
Learning the Pa�erns of Balance in a Multi-Player Shooter Game
Daniel Karavolos

Institute of Digital Games
University of Malta

Msida, Malta
daniel.karavolos@um.edu.mt

Antonios Liapis
Institute of Digital Games

University of Malta
Msida, Malta

antonios.liapis@um.edu.mt

Georgios Yannakakis
Institute of Digital Games

University of Malta
Msida, Malta

georgios.yannakakis@um.edu.mt

ABSTRACT
A particular challenge of the game design process is when the de-
signer is requested to orchestrate dissimilar elements of games such
as visuals, audio, narrative and rules to achieve a speci�c play expe-
rience. Within the domain of adversarial �rst person shooter games,
for instance, a designer must be able to comprehend the di�erences
between the weapons available in the game, and appropriately cra�
a game level to take advantage of strengths and weaknesses of those
weapons. As an initial study towards computationally orchestrat-
ing dissimilar content generators in games, this paper presents a
computational model which can classify a matchup of a team-based
shooter game as balanced or as favoring one or the other team. �e
computational model uses convolutional neural networks to learn
how game balance is a�ected by the level, represented as an image,
and each team’s weapon parameters. �e model was trained on a
corpus of over 50,000 simulated games with arti�cial agents on a
diverse set of levels created by 39 di�erent generators. �e results
show that the fusion of levels, when processed by a convolutional
neural network, and weapon parameters yields an accuracy far
above the baseline but also improves accuracy compared to arti�-
cial neural networks or models which use partial information, such
as only the weapon or only the level as input.

CCS CONCEPTS
•Computing methodologies→ Supervised learning by clas-
si�cation; •Applied computing→ Computer games;

KEYWORDS
Automated Playtesting, Deep Learning, Shooter Games, Level Pat-
terns, Procedural Content Generation, Game Balancing

ACM Reference format:
Daniel Karavolos, Antonios Liapis, and Georgios Yannakakis. 2017. Learn-
ing the Pa�erns of Balance in a Multi-Player Shooter Game. In Proceedings
of FDG’17, Hyannis, MA, USA, August 14-17, 2017, 10 pages.
DOI: 10.1145/3102071.3110568

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
FDG’17, Hyannis, MA, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-5319-9/17/08. . .$15.00
DOI: 10.1145/3102071.3110568

1 INTRODUCTION
Despite its long history in the commercial game sector, procedural
content generation (PCG) has only recently started to focus on
assessing the quality of the artifacts it produces. With recent aca-
demic interest in PCG over the last 10 years, the issue of “su�cient”
or “improved” quality of artifacts has become important, in part due
to the need for academics to benchmark their problems and provide
evidence of improvement. �ality can be assessed and ensured in
many ways, e.g. via numerical evaluations of one or more game
properties used as gradients for a search-based generator [32], via a
set of constraints for what is an acceptable level in constraint-based
PCG [29], or via a set of expressive and high-quality modular com-
ponents that can be combined in grammar-based PCG [6]. Such
a�empts not only provide solid baselines to test PCG on, but also
provide game design insight on how the design space for viable
games is shaped by observing and generating edge cases [30].

Historically, the most common application of PCG in commercial
games has been level or gameworld generation. �is allows —
purportedly— in�nite replayability; it also allows the game rules
(i.e. how a player can interact with the level, winning and losing
conditions, etc.) to be carefully tuned by the design team and
gradually learned by the player. Level generation is also the most
researched type of PCG, although other a�empts at generating or
tweaking the game’s ruleset are worthy of note. Rule generation can
go as far as editing the source code of the underlying game engine
[5], choosing from a preset list of e.g. movement or collision rules
[31], or �ne-tuning small parts of the game such as the parameters
of weapons in a shooter game [11]. Whether generating a game
level or tweaking a rule set, however, it is impossible to test one
without the other. Taking shooter games as an example, generating
a sniping weapon [9] with a long range and slow reload time for
a game where all levels are narrow, curving corridors would give
the weapon a clear disadvantage; an open plain would give it a
clear advantage. Similarly, generating a shooter level where players
can use sniper ri�es a�ects the pa�erns that need to be included,
e.g. sniper positions [12]. �e architecture of a level, the pa�erns
of weapon’s parameters, but also other factors such as visuals or
audio cues from the environment are orchestrated by human or
computational designers to create the intended play experience
[24], including the game outcomes in terms of challenge, playtime
and balance. �erefore, when assessing such dimensions of game
quality, it is necessary to consider more than one type of content:
e.g. not only the rules of the game but also the layout of its levels.

�is paper introduces a computational model which has learned
to classify shooter game matches as balanced or as favoring one
or the other team. �e proposed approach takes advantage of the
recent advances in deep learning to exploit pa�erns stored visually
in the map of the game, and combine them with parameters of the

FDG’17, August 14-17, 2017, Hyannis, MA, USA Daniel Karavolos, Antonios Liapis, and Georgios Yannakakis

weapons used by each team to accurately predict a match’s balance.
In order to provide a large and diverse dataset for the model to
learn from, over 50,000 simulated playthroughs by arti�cial agents
were produced. In the test bed introduced in this study, teams of
three arti�cial agents, using one weapon type per team, a�empted
to score more kills than the other team. �e arena in which combat
took place had large objects to block line of sight and small objects
to take cover in. In order for the model to learn a broad set of
level pa�erns, 39 generators were used to create a diverse set of
levels in which the matches were simulated. Results show that
while weapons had quite clear imbalances in power level which
were easy to learn, combining those learned pa�erns with levels
allowed the computational model to increase its accuracy above
all other tested approaches. By fusing levels stored simply as an
image and weapons stored numerically, the learned model can be
used to generate new balanced levels for a speci�c weapon pair,
to �netune weapons so that the weaker weapons have a higher
chance of being useful, and to provide real-time feedback to human
designers without the need for computationally heavy simulations.

2 RELATED WORK
�is section describes related a�empts at algorithmically assessing
and improving a game’s balance and provides a brief background
on deep learning.

