
Cellular automata for real-time generation
of infinite cave levels

Lawrence Johnson
IT University of Copenhagen

Rued Langgaards Vej 7
Copenhagen, Denmark

lkj@itu.dk

Georgios N. Yannakakis
IT University of Copenhagen

Rued Langgaards Vej 7
Copenhagen, Denmark
yannakakis@itu.dk

Julian Togelius
IT University of Copenhagen

Rued Langgaards Vej 7
Copenhagen, Denmark

juto@itu.dk

ABSTRACT
This paper presents a reliable and efficient approach to pro-
cedurally generating level maps based on the self-organization
capabilities of cellular automata (CA). A simple CA-based
algorithm is evaluated on an infinite cave game, generating
playable and well-designed tunnel-based maps. The algo-
rithm has very low computational cost, permitting realtime
content generation, and the proposed map representation
provides sufficient flexibility with respect to level design.

Categories and Subject Descriptors
I.2.1 [Artificial Intelligence]: Applications and Expert
Systems—Games; H.1.2 [Models and Principles]: User
— Machine Systems—Human factors

1. INTRODUCTION
Maps are vital components of level design for many types

of games (e.g. first-person shooters, real-time strategy games
and flight simulators) and their careful design (manual or
procedural) contributes vastly to player experience. There
are several reasons for why procedural generation of maps
is important for game development. First, having an in-
exhaustible source of new maps means that levels become
less predictable, which contributes to the players’ curiosity
[7] and the game’s life-span. Second, for some games (e.g
roguelikes) the core mechanic of the game design requires
the realtime generation of maps; this paper considers an
infinite cave map system. Third, given that content is rep-
resented in an efficient manner and the procedural content
generation (PCG) algorithm is parametrizable in the right
ways, maps can be adjusted to match player needs and abil-
ities identified via the player’s behavior during gameplay.
Finally, PCG can be used as an assisting authoring tool for
complementing human creativity and level design expertise
existent within commercial game development.

This paper considers presents an efficient real-time PCG
approach for generating infinite maps consisting of cave tun-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PCGames 2010, June 18, Monterey, CA, USA
Copyright 2010 ACM 978-1-4503-0023-0/10/06 ...$10.00.

nels. The motivation for this algorithm is that the core me-
chanic for the test-bed game requires infinite map genera-
tion. The PCG approach proposed utilizes cellular automata
(CA). Cellular automata self-organize and determine the ex-
istence of floors and rocks in the cave map and offer a simple,
yet efficient and reliable solution to real-time cave-map gen-
eration.

2. BACKGROUND
This section reviews previous research on procedural map

generation and on using cellular automata for proecdural
content generation.

2.1 Procedural Map Generation
Fractals [4, 8] such as mid-point displacement algorithms

[2] are in common use for realtime map generation. Their
main advantages are that it’s easy to generate believable
maps using such algorithms, and that they are typically very
computationally efficient. However, an important limitation
of such approaches is their highly indirect representation;
for many such representations, the only “parameter” is a
random generator seed, and very small changes in this seed
will lead to a completely different map. This is an issue as it
is often desirable for the PCG algorithm to be controllable or
meaningfully parametrizable, meaning that certain aspects
of how the generated map should look (e.g. size, frequency
and distribution of various) features be specifiable by the
designer.

The roguelike genre of games (the original Rogue game as
well as countless successors, such as Nethack, Moria and Di-
ablo) are based completely on random map generation. The
map generation algorithms typically work either similarly to
the fractal terrain generation approaches above or by glueing
together a number of prefabricated segments [1].

Another, more controllable approach is to use software
agents. Doran and Parberry [3] describe an authoring tool
that generates terrain elevation heightmaps based on designer-
defined constraints, and letting loose large numbers of terrain-
forming agents of different types in different phases.

