniture for example. The latter indicates the Level
of Detail specified in the current element.

4. ARCHITECTURE
As mentioned before, the proposed pipeline can be imple-
mented in a distributed architecture, where each of the dis-
cussed steps can take place in a different computer. Figure 3
illustrates this architecture.

S
IG

 D
ata

PostGis

WFS

S
erver

MappingEngine

W
W

W

Unified Model

Configuration

Modules

XML

Module X

XML

DBConf

XML

Admin

W
orkstation 1

CEManipulator

WWW

W
orkstation 2

C
ityE

ngine

CEInterface

Admin

WWW

Configuration

Production
Rules

CGA

Python
Scripts

PY

Resources

Configuration

Properties

XML

Operations

XML

Conf

XML

Figure 3: Pipeline Architecture

Here, the information flows through all the components
from the municipality’s servers where GIS data is stored, to

CityEngine where the transformed data is converted into
three dimensional models reenacting the city’s urban space.
The Data Mapping stage is conducted by the application
named MappingEngine. This is responsible for the sequential
execution of the Mapping Modules which can connect to WFS
and PostGis databases. Then, they transform the original
data into an Unified Model compatible format. Afterwards,
the transformed data is stored in the Unified Model.

To configure this step, the application relies on a set of
XML files. The file Modules.xml contains information about
which Modules to use and in which order should they be
executed. It also specifies an extra configuration file for each
Mapping Module. This is represented by the file Module
X.xml. These files contain the connection parameters the
Module needs to access the original data source, an arbitrary
number of additional parameters to configure the specific
algorithm, filters to remove unwanted data and information
about how to map simple data. The file DBConf.xml contains
connection parameters to access the Unified Model database.

On a different host machine, the application CEManipulator
is responsible for the Data Conversion and Amplification step.
This application establishes a bridge between the Unified
Model, CityEngine and the procedural modeling processes.
Here is where LOM Converters are applied to every element
retrieved from the Unified Model, effectively amplifying the
existing data. It is also possible to generate more attributes,
other than those specified in the different Levels of Mapping,
by applying the Data Amplification Operators. These are
stored in the file Properties.xml. To control the procedural
modeling processes that take place in CityEngine, this ap-
plication counts with CityEngine Manipulation Operators
defined in the file Operations.xml. The file Conf.xml contains
connection parameters to access both the Unified Model and
the plugin CEInterface, described next.

To allow the external manipulation of CityEngine, a plugin
was developed using the Python scripting interface. This
plugin implements a server that receives the operations from
CEManipulator and executes the actions. Because it is a
server, it allows the CityEngine to be a tool for the pipeline,
thus reducing the need for human interaction. This way,
it is possible to remotely execute the procedural modeling
processes and retrieve the generated models without physical
access to the computer running CityEngine.

5. RESULTS
In this section we present the results obtained using the pro-
posed pipeline to model the urban space of the municipality
of Santa Maria da Feira, in Portugal. We also present screen-
shot images displaying the models generated being used in
the Unity 3D game engine in an interactive application.

5.1 Efficiency
It is possible that urban environments may have thousands
of elements that one may wish to model. For this reason,
if care is not taken, the pipeline’s execution may take a lot
of time to produce results. As such, it is important to have
some kind of metric regarding the time spent by the pipeline
to generate urban environments, measuring the individual
times for each step.



Table 1 shows the times relative to the Data Mapping stage.
This table shows information regarding the mapping of build-
ings, roads and the whole city. Here, No Read indicates
the number of elements read from the original data source,
No Written indicates the number of elements written to the
Unified Model and Time represents the time spent on this
process. We can see that the number of read items and the
written items isn’t the same for each type of entities. This
is caused by the automatic removal (using filters) of non
interesting data.

Table 1: Times relative to the Data Mapping.
Type No Read No Written Time

Buildings 1822 1640 116.8s
Roads 282 228 178.58s

Whole City 14631 9899 359.4s

These values depend a lot on the format of the original data
and the algorithms involved in processing of such data. From
this point on, the rest of the pipeline is not significantly
affected by this format.