2.1 Game Balancing
Among the most important dimensions of a game’s quality is that of
balance — or symmetry as referred to in [1]. At its core, balance in a
two-player adversarial game is when a player has an equal chance
of winning against another player of the same skill level. Balance is
o�en ensured via symmetrical rules and levels; for instance, in chess
both players’ pawns or rooks have the same movement rules, while
the board itself and the placement of pawns is fully symmetrical.
Several formulas have been proposed to assess balance in terms
of gameplay, e.g. [25], or in terms of observable level pa�erns,
e.g. [23]. When it comes to gameplay balance, it is imperative that
the game is actually played in order to derive such balance metrics:
while there are instances where human players are involved in this
evaluation [4], the most common approach is to use simulations
with arti�cial agents to create synthetic play traces. �e playtraces
can be processed in many ways, for instance measuring the changes
in who is leading [2], an even ratio in terms of players’ assets [18]
etc. For the shooter genre in particular, a popular metric is the
entropy of the kills distribution in a deathmatch game [17]; this
metric has been used to evolve levels [3] as well as weapons [10, 11,
17] towards balanced arti�cial agents’ match-ups. Simulations take
up considerable computational resources, especially when using
commercial games such as Unreal Tournament III (Epic Games 2007)
which can only be sped up to a degree. A neural network that
assesses the balance of a match through visual inspection can make
balance evaluations in real-time and considerably speed up search-
based generation of balanced game levels or weapon parameters.

2.2 Deep Learning
In the last few years, the domain of machine learning has re-
ceived considerable a�ention due to the success of deep learning

approaches. Deep learning originates from the process of training
layers of a neural network sequentially, ��ing their input into a
progressively smaller representation and thus responding to in-
creasingly higher level pa�erns. �is process, called layer-wise
pretraining, allowed for much deeper networks to be trained. Due
to developments in the �eld and an increase in computing power,
layer-wise pretraining is no longer necessary. However, the archi-
tectures of deep neural networks still exploit the property of �nding
higher level features by composing them of lower-level ones [19].

Deep learning has had signi�cant success in representation learn-
ing and computer vision. Deep learning has also been favored in
recently developed computationally creative so�ware, as they can
be used to combine the painting styles of di�erent artists via style
transfer [8, 26], to evolve sculptures by improving the classi�cation
error with a target physical object [20], or to design furniture [7].

In digital games, deep learning has been mostly focusing on
arti�cial agent control, e.g. for playing the Go board game [28],
di�erent Atari games [27], and the Doom shooter game [14]; the
la�er two used the screen output as input to the deep network.
�e success of deep learning in computer vision has also been
exploited for the visual identi�cation of evolving spaceships [21],
using the error of the deep learner as a measure of novelty for
a computational designer. Finally, the ability of deep learning to
�nd pa�erns of high-quality game levels was used to “auto-correct”
miscreated platformer levels to become playable [13]. �ese early
but signi�cant successes of deep learning in games and beyond
inspired us to use deep learning to visually inspect shooter levels
in order to assess their balance.

3 THE DEATHMATCH TESTBED
�is paper introduces a machine learning approach that can aid a
computational designer in creating a balanced ba�le environment
for a pair of weapons used by opposing teams. Speci�cally, this
paper focuses on the genre of �rst person shooters and one of its
most common contests: team deathmatch, i.e. trying to get more
kills than the opposing team. In this study, the match consists of
two teams of 3 players. Each player has unlimited lives, but a match
ends a�er a total of 20 kills. �e balance is measured by the ratio of
kills of each team. A match is balanced when it resulted in a draw,
or when di�erence in kills between the two teams was marginal.

For the purpose of this paper, an arena level was created in the
Unity 3D game engine (Unity 2005). �e deathmatch level consists
of three areas, two spawn areas on opposite edges of the level and

(a) In-game view (b) Map

Figure 1: Example level, with team bases on the le� (�rst
team) and right (second team) of the arena, and the arena’s
map representation used as input for machine learning.

Learning the Pa�erns of Balance in a Multi-Player Shooter Game FDG’17, August 14-17, 2017, Hyannis, MA, USA

Figure 2: Example maps of each level generator, with both types of objects (B), only large objects (L) and only small objects (S).

a square arena in the middle, where the �ghting will take place (see
Fig. 1a). At the start of the game, two teams of 3 players start at
their respective spawn areas, or bases. Every time a player is killed,
they re-spawn at their team’s base. Each base has three paths to
the central arena, a ledge and an invisible wall that blocks players
and projectiles in the arena from passing through, respectively;
this prevents a team being pinned down inside their base. �e
central arena is a �at square area, bordered by walls, and the only
area that is procedurally �lled with objects. Such objects are a
variety of ‘block’ objects found in modern warehouses, and provide
cover from enemy �re. Two types of object are identi�ed: small
objects which come up to chest height and allow for players to
shoot opponents while taking (some) cover from them, and large
objects which can completely block line of �re and line of sight
from enemies. Large objects and small objects have fundamentally
di�erent tactical properties, and so are represented di�erently in
the system and handled di�erently by the arti�cial intelligence
controlling the players of each team.

In order for the level to be used as input for machine learning, it
is represented as a 100 by 100 pixel image (see Fig. 1b), ignoring the
teams’ bases as they are symmetrical and no combat occurs within
them. Each pixel value of this representation determines whether
that tile is occupied1 by a large object (red pixel), a small object
(green pixel) or is empty (black pixel). �e chosen image resolution
allows for even the smallest objects to be ‘captured’.

3.1 Level Generation
To generate su�cient data for e�ective machine learning, a large
number of diverse game levels must be created. For that purpose,
39 di�erent generators were designed to create a broad range of
levels. �e generators primarily in�uence the spatial distribution of
a set of large and small objects: due to concerns of objects colliding
with each other, every generator places a total of 50 objects. Some
generators place 50 large objects and no small objects (L row in
Fig. 2), some place 50 small objects and no large objects (S row
in Fig. 2), and some place 25 large and 25 small objects (B row
in Fig. 2). �e spatial distribution of objects, as shown in Fig. 2,
includes placing objects (large or small) on one half of the level,
in the center of the level, along a central row or column, or in the
1Whether a tile is occupied by an object is determined by performing a downwards
raycast at the center of the tile.

four corners of the level. As an addition, six generators feature
a designer-de�ned level pa�ern which is not randomized: either
a large impassable block in the center of the level (column 11 in
Fig. 2), or a central choke point formed by two long walls (column
12 in Fig. 2). While generators determine the object’s coordinates,
rotation, and type, the complete level is stored as a 100 by 100 pixel
image where each object usually takes up more than one pixel.

3.2 Playtest Data Collection
As a supervised learning approach, the model requires a set of
training data to learn a model of balance. Ideally, this would be
data collected from actual players but this is not feasible due to the
volume of data needed for deep learning. �erefore, as an initial
approach, we simulate player behavior with arti�cial agents.