Search-based procedural content generation (SBPCG) is
a paradigm which offers very high controllability, and the
ability to generate particular forms of content which could
not be generate otherwise, at the expense of computation
time [12]. Among the few studies on search-based genera-
tion of maps, Frade et al [6] generate maps ensuring that
terrains have enough accessible area for the players using
genetic programming. Similarly, Sorenson and Pasquier [9]
use a stochastic constraint optimization algorithm (feasible-

infeasible 2-population genetic algorithm) for maximizing
the lengths of paths from start to finish in 2D maps. How-
ever, both the above search-based PCG approaches run of-
fline opposed to the realtime CA approach presented here.

2.2 Cellular automata for PCG
Cellular automata have been used extensively in games for

modeling environmental systems like heat and fire, rain and
fluid flow, pressure and explosions [5, 11] and in combination
with influence maps for agent decision making [10]. More-
over, in [8] CA are used for thermal and hydraulic erosion
in procedural terrain generation

To the best of the authors’ knowledge there is no study
reporting the use of CA for generating complete 2D ter-
rains. There are a few webpages that propose the use of CA
on small single grids providing no reliable evaluation of the
algorithm. This paper provides a CA-based algorithm for
the procedural generation of multiple interconnected grids
which can be combined to the effect of infinite cave maps.

3. CA-PCG APPROACH
The proposed CA-PCG mechanism starts with a square

grid — a 50 × 50 cell grid is used in the test-bed game exam-
ined. This initial grid will be referred to as the central base
grid. Then four adjacent grids are built to the north, south,
east and west of the central base grid. Advanced versions
of the algorithm could consider the northeast, northwest,
southeast, and southwest adjacent grids. Each cell within
the grid contains information about the cell’s location in
the base grid, the state of its neighbor cells represented by
an aggregated neighborhood value, the type of the cell (floor,
wall or rock), and the cell’s group number. The neighbor-
hood value is calculated as the sum of rock cells available
within the neighborhood.

The central base grid is initialized with floor cells. The
algorithm then uses uniformly distributed random numbers
to convert r% of the cells from floor to rock state — r equals
50% in the experiments presented in this paper. Iterated cel-
lular automata are then applied to the generated grid, exam-
ining the relationships between the floor and the rock cells
generated. The state of the neighborhood cells of each cell
is examined. In this paper, the eight neighbor cells of each
cell are considered at each iteration of the algorithm and de-
fine its neighborhood (i.e. we use the Moore neighborhood).
The single rule embedded in the cellular automata charac-
terizes the cell as rock if the neighborhood value is greater
than or equal to T and as floor if otherwise; T equals 5 in
this paper.

The iterative CA algorithm runs for a number of times,
n. This parameter has an impact on the average width of
the caves generated; on average, the higher n the wider the
cave (more floor, less rock).

3.1 Content Representation
Given the specifics of the CA algorithm, content is repre-

sented as four parameters a designer (or a machine) could
vary to generate a significant number of dissimilar cave lev-
els. The parameters considered are summarized as follows:

• r: initial percentage of rock cells.

• n: CA iterations.

• T : neighborhood value threshold that defines a rock.

• M : Moore neighborhood size.

In order to completely specify the set of parameters that
uniquely define a given level, the random seed for the gen-
eration of initial cell distribution can be considered an addi-
tional parameter; given the same random seed and the same
values of r, n, T and M , the same cave can be regenerated.

3.2 Wall Cells
The wall cells need to be defined after the completion of

the CA algorithm. Walls are designated rock cells which
have at least one neighboring floor cell. After wall cells
are determined non-connecting floor areas are assigned a
number.

3.3 Adjacent Base Grids
Once the initial base grid is generated the same procedure

is followed for generating its four adjacent base grids. The
random seed is stored into a data structure which contains
all the data for regenerating the cave terrain in case the
player returns to the same base grid. A typical data struc-
ture contains the seed for a given base grid and pointers to
the base grid data structures for all neighboring base grids.

The final step is to evaluate if the cave is acceptable, and if
possible, generate a smooth route between tunnels. For this
purpose the center (initial) base grid and its four adjacent
base grids are checked for continuity. If there are no connec-
tions between two adjacent grids, the algorithm picks the
two floor cells closest to the border and generates a tunnel
of a predefined width between them.