In Table 2 the times for the Data Conversion and Amplifica-
tion are shown. As in the previous table, this one presents
information for buildings, roads and the entire city. No Read
represents the number of elements read from the Unified
Model, Imported indicates the number of CityEngine ele-
ments (Shapes and Graph Segments) created, and Time
represents the time spent on this process for each type of
entity. The number of roads imported differs from the num-
ber of roads retrieved form the Unified Model because of the
different representations of this type of data. The Unified
Model treats roads as one Polyline element, while CityEngine
treats them as a set of graph edges and nodes.

Table 2: Times for Data Conversion and Amplifica-
tion.

Type No Read Imported Time
Buildings 1640 1640 24.2s

Roads 228 4972 395s
Whole City 9035 10941 1221s

Table 3 contains information about the time spent by
CityEngine modeling buildings, roads and the whole city.
No Elements indicates the number of elements to be modeled
by CityEngine, No Polygons indicates the total number of
polygons generated and Time indicates the time spent in the
procedural modeling.

Table 3: Times for procedural modeling.
Type No Elements No Polygons Time

Buildings 1640 182574 76.1s
Roads 4972 5352 1.9s

Whole City 10941 4847969 165.4s

Summing the times spent on all three steps for the entire city
it is possible to conclude that the whole process takes around
thirty minutes to complete for a city of 14631 elements. This
is an average of 0.16 seconds per city element.

5.2 Procedural Modeling
The primary goal of this pipeline is to procedurally generate
three dimensional models that resemble an existing urban
space. As such, it is necessary to analyze these processes
regarding the level of detail, visual fidelity and geospatial
contextualization.

Figure 5: House modeled with CityEngine

To achieve a certain level of visual quality, it is important
that procedural generation tools are capable of creating
elements with an adequate level of detail. In Figure 5 we
present a building modeled with CityEngine. The model
in the Figure, represents a house with detailed windows
and doors. Also, CityEngine is capable of incorporating
previously modeled elements into its models allowing the
combination of procedural techniques with traditional ones,
increasing the level of detail provided by this tool.

Figure 6: Same house with different openings.

Visual fidelity is a very important factor in the representation
of existing urban environments. It also plays a critical role
by allowing users to recognize the environments. The correct
positioning and spatial relation between elements and their
height and shape contributes a lot to establish some relation
with the real spaces. In the case of buildings, the production
rules created allow some control over the aspect of their
facades, by allowing the number of openings (doors and
windows) to be specified for each floor in every facade, by
changing an attribute. Figure 6 shows the same building
with different openings by floor and wall. In this image it is
possible to see that, on the left, all facades and floors have
three openings, while on the right the same house has two
windows on the top floor of the front side, and one door
and two windows on the first floor. Moreover, the right one
looks more realistic and has a better visual appearance. By
allowing such control, it is possible to model certain buildings
to look more like their real counterparts.



Figure 4: Interactive application in Unity 3D Game Engine.

Geospatial awareness allows to create relations between dif-
ferent elements in an urban space, allowing to infer new
properties from the surrounding elements. To this date,
however, CityEngine only provides means of verifying if an
element intersects another one and to check if the side of a
building is oriented towards a street. In the latter case, this
spatial awareness is only automatically possible when it is
CityEngine itself creating the building lots. In other cases,
however, it is possible to use Python scripts to define which
are the sides nearest to a street. For more complicated cases,
where a more complex algorithmic component is needed, it
is preferable to use mapping modules to solve geospatial
awareness problems.

5.3 Interactive Application
As a proof of concept, we have developed an interactive
application using Unity 3D Game Engine, allowing the user
to freely navigate the generated urban virtual environment.
This Game Engine was chosen for its capability to operate on
large terrains. Also, it is quite easy to integrate the generated
models and terrain with Unity. However, some terrain areas
might require minor modifications, as it is possible that it
is not leveled with the remaining models. It’s fairly easy to
detect these situations as the models may appear partially
buried in the ground or floating above it. Figure 4 presents
some screenshots obtained in Unity 3D.

6. CONCLUSIONS AND FUTURE WORK
In this paper we propose a three stage pipeline for the pro-
cedural modeling of real urban environments, based on in-
formation stored in Geographic Information Systems. Such

pipeline aims to create a bridge between GIS maintained
by municipalities and procedural modeling techniques, har-
vesting the power of both technologies. On one hand, GIS
provide information that can be fed into procedural model-
ing, allowing to generate virtual urban environments with an
higher level of visual fidelity, as can be seen in figures 7 and
8 from different case studies on the cities of Nantes (France)
and Porto (Portugal). On the other hand, procedural tech-
niques can accelerate the modeling of such areas, since they
require less human interaction while also reducing the costs
associated with such a task.