�e arti�cial agents are controlled by the Shooter AI plugin
library (Squared55 2015); the arti�cial agents form two teams of
three agents each. Each team starts at its respective ‘base’ (and
agents re-spawn there if they die) and compete inside a generated
arena as shown in Fig. 1. In terms of behavior, the agents wander
around the map towards the enemy base. When they spot an
opponent, they a�empt to �nd cover and shoot the opponent from
this cover position. If the opponent is not killed within a limited
time frame (e.g. if the opponent is also in cover) the agent will try
to move to another cover position. If no cover is found, agents
switch to a chasing behavior, trying to kill the opponent from close
range. Agents always aim for the head unless they carry a projectile
weapon (which is aimed at the hips in order to take advantage of
splash damage). For the sake of simplicity, all members of one team
have the same weapon which has unlimited ammo; however, the
weapon’s clip size a�ects how many shots can be �red before the
agents need to reload (reload time is one of the weapon parameters).

For experiments in this paper, �ve weapons were adapted from
those of the Shooter AI library and tested: the shotgun, the ri�e, the
sub-machine gun (SMG), the sniper ri�e and the rocket launcher.
�ese weapons have very di�erent pa�erns of use [12] and weapon
characteristics, such as the high damage of the sniper ri�e, the
slow bullet speed of the rocket launcher, or the short range of the
shotgun. In order to derive the desired mapping between a game
level and a weapon pairing, each generated level was tested 25 times,
once for each weapon combination (including matches where both
teams had the same weapon). Simulations lasted until a total of 20

FDG’17, August 14-17, 2017, Hyannis, MA, USA Daniel Karavolos, Antonios Liapis, and Georgios Yannakakis

2x100x100 pixels

8x98x98

8x49x49
16x47x47

16x23x23

40 16

64
G

am
e

le
ve

l

W
ea

po
ns

convolution

max-pooling max-
pooling

32

convolution convolution
32x21x21

32x10x10

max-
pooling

Advantage 1st team

Balanced

Advantage 2nd team

Figure 3: CNN architecture for level and weapon input parameters.

kills were scored, and balance between the teams was calculated
based on the number of kills of the �rst team (the team to the le�
of Fig.1b) over 20 kills. A ratio of 50% indicates a perfectly balanced
(i.e. tied) match-up, a ratio over 60% indicates that the weapon
pairing and the level favor the �rst team, while a ratio of 40% or
lower indicates that the second team was favored. Since kill ratios
between 40% and 60% amount to a couple of kills for one or the
other team, these match-ups are still considered balanced. �ese
three labels were stored for supervised learning.

3.3 Machine Learning
�is paper uses a convolutional neural network to predict game
balance based on the weapons of each team and the layout of the
level. �e output of the network is a probability distribution over the
three classes: balanced match, 1st team advantage (le� in Fig. 1b),
2nd team advantage. �e network has three output nodes, which
are processed via a so�-max function to convert them into three
real values between [0, 1] that sum up to 1; the highest of the three
values determines which class the match-up belongs to.

Each weapon is represented by 20 parameters, including damage
per bullet, number of bullets per volley, explosion size, reload time,
inaccuracy, etc. All members of the same team use the same weapon,
therefore the total weapon parameters used as inputs are 40 (20 per
team). Weapon parameters are normalized to [0, 1] through min-
max normalization across the �ve weapons. For instance, bullet
damage is highest for the rocket launcher (40 hit points or HP),
lowest for the SMG and shotgun (4 HP) and above average for the
sniper ri�e (30 HP); this parameter is converted into 1 for the rocket
launcher, 0 for shotgun and SMG and 0.72 for sniper ri�e.

As shown in both Fig. 1b and Fig. 2, levels are stored in a 100
by 100 pixel image with three colors (red, green, black) which
represent the type of objects in the level (large, small, and no objects
respectively). When used by the network, each pixel is represented
by two binary values (10 for red, 01 for green, 00 for empty); this
allows the network to clearly di�erentiate between a large object
which blocks line of sight, a small object which provides cover, and
the lack of either of them. �e network therefore uses 2× 100× 100
binary inputs (0 or 1) to represent the level. As noted earlier, the
inputs describe only the generated arena and ignore the teams’
hand-designed bases as no combat is allowed in those areas.

In recent years, convolutional neural networks (CNNs) have be-
come the dominant machine learning approach to image processing

due to their success in image classi�cation tasks [19]. Convolu-
tional layers can be understood as a set of �lters that are moved
over the input to detect certain features; the �rst layer of these
�lters o�en learns to detect edges or spots of di�erent color. Higher
layers learn compositions of lower-level features; generally, the
more convolutional layers a network has, the more complex fea-
tures it can detect. Due to the location invariance of these �lters,
a CNN typically needs fewer parameters than a fully-connected
arti�cial neural network (ANN).

Based on extensive preliminary experimentation with di�erent
network architectures, learning rates and activation functions, the
best performing CNN architecture used for reported experiments
in Section 4 is shown in Fig. 3. �e CNN uses three convolutional
layers, each with several �lters of 3 by 3 pixels applied on the
previous layer (i.e. the original image for the �rst convolution).
Since these �lters ignore edges, the resolution of the output is 2
less than that of the input. �e �rst convolutional layer outputs 8
di�erent feature maps of size 98× 98 out of the original 2×100×100
pixel image; each �lter ideally detects di�erent pa�erns of the input.
Each of these feature maps is downsampled to half its dimensions
through max-pooling, which outputs the maximum value of a 2
by 2 region of the convolution’s output. Max-pooling is applied
a�er each convolution, ultimately producing an output volume
of 32×10×10, which is then converted via a fully-connected ANN
layer into 64 values. �e 40 weapon parameters are mapped via
a fully-connected ANN layer into 16 values. �e 64 outputs from
the level and the 16 outputs from the weapons are concatenated
and passed to a fully-connected layer of 32 nodes which connect
to three output nodes that predict the probability that the input
belongs to one of the three classes. All nodes in the network use
a recti�ed linear unit (ReLU) as their activation function (which
applies element-wise non-linearity), except for the output layer
which uses a so�-max function, as described above.

4 EXPERIMENTS
�is section discusses the training data collected from arti�cial
gameplays, analyzes how di�erent networks learn this data, and
demonstrates how the computational model handles di�erent
weapons and level pa�erns.