Subsequently, an additional n CA iterations (n equals 2 in
the experiments presented here) are run on the whole 5-base
grid together in order to eliminate inconsistencies between
base grids and smooth-out the generated tunnels. Each time
a new base grid is generated it is interconnected to its adja-
cent grid by running two more iterations of the CA algorithm
on the new and its adjacent base grid.

4. CAVE CRAWLER
The game embedding the procedurally generated cave map

is named Cave Crawler. Cave Crawler ’s game mechanics are
inspired by the games Penn & Teller’s Smoke and Mirrors,
Diablo, and Castle Crashers. Cave Crawler is a four player,
co-op, game. The game world is displayed in the same man-
ner as in Diablo (bird-eye view), yet all four players play
on the same screen like Castle Crashers. Cave Crawler is
an abusive game in that players are led to believe that they
are progressing towards the end of the game, while there
is in fact no end to the cave tunnels. In order to achieve
this effect reliably, the game must procedurally generate all
the maps as well as the enemies the players have to face.
Games like Left for Dead have shown that players value the
game when playing against an intelligent entity that spawns
enemies at periodic intervals.

5. PERFORMANCE MEASURE
To test the efficiency of the CA approach we designed a

performance measure as follows. Given that the operation
occurs in realtime, computational effort via CPU time de-
fines a meaningful heuristic of performance. The computa-
tional cost of CA operations on a Moore neighborhood is on
the order of (2M + 1)2 where M is the Moore neighborhood

(a) Random map (b) CA map

Figure 1: Comparison between a CA and a ran-
domly generated map (r = 0.5 in both maps); CA
parameters: n = 4, M = 1, T = 5. Rock and wall cells
are represented by red and white color respectively.
Colored areas represent different tunnels (floor clus-
ters).

size. Given that the operation is performed on all the cells
of the grid the computational effort equals n(wh(2M + 1)2),
where w and h are the width and height of the grid, respec-
tively and n is the number of CA iterations.

All experiments presented in this paper were run on a lap-
top with Windows 7, Intel Pentium M processor 1.73 GHz,
1.50 GB ram. The game and algorithms are implemented in
C# using the XNA framework. While CPU time fits our re-
quirements at this stage, other performance measures could
be considered in future studies including the likeliness of the
generated tunnels which could be expressed as a level of wall
roughness/smoothness.

Random cave maps are generated in 1.4·10−4 milliseconds
(average value out of 10 runs) while the CA-based algorithm
generates the map in 4.1 ·10−1 milliseconds on average mak-
ing both very efficient for realtime PCG.

6. EVALUATION
Figure 1 shows a randomly generated level (equivalent to

the base step of the CA-based algorithm) next to a level
generated the CA-based algorithm. It is apparent that CA
generate playable, good-looking maps at a very low compu-
tational cost, whereas purely random generation does not.
Such an outcome provides the first indication of the effi-
ciency and appropriateness of the algorithm for real-time
map generation.

Figure 2 depicts different runs of the CA algorithm with
respect to the number of iterations (n), Moore distance sizes
(M) and neighborhood value threshold (T) that defines a
rock. It can be seen that the algorithm converges quickly
to cave-like layouts, the smoothness of which can be varied
via the M parameter. The T parameter can have a great
impact on the initial (n = 1) ratio of rock over floor cells
and it is up to the designer to adjust accordingly.

Figure 3 depicts a 3×3 map generated with the proposed
algorithm. This map was built in only 349 ms indicating the
appropriateness of the CA algorithm for realtime PCG. It
is also clear that well-shaped and smooth tunnels are gen-
erated very quickly using the CA base-grid interconnection
algorithm described in section 3.3.