Distinct data models are mapped into an Unified Urban
Model according to a discrete number Levels of Mapping.
Therefore it is possible to generate virtual environments of
distinct municipalities with the same modeling processes,
just by adjusting the mapping of semantic information at the
first stage of the pipeline. Even if we have data from different
data sources classified in distinct LOM, we can amplify these
data into an unique resulting LOM on the second stage of
this pipeline. Therefore reusability is promoted for distinct
GIS data models or the integration of distinct data sources
into an unified virtual urban environment.

The Mapping Modules were developed specifically for this
case study and, as such, there is a need for more generic and
configurable modules. In the same way, the development of
LOM Converters for all entities and mapping levels is also
required. Due to the large amount of configuration required,
the development of a graphical user interface for that purpose
would be interesting. Further research on metadata will
provide the automation of the mapping process.



Acknowledgements
This work is partially supported by the Portuguese gov-
ernment, through the National Foundation for Science and
Technology - FCT (Fundação para a Ciência e a Tecnologia)
and the European Union (COMPETE, QREN and FEDER)
through the project PTDC/EIA-EIA/108982/2008 entitled
”3DWikiU - 3D Wiki for Urban Environments”.

7. REFERENCES
[1] D. G. Aliaga, C. A. Vanegas, and B. Benes. Interactive

example-based urban layout synthesis. ACM Trans.
Graph., 27(5):160, 2008.

[2] G. Chen, G. Esch, P. Wonka, P. Müller, and E. Zhang.
Interactive procedural street modeling. In ACM
SIGGRAPH 2008 papers, SIGGRAPH ’08, pages
103:1–103:10, New York, NY, USA, 2008.

[3] A. Coelho, M. Bessa, A. A. Sousa, and F. N. Ferreira.
Expeditious modelling of virtual urban environments
with geospatial l-systems. Computer Graphics Forum,
26(4):769–782, 2007.

[4] A. Lindenmayer. Mathematical models for cellular
interaction in development: Parts i and ii. Journal of
Theoretical Biology, 18, 1968.

[5] M. Lipp, P. Wonka, and M. Wimmer. Interactive visual
editing of grammars for procedural architecture. ACM
Trans. Graph., 27:102:1–102:10, August 2008.

[6] T. Martins, P. B. Silva, A. Coelho, and A. A. Sousa.
An urban ontology to generate collaborative virtual
environments for municipal planning and management.
In Proceedings of GRAPP 2012 – 7th International
Conference in Computer Graphics Theory and
Applications, pages 507–510, 2012.

[7] P. Müller, P. Wonka, S. Haegler, A. Ulmer, and
L. Van Gool. Procedural modeling of buildings. ACM
Trans. Graph., 25:614–623, July 2006.

[8] R. Měch and P. Prusinkiewicz. Visual models of plants
interacting with their environment. In Proceedings of
the 23rd annual conference on Computer graphics and
interactive techniques, SIGGRAPH ’96, pages 397–410,
New York, NY, USA, 1996. ACM.

[9] Y. I. H. Parish and P. Müller. Procedural modeling of
cities. In Proceedings of the 28th annual conference on
Computer graphics and interactive techniques,
SIGGRAPH ’01, pages 301–308, New York, NY, USA,
2001. ACM.

[10] T. Tutenel, R. M. Smelik, R. Lopes, K. J. de Kraker,
and R. Bidarra. Generating consistent buildings: A
semantic approach for integrating procedural
techniques. IEEE Trans. Comput. Intellig. and AI in
Games, 3(3):274–288, 2011.

[11] P. Wonka, M. Wimmer, F. Sillion, and W. Ribarsky.
Instant architecture. In ACM SIGGRAPH 2003 Papers,
SIGGRAPH ’03, pages 669–677, New York, NY, USA,
2003. ACM.

Figure 7: Landscape from the city of Nantes.

Figure 8: Detailed building from the city of Porto.