4.1 Training Data
As noted in Section 3, training data was collected from generated
levels played by teams of arti�cial agents which for simplicity use

Learning the Pa�erns of Balance in a Multi-Player Shooter Game FDG’17, August 14-17, 2017, Hyannis, MA, USA

Figure 4: Distribution of kills of the �rst team (le� in Fig. 1b)
in the pruned training set.

the same weapon within each team. �e 39 generators presented in
Fig. 2 generated 100 levels each. �ese 3900 levels were playtested
for all weapon pairings (i.e. 25 matches per level) resulting in
97.5×103 data points. Matches that did not �nish before a timeout
(less than 0.5% of the data) were removed. An inspection of the
data showed that roughly two thirds of the matches classi�ed as
balanced. In order to prevent a machine-learned bias towards the
most common class, data was pruned so that each class had the
same size as the least common class; this was done by removing at
random data points from more popular classes. At the same time, it
was ensured that data per level generator and per weapon pairing
were roughly equally common in the data set. Each of the �ve
weapons is used in 18% to 22% of all data points, and similarly each
of the 39 generators was used in 2.2% to 3% of all data points. �is
resulted in roughly 17 × 103 data points per class. Taking a look
at the raw data (before classi�cation) in terms of the �rst team’s
kill ratio in the pruned dataset, we can see in Fig. 4 that it is quite
symmetric. Moreover, it is clear that before removing roughly half
of the balanced matches, kill ratio followed a normal distribution.

In order to gain some insights into the pa�erns of the training
data, we analyze them on a per generator, per weapon and per
weapon pairing basis. For generators, we aggregate among all
generators in the same column, as they constitute the folds on
which we train on: from Fig. 5a we observe minor discrepancies,
with all folds having an almost equal distribution of classes and
only slight advantages to the �rst team (e.g. generators of column
2) or the second team (e.g. generators of column 1). �ere are more
clear di�erences when looking at weapons used by the �rst team,
in Fig. 5b. Both the sniper ri�e and the rocket launcher severely
favor the team using them (with 49% and 48% of matches belonging
to 1st team advantage class respectively); the rocket launcher also
has far fewer instances of 2nd team advantage. �e opposite is true
for the other weapons, which tend towards advantage to the team
that does not use them or, at best, balanced matches. Looking at
each weapon pairing individually in Fig. 5c, di�erences become
even more clear in terms of class imbalances. Indicatively, the ri�e
is severely handicapped against the rocket launcher and the sniper
ri�e, winning only 4% and 8% against each respectively; even so, the
ri�e versus rocket launcher match-up has more balanced instances
than the ri�e versus sniper ri�e match-up (indicating that those
pairings are inherently di�erent). Even when both teams use the

(a) Distribution of classes per generator type (column in Fig. 2)

(b) Distribution of classes per weapon, averaged over all opponents

(c) Distribution of classes per weapon pair

Figure 5: Ratio of each class in the pruned training set.

same weapon, the class distributions are quite uneven: for SMG
versus SMG, 78% of match-ups are balanced while for sniper ri�e
versus sniper ri�e only 39% of match-ups are balanced.

Based on the above analysis and the outlook of Fig. 5a, it would
seem that the pa�erns of the levels play a minor, if any, role in
the matches’ balance. However, this conclusion is mostly due to
averaging factors; when looking at the impact of a generator to
a weapon pairing, di�erences become far more evident. For the

FDG’17, August 14-17, 2017, Hyannis, MA, USA Daniel Karavolos, Antonios Liapis, and Georgios Yannakakis

(a) Ri�e (b) Rocket Launcher

Figure 6: Distribution of classes per weapon for one genera-
tor or one fold.

sake of brevity, only two example folds will be examined in detail
(column 0 and column 1 in Fig. 2), for two very di�erent weapons:
the ri�e and the rocket launcher. Fig. 6a shows how classes are
distributed when the �rst team uses a ri�e, per generator (B0, L0,
S0 and their average as fold 0; B1, L1, S1 and their average as fold
1); Fig. 6b shows the same information but for the rocket launcher.
�e �rst observation is that the ratio of small objects versus large
objects plays a role regardless of their distribution: S0 and L0 are
very di�erent in terms of 1st team advantage instances for the ri�e
(although less so for the rocket launcher), and L1 and S1 are very
di�erent for both the ri�e and the rocket launcher (S1 favoring
both). �e second observation is that each fold results in di�erent
class distributions. Fold 0 has a fairer distribution among the three
classes for the ri�e, while for fold 1 — which has many barriers
on the side of the team using the ri�e — the 2nd team has a clear
advantage in 43% of instances. For the rocket launcher, di�erences
when averaging across folds are less obvious; the rocket launcher is
a consistently powerful weapon less sensitive to level di�erences.

4.2 Training Results
Several neural network architectures, topologies, and activation
functions were considered and tested. For the purposes of brevity,
this paper focuses on the best performing convolutional network
(CNN) architecture, and compares it with the best performing fully-
connected network (ANN) and the best performing single layer
perceptron. All networks were trained according to a 13-fold cross-
validation scheme, where the data in each fold coincides with the
generators in the columns of Fig. 2. More speci�cally, machine
learning used the data and ground truth of 11 folds to train on,
used one fold as a control for stopping training, and tested the
�nal model on the last fold to derive the validation errors reported
here. �e networks were trained on the cross-entropy loss, which
measures the divergence of the predicted probability distribution
with respect to the true class distribution and has several bene�ts
compared to mean-squared error in classi�cation problems [16].
Training was stopped a�er 5 epochs without improvement on the
validation set.

As discussed in Section 3.3, the best CNN architecture is dis-
played in Fig. 3; it processes the level’s image through three pairs
of convolution and sub-sampling layers followed by a hidden layer

Table 1: Mean accuracy and 95% con�dence intervals of ma-
chine learning from 13-fold cross-validation.

Training Validation
Network Epochs Accuracy Accuracy
CNN 24 62%±0.5% 64%±0.2%
ANN 25 54%±11% 50%±2.2%
Perceptron 14 50%±2.2% 48%±1.1%
CNN levels only 12 36%±1.6% 36%±1.6%
CNN weapons only 36 53%±0.5% 55%±1.6%
ANN levels only 14 39%±0.5% 38%±1.1%
ANN weapons only 30 53%±0.6% 56%±1.1%

that aggregates the di�erent feature maps, and fuses it with the
weapon parameters which are reduced via a hidden layer to 16
outputs, �nally producing a probability distribution over the three
classes of balance. Many di�erent topologies (including one or two
hidden layers) were also tested for ANNs; the best ANN discovered
combines the level and weapon parameters (normalized to [0, 1])
into 20, 040 inputs (2 × 100 × 100 image pixels and 40 weapon pa-
rameters) and passes it through a single hidden layer of 256 nodes
and again to three output nodes. Finally, the perceptron simply
connects the 20, 040 inputs to the three output nodes.

Table 1 shows the results of the learning process. A baseline
of random guesswork would yield an accuracy of 33% among the
evenly sampled classes. �e perceptron improves on the random
baseline by 15%, followed closely by the ANN which classi�es 50%
of the test data correctly. �e CNN is clearly the best network with
an average accuracy of 64% on the test data. Interestingly, the ANN
tends towards quickly over��ing to the training set (54% accuracy)
while the CNN does not do so.