7. DISCUSSION AND CONCLUSION

Figure 3: A 3× 3 base grid map generated with CA.
Rock and wall cells are represented by red and white
color respectively. Grey areas represent floor. (M =
2;T = 13;n = 4; r = 50%)

This paper presents a self-organization approach, via iter-
ative cellular automata, for generating infinite 2D cave-maps
in realtime. Evaluation of the algorithm in the Cave Crawler
game level editor shows the computational efficiency of the
approach in generating playable tunnels and the variation a
level designer has access to by adjusting content parameters.

The main reason for using 2D grids instead of 3D cubes
to generate the cave map of the game is that it is easier
the keep the floor level this way, which makes connectivity
testing much more tractable. The obvious next step is to
generate 3D maps based on the 2D cave terrains created
by the algorithm proposed here. In order to create a 3D
world, one can project the tunnels generated along the y
axis. Mid-point displacement algorithms such as diamond
square or scatter noise could be then used to generate the
walls of the tunnels. Alternatively, a designer could investi-
gate the efficiency of 3D cellular automata for creating 3D
maps directly, relying on cubic Moore neighborhoods.

8. REFERENCES
[1] T. Adams. Re: Optimization-based versus

“constructive” pcg (post to the “procedural content
generation” google group).

[2] F. Belhadj. Terrain modeling: a constrained fractal
model. In 5th International conference on CG, virtual
reality, visualisation and interaction in Africa, pages
197–204. ACM, 2007.

[3] J. Doran and I. Parberry. Controlled Procedural
Terrain Generation Using Software Agents. IEEE
Transactions on Computational Intelligence and AI in
Games, 2010. to appear.

[4] D. Ebert, K. Musgrave, D. Peachey, K. Perlin, and
S. Worley. Texturing and Modeling: A Procedural
Approach. Morgan Kaufmann, 3rd edition edition,
2003.

[5] T. Forsyth. Game Programming Gems 3, chapter
Cellular Automata for Physical Modelling. Charles
River Media, Inc., 2002.

[6] M. Frade, F. F. de Vega, and C. Cotta. Evolution of
artificial terrains for video games based on

(a) n = 1, M = 1, T = 5 (b) n = 2, M = 1, T = 5 (c) n = 3, M = 1, T = 5 (d) n = 4, M = 1, T = 5

(e) n = 1, M = 2, T = 13 (f) n = 2, M = 2, T = 13 (g) n = 3, M = 2, T = 13 (h) n = 4, M = 2, T = 13

(i) n = 1, M = 1, T = 2 (j) n = 1, M = 1, T = 4 (k) n = 1, M = 1, T = 6 (l) n = 1, M = 1, T = 8

Figure 2: Map evolution over CA iterations (n), Moore distances (M) and rock threshold values (T). The
initial percentage of rock cells is 50% in all figures.

accessibility. In Proceedings of EvoApplications 2010,
volume 6024, LNCS, pages 90–99, Istanbul, 2010.
Springer.

[7] T. W. Malone. What makes computer games fun?
Byte, 6:258–277, 1981.

[8] J. Olsen. Realtime procedural terrain generation.
Technical report, Oddlabs, 2004.

[9] N. Sorenson and P. Pasquier. Towards a generic
framework for automated video game level creation. In
Proceedings of EvoApplications 2010, volume 6024,
LNCS, pages 130–139, Istanbul, 2010. Springer.

[10] P. Sweetser and J. Wiles. Combining influence maps
and cellular automata for reactive game agents. In
Intelligent Data Engineering and Automated Learning
— IDEAL 2005, volume LNCS 3578, pages 524–531.
Springer Berlin / Heidelberg, 2005.

[11] P. Sweetser and J. Wiles. Scripting versus emergence:
issues for game developers and players in game
environment design. International Journal of

Intelligent Games and Simulations, 4(1):1–9, 2005.

[12] J. Togelius, G. N. Yannakakis, K. O. Stanley, and
C. Browne. Search-based procedural content
generation. In Proceedings of EvoApplications 2010,
volume 6024, LNCS, pages 140–149, Istanbul, 2010.
Springer.