4.2.1 Baselines. In order to determine the bene�t of using both
the level and the weapons as inputs for balance prediction, the
same CNN and ANN topologies were trained using only one of
those input modalities, se�ing the other inputs to zero. When
level inputs are zero, the CNN essentially becomes a weapons-only
fully-connected arti�cial neural network, although with a di�erent
topology than the tested ANN.

As can be seen from Table 1, training on one input modality
without the other makes the two networks (ANN and CNN) perform
much more similarly. Especially for the levels-only case, this is
surprising since one would expect that the bene�ts of applying
convolutions, such as weight sharing, would still hold. Training
only on the levels yields a much poorer test accuracy than training
on both inputs, resulting in a classi�cation rate of 38% and 36% for
the ANN and the CNN respectively, just slightly be�er than random.
Observing Fig. 5a, this should not come as a surprise, as levels on
their own give very similar ratios in terms of classes, regardless
of the features (types of pixels or their distributions) they contain.
Only when paired with speci�c weapons (as shown in Fig. 6) do
level pa�erns show clear trends towards one class in the training
set, and can be trained to give non-random predictions.

It seems that the weapons by themselves contain more useful
information than the levels, as the drop in accuracy is much smaller.

Learning the Pa�erns of Balance in a Multi-Player Shooter Game FDG’17, August 14-17, 2017, Hyannis, MA, USA

Table 2: Average confusion matrix of the 13 CNNs and 13
ANNs on their respective validation sets.

Predicted class
Actual class Team 2 wins Balanced Team 1 wins
Trained CNNs
Team 2 wins 0.74 0.17 0.09
Balanced 0.26 0.46 0.29
Team 1 wins 0.09 0.17 0.74
Trained ANNs
Team 2 wins 0.38 0.58 0.04
Balanced 0.15 0.75 0.10
Team 1 wins 0.07 0.60 0.33

In fact, training solely on the weapons results in a be�er test ac-
curacy for the ANN, equal or marginally higher than that of the
‘CNN’ architecture using weapons only (i.e. ignoring convolutions).
�e distribution of outcomes per weapon pair are much more di-
verse than those of the generators (see Fig. 5c). �erefore, learning
the distribution per weapon pair and predicting the most common
class given can yield be�er results than doing this based on the
generators. However, depending on the generator, the outcome for
a speci�c weapon can actually be quite di�erent (see Fig. 6). If the
network can identify the features that correspond to these di�erent
outcomes, it can become more accurate than based on the weapon
pair alone. As can be expected, the CNN is be�er at identifying
these weapon-level relationships than the ANN.

As another baseline, we trained networks based on the generator
rather than the image of the level itself, and based on the weapon
pairing rather than on the weapons’ individual parameters. Using a
variant of one-hot encoding to determine which generator created
the level in the dataset, this reduces the size of the input vector and
removes the computer vision task of processing a full level image.
�e generators were converted into two one-hot vectors based on
the rows and columns of Fig.2, i.e. one vector that encodes which
type of objects it spawns and one vector that encodes in which area
the objects are spawned. �e weapons are encoded as one of the
25 possible pairings. �ese three vectors are concatenated into one
vector of size 41 (25 inputs for weapons, 13 inputs for columns and
3 inputs for rows of Fig. 2); this input always contains three values
of 1 (which weapon pairing, which column, which row) and the rest
are 0. Given the limited input size, only fully-connected networks
of one layer with a layer size smaller than the number of inputs
were considered. �e best ANN for this task has a hidden layer of
size 16 and a test accuracy of 57%, while the perceptron has a test
accuracy of 56%. �e task becomes simpler with a smaller input
size for the fully-connected networks, as both networks improve
their accuracy from Table 1 and do not over�t to the training data.
However, neither network becomes more accurate than the CNN.

4.3 Test Results and Analysis
For these machine learning experiments, we have used 13-fold cross
validation by spli�ing the data based on the levels’ generators in
columns of Fig. 2. A test accuracy on the entire dataset can be
calculated by aggregating all 13 test folds (collected during training

Figure 7: Test accuracy of the networks categorized per gen-
erator type, sorted by the accuracy of the CNN.

and cross-validation). We can then partition the results on a per
class, per generator type, and per weapon or per weapon pair basis
to get di�erent perspectives and insights.

4.3.1 Results per Class. Table 2 has the confusion matrix of the
ANN and CNN, which shows that the ANN has formed a general
bias towards the balanced class. Approximately 60% of the time the
ANN predicts that the match-up is balanced, regardless of what it
actually is. �e confusion matrix of the CNN shows that it does
not have the same bias towards ‘balanced’ as the ANN; in fact
it struggles to correctly classify the balanced class. Instead, it is
very accurate in predicting either advantages. While the ANN
correctly classi�es 75% of the balanced class, the CNN correctly
classi�es 74% of both imbalanced classes. A positive note is that
both networks have a low probability of misclassifying a match
which is imbalanced in favor of one team as one that is imbalanced
towards the opposite team.

4.3.2 Results per Generator. Figure 7 shows the accuracy per
generator type; each type includes three generators that place dif-
ferent types of objects at the same areas of the level (and coincides
with the folds used for cross-validation).

Firstly, it is obvious that the CNN has the highest accuracy for
every generator type. Its lowest accuracies are with columns 1, 11
and 12 of Fig. 2. It makes sense that levels of type 11 and 12 are hard
to predict, as these levels di�er the most from the rest of the corpus
due to the designer-placed objects (central block, choke point).

Levels of type 11 are also the most di�cult for the ANN to predict
accurately; however, type 1 levels are among the easiest to predict.
While based on the confusion matrix one would expect that type 1
levels are predominantly balanced, based on the analysis in Fig. 6
this is not the case. It is likely that the le�-only placement of
small and large objects in S1 and L1 is easier for the ANN to detect
compared to the complex pa�erns of e.g. type 11.

FDG’17, August 14-17, 2017, Hyannis, MA, USA Daniel Karavolos, Antonios Liapis, and Georgios Yannakakis

Table 3: Distribution of classes in the ground truth and pre-
dicted by the di�erent networks, per B, L, S generator type.

Advantage Advantage
Predictor 1st Balanced 2nd Accuracy
B generators
Ground Truth 0.32 0.34 0.34 100%
CNN 0.38 0.23 0.40 60%±1.6%
ANN 0.00 0.90 0.10 36%±2.6%
Perceptron 0.34 0.29 0.37 47%±2.3%
L generators
Ground Truth 0.30 0.41 0.29 100%
CNN 0.31 0.43 0.26 61%±3.7%
ANN 0.03 0.87 0.10 43%±4.4%
Perceptron 0.34 0.29 0.37 37%±4.3%
S generators
Ground Truth 0.37 0.27 0.36 100%
CNN 0.42 0.17 0.41 70%±3.5%
ANN 0.40 0.22 0.38 66%±4.1%
Perceptron 0.39 0.13 0.48 57%±3.2%

Since the class distributions of the training data when observed
along generator types gives indistinct pa�erns (as in Fig. 5a), as-
sessing accuracy based on the type of obstacles in the level may
be more insightful. Assessing accuracy on all levels of the same
row (B, L, S), Table 3 shows the distribution of classes in the train-
ing data and as predicted during cross-validation by the networks.
�e table reveals clear biases in the pa�erns found by the ANN,
especially on generators with large objects (B and L), towards the
balanced class. Astonishingly, while 32% of levels created by B gen-
erators had an advantage towards the 1st team, the ANN predicts
that only 0.04% of total instances belong to this class. For B, the
perceptron surprisingly has the closest distribution to the ground
truth, although its predictions are not always accurate (accuracy of
47% compared to 60% of CNN). Based on Table 3, it is clear that the
di�erent networks have a bias towards speci�c classes according
to the type of pixels (red and green for B, red for L, green for S) in
the image input. Looking into whether those biases lead to correct
predictions, on the other hand, we �nd that the accuracy for all
networks improves when levels contain only small objects (S). �is
is likely because in such levels weapons are less a�ected by blocked
lines of sight which cause combat at shorter ranges; this would ben-
e�t traditionally weak weapons such as the shotgun. Interestingly,
the ANN has a lower accuracy than the perceptron, and a clear bias
towards the balanced class in levels of type B. We suspect that the
ANN does not handle two types of objects (large and small) in the
same level well, although the perceptron does not su�er from that.
It is therefore more likely that the ANN has over��ed to pa�erns
in other levels (L and S) which are easier to predict.

4.3.3 Results per Weapon. Grouping the data based on the
weapon used by the �rst team, the CNN also has the highest ac-
curacy in all weapons (signi�cantly higher in 3 of 5) as shown in
Figure 8a. All three networks �nd the shotgun the easiest weapon
to predict, which is not surprising as the weapon is consistently

(a) Accuracy averaged per weapon of 1st team.

(b) Accuracy per weapon pairing.

Figure 8: Test accuracy onmatchups split by weapons. Error
bars indicate the 95% con�dence interval.

bad against all weapons in most levels (see Fig. 5b). �e second
worst weapon, the SMG, is also easy for all networks to predict.
Interestingly, for the most powerful weapons (rocket launcher and
sniper ri�e) the accuracy of the ANN su�ers the most; this can be
traced to its bias towards classifying most match-ups as balanced
(see Table 2) which is not o�en the case when those two weapons
are used; especially for the sniper ri�e, only 25% of the ground truth
data belong to the balanced class.

When looking at the accuracies for each weapon pair, as in Fig.
8b, clearer pa�erns can be observed. �e CNN has higher accuracies
in 24 of 25 weapon pairs, and signi�cantly higher in 17. Both CNN
and ANN have the highest accuracy when predicting Shotgun vs.
Shotgun (86% and 73% for CNN and ANN respectively), followed
by SMG vs. SMG (78% and 69% for CNN and ANN respectively).
As shown in Fig. 5c, both of these generally poor weapons when
paired against each other lead to predominantly balanced matches
(84% for Shotgun vs. Shotgun, 78% for SMG vs. SMG), the largest
ratios for the balanced class among the weapon pairings. �is ex-
plains the high accuracy of the ANN for those pairings, as it tends
to predict balanced classes overall. Other weapon pairings with
high accuracy for the CNN have a low accuracy for the ANN, most

Learning the Pa�erns of Balance in a Multi-Player Shooter Game FDG’17, August 14-17, 2017, Hyannis, MA, USA

notably Shotgun vs. Sniper Ri�e, Sniper Ri�e vs. Shotgun, Ri�e
vs. Shotgun and Shotgun vs. Ri�e; again unsurprisingly, these four
pairings have the lowest ratio of balanced match-ups (15%, 17%,
18% and 18%) which gives more predictive power to the CNN which
leans towards predicting imbalanced classes rather than the ANN
which leans towards the balanced class. As a �nal note, the only
weapon pairing that the ANN is more accurate than the CNN is the
Sniper Ri�e vs. Sniper Ri�e; this is an interesting case as it is not
straightforward as to why. Sniper Ri�e vs. Sniper Ri�e match-ups
do not particularly lean towards balanced (39% of instances), there-
fore the likelihood that ANN’s bias towards balanced classes could
be only partly an explanation. Based on qualitative evaluations of
class distribution on a per generator basis, this weapon pairing is
highly inconsistent (e.g. very rarely gives advantage for the �rst
team for B1 and L1 and almost exclusively has balanced instances
for L6 and S12; this erratic behavior seems to confuse the CNN
more than the ANN, leading to its poor performance.

5 DISCUSSION
Based on the quanti�able results of the machine learning task de-
scribed in this paper, CNNs are particularly capable of discovering
pa�erns between the level architecture and weapon parameters.
While the ANN achieves an accuracy well beyond random, it hardly
performs be�er than a perceptron and, in fact, is outperformed by
a network that only receives the weapons of both teams. While
using the level only as an input to either the CNN or the ANN does
not give them a high predictive capability, when combined with
weapon information it contributes to accurately predicting cases
where the level architecture a�ects the relative balance of weapons.
�e CNN architecture processes the level and discovers higher-level
pa�erns than merely those in the pixel image used by the ANN.
�e compact and information-rich outputs of the convolutions are
be�er combined with the pa�erns found in weapons’ parameters to
classify with 64% accuracy on average between balanced matchups
or matchups which favor one team or the other. Another positive
result is that misclassi�cations when the matchup was imbalanced
towards one team were not o�en “catastrophic”, i.e. did not predict
that the matchup was imbalanced towards the other team.

�e ability of the model to fairly accurately predict whether a
level and weapon combination will result in a balanced matchup
without the need to playtest it can enhance generative processes
immensely. Obviously, such a predictive model can replace simu-
lations in a simulation-based evolutionary process such as [3, 4],
signi�cantly lowering computation time needed to �nd new solu-
tions. Based on the current model, however, classifying content into
three classes may not be su�cient to provide the gradient towards
be�er solutions that evolution can use as a �tness. Instead, the
learned classes can be used in conjunction with simulation-based
evaluations, as a �rst step. For instance, if evolving levels for a
balanced matchup between a sniper ri�e and an SMG, the predictive
model can identify which of the levels are predicted to belong to the
balanced class, and only those levels are then simulated to derive a
more granular �tness for evolution to follow. �e levels that are
unbalanced in the above scenario can either be thrown away (e.g.
regenerated or given the lowest �tness) or can be further evolved in
the hopes of creating balanced ones using e.g. a feasible-infeasible

2-population genetic algorithm [15] as in [23]. Other applications
of the model for level design can include a human designer. Since
the model receives a raw image as input, it is not bound by the
generators used in this study; it can provide input to a human de-
signer by classifying images created manually either through image
editing so�ware or directly in Unity by placing objects manually
(similar to how generators of type 11 and 12 were created). Since
processing an image and weapon pairing by the trained model is
computationally lightweight, it can provide feedback to designers
in real-time while they are changing the level. As a designer aid, it
could even suggest alternatives to the human creator (by adding
or moving some objects and evaluating if the match-up is now
classi�ed as balanced), in a similar way to Sentient Sketchbook [22].

Since the model uses both the weapon pair and the level as input,
it can also �nd the right combination of weapons per team for a
provided level. �is works in the same way as using the model for
level generation (or critique) except now the level input is �xed and
the weapon inputs are tested with the 25 combinations of existing
weapons in the game. Beyond choosing a balanced set of weapons
among those provided, however, the model can be used to generate
new weapons or variations of existing weapons by �ne-tuning their
parameters (e.g. damage, clip size) to further improve the balance
of the matches. As an example, the generally worse performance
of the SMG can be improved by tweaking its di�erent weapon
parameters (via exhaustive or evolutionary search) and testing the
modi�ed weapon against all other weapons in a diverse set of game
levels until a modi�ed SMG receives a su�ciently increased ratio
of predicted balanced instances compared to the original.

It should be noted, however, that the model was trained on
arti�cial data produced by agents’ playthrough in the many game
levels generated. �ere is a downside to training a model based on
simulated play tests. Unnatural, or even erratic, behavior of arti�cial
agents can seep into the model through the training data. While it
would have been be�er to use data gathered from human matches,
the vast volume of data (almost 105 games before pruning) required
to train the model would need a large and active community of
players. Instead, the current trained model could be �ne-tuned
with sparse matches of human players; since it has learned most
level and weapon pa�erns, it would be easier to �ne-tune some
associations rather than learn from scratch.

Another interesting way to include human play would be to use
human-designed levels. �is can be done in two ways: use human
designed levels instead of generated ones to run simulations for the
training data, and using snapshots of the level design process as the
training data itself. For the former, the CNN would likely be able
to learn popular level design pa�erns favored by expert designers,
such as choke points and �anking routes [12], and the results of
simulations may also more closely match results of real match-ups
in popular games. For the la�er, the system can assume that the
designer a�empts to balance out a team-deathmatch game through
level design, so the initial level design could be assumed to be worse
than future iterations based on design tweaks. By taking multiple
snapshots of a designer’s process (for instance, a snapshot of the
level every 1 minute during design time) gives not only more data
for the model to learn from2, but also a direction towards which
2Unlike generated levels, human designed levels are also time-consuming to create,
and good levels designed by experts are sparse. �e generated levels are arguably

FDG’17, August 14-17, 2017, Hyannis, MA, USA Daniel Karavolos, Antonios Liapis, and Georgios Yannakakis

types of levels are more acceptable — the later snapshots versus the
�rst snapshots. �is information can be used for pre-training the
convolutional layers alone, to �nd desirable level pa�erns before
combining them with weapons to predict game balance.

6 CONCLUSIONS
We have demonstrated how deep learning can be applied to pre-
dict the outcome of a match in a simpli�ed 3 versus 3 multiplayer
deathmatch shooter game. Using data from simulated playtests,
networks were trained to predict whether one of two teams would
win by a large margin or whether the match was balanced, based
on the level layout as an image and the weapon parameters of both
teams. Among the tested architectures, a CNN with three layers
of convolutions achieved the highest accuracy, far above the many
baselines and alternatives tested. It was shown that the weapons
were the most in�uential input, but also that level design pa�erns
learned from convolutions improved the accuracy.

While we admit that creating balanced multiplayer levels does
not solely depend on the score distribution between the two teams,
we do think that taking into account the e�ect of players’ weapons
or inventories can be a valuable contribution to level generation
and design. Moreover, being able to predict the balance of a match
through inspecting the map directly can also speed up automatic
playtesting. Direct applications of the trained model include level
generation to balance a matchup between an imbalanced set of
weapons, automatic tuning of weapon parameters to balance weapons
on a multitude of levels, and human designer feedback on the bal-
ance of a level as it is being designed.

ACKNOWLEDGMENTS
�is work has received funding from the FP7 Marie Curie CIG
project AutoGameDesign (project no: 630665) and the Horizon
2020 project CrossCult (project no: 693150).

REFERENCES
[1] Sta�an Bjork and Jussi Holopainen. 2004. Pa�erns in Game Design. Charles River

Media.
[2] Cameron Browne and Frédéric Maire. 2010. Evolutionary Game Design. IEEE

Transactions on Computational Intelligence and AI in Games 2, 1 (2010), 1–16.
[3] William Cachia, Antonios Liapis, and Georgios N. Yannakakis. 2015. Multi-Level

Evolution of Shooter Levels. In Proceedings of the AAAI Arti�cial Intelligence for
Interactive Digital Entertainment Conference.

[4] L. Cardamone, G. N. Yannakakis, J. Togelius, and P. L. Lanzi. 2011. Evolving
interesting maps for a �rst person shooter. In Proceedings of the Applications of
evolutionary computation.

[5] Michael Cook, Simon Colton, Azalea Raad, and Jeremy Gow. 2013. Mechanic
Miner: Re�ection-Driven Game Mechanic Discovery and Level Design. In Pro-
ceedings of Applications of Evolutionary Computation. 284–293.

[6] Joris Dormans and Sander C. J. Bakkes. 2011. Generating missions and spaces for
adaptable play experiences. IEEE Transactions on Computational Intelligence and
AI in Games. Special Issue on Procedural Content Generation 3, 3 (2011), 216–228.

[7] Alexey Dosovitskiy, J. Springenberg, and �omas Brox. 2015. Learning to Gen-
erate Chairs with Convolutional Neural Networks. In Proceedings of the IEEE
International Conference on Computer Vision and Pa�ern Recognition.

[8] Leon A. Gatys, Alexander S. Ecker, and Ma�hias Bethge. 2015. A Neural Algo-
rithm of Artistic Style. Computer Vision and Pa�ern Recognition (2015).

[9] Robert Giusti, Kenneth Hulle�, and Jim Whitehead. 2012. Weapon Design
Pa�erns in Shooter Games. In Proceedings of the FDG workshop on on Design
Pa�erns in Games.

also not as good as those created by expert human designers, replacing quality with
volume and diversity for the sake of the machine learning process.

[10] Daniele Gravina, Antonios Liapis, and Georgios N. Yannakakis. 2016. Constrained
Surprise Search for Content Generation. In Proceedings of the IEEE Conference on
Computational Intelligence and Games (CIG).

[11] Daniele Gravina and Daniele Loiacono. 2015. Procedural Weapons Generation
for Unreal Tournament III. In Proceedings of the IEEE Conference on Games,
Entertainment, Media.

[12] Ken Hullet and Jim Whitehead. 2010. Design Pa�erns in FPS Levels. In Proceedings
of the Foundations of Digital Games Conference.

[13] Rishabh Jain, Aaron Isaksen, Christo�er Holmgard, and Julian Togelius. 2016.
Autoencoders for Level Generation, Repair, and Recognition. In Proceedings of
the ICCC Workshop on Computational Creativity and Games.

[14] Michal Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and Wojciech
Jaskowski. 2016. ViZDoom: A Doom-based AI Research Platform for Visual
Reinforcement Learning. In Proceedings of the Computational Intelligence in
Games Conference.

[15] Steven Orla Kimbrough, Gary J. Koehler, Ming Lu, and David Harlan Wood.
2008. On a Feasible-Infeasible Two-Population (FI-2Pop) genetic algorithm for
constrained optimization: Distance tracing and no free lunch. European Journal
of Operational Research 190, 2 (2008), 310–327.

[16] Douglas M. Kline and Victor L. Berardi. 2005. Revisiting squared-error and
cross-entropy functions for training neural network classi�ers. Neural Com-
puting & Applications 14, 4 (2005), 310–318. DOI:h�p://dx.doi.org/10.1007/
s00521-005-0467-y

[17] Pier Luca Lanzi, Daniele Loiacono, and Riccardo Stucchi. 2014. Evolving maps
for match balancing in �rst person shooters. In Proceedings of the IEEE Conference
on Computational Intelligence and Games.

[18] Raul Lara-Cabrera, Carlos Co�a, and Antonio J Fernández-Leiva. 2013. A proce-
dural balanced map generator with self-adaptive complexity for the real-time
strategy game planet wars. In Proceedings of the Applications of evolutionary
computation.

[19] Yann LeCun, Yoshua Bengio, and Geo�rey Hinton. 2015. Deep learning. Nature
521, 7553 (5 2015), 436–444.

[20] Joel Lehman, Sebastian Risi, and Je� Clune. 2016. Creative Generation of 3D
Objects with Deep Learning and Innovation Engines. In Proceedings of the Inter-
national Conference on Computational Creativity.

[21] Antonios Liapis, Héctor P. Martı́nez, Julian Togelius, and Georgios N. Yannakakis.
2013. Transforming Exploratory Creativity with DeLeNoX. In Proceedings of the
International Conference on Computational Creativity.

[22] Antonios Liapis, Georgios N. Yannakakis, and Julian Togelius. 2013. Sentient
Sketchbook: Computer-Aided Game Level Authoring. In Proceedings of the Con-
ference on the Foundations of Digital Games. 213–220.

[23] Antonios Liapis, Georgios N. Yannakakis, and Julian Togelius. 2013. Towards a
Generic Method of Evaluating Game Levels. In Proceedings of the AAAI Arti�cial
Intelligence for Interactive Digital Entertainment Conference.

[24] Antonios Liapis, Georgios N. Yannakakis, and Julian Togelius. 2014. Computa-
tional Game Creativity. In Proceedings of the Fi�h International Conference on
Computational Creativity.

[25] Beyer Marlene, Agureikin Aleksandr, Anokhin Alexander, Laenger Christoph,
Nolte Felix, Winterberg Jonas, Renka Marcel, Rieger Martin, P�anzl Nicolas,
Preuss Mike, and Volz Vanessa. 2016. An Integrated Process for Game Balancing.
In Proceedings of the IEEE Conference on Computational Intelligence and Games.

[26] Graeme McCaig, Steve DiPaola, and Liane Gabora. 2016. Deep Convolutional
Networks as Models of Generalization and Blending Within Visual Creativity. In
Proceedings of the International Conference on Computational Creativity.

[27] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, and others. 2015. Human-level control through deep reinforcement
learning. Nature 518, 7540 (2015), 529–533.

[28] David Silver, Aja Huang, Christopher J. Maddison, Arthur Guez, Laurent Sifre,
George van den Driessche, Julian Schri�wieser, Ioannis Antonoglou, Veda Pan-
neershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham,
Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray
Kavukcuoglu, �ore Graepel, and Demis Hassabis. 2016. Mastering the game of
Go with deep neural networks and tree search. Nature 529 (2016), 484–503.

[29] Adam M. Smith and Michael Mateas. 2011. Answer set programming for pro-
cedural content generation: A design space approach. IEEE Transactions on
Computational Intelligence and AI in Games 3, 3 (2011), 187–200.

[30] Julian Togelius, Emil Kastbjerg, David Schedl, and Georgios N. Yannakakis. 2011.
What is procedural content generation? Mario on the borderline. In Proceedings
of the FDG Workshop on Procedural Content Generation.

[31] Julian Togelius and Juergen Schmidhuber. 2008. An Experiment in Automatic
Game Design. In Proceedings of the IEEE Symposium on Computational Intelligence
and Games.

[32] Julian Togelius, Georgios N. Yannakakis, Kenneth O. Stanley, and Cameron
Browne. 2011. Search-based Procedural Content Generation: A Taxonomy and
Survey. IEEE Transactions on Computational Intelligence and AI in Games 3, 3
(2011).

http://dx.doi.org/10.1007/s00521-005-0467-y
http://dx.doi.org/10.1007/s00521-005-0467-y

	Abstract
	1 Introduction
	2 Related Work
	2.1 Game Balancing
	2.2 Deep Learning

	3 The Deathmatch Testbed
	3.1 Level Generation
	3.2 Playtest Data Collection
	3.3 Machine Learning

	4 Experiments
	4.1 Training Data
	4.2 Training Results
	4.3 Test Results and Analysis

	5 Discussion
	6 Conclusions
	Acknowledgments
	References

