Designing Semantic Game Worlds

Jassin Kessing
jassinkessing@gmail.com

. Tim Tutenel
tim.tutenel@gmail.com

Rafael Bidarra
r.bidarra@tudelft.nl

Computer Graphics and Visualization Group
Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands

ABSTRACT

Current game worlds often fall short in providing consistency be-
tween the visual representation of the world and the way it feels,
behaves, and reacts. This problem partly originates from the goal-
oriented and cost-effective nature of the game development pro-
cess, which mostly favors ad hoc solutions for one particular game,
rather than investing in concepts like reusability and emergent game-
play. In broader terms, we observe that game worlds miss seman-
tics, and we argue that its deployment has the potential to bring
about the consistency missing in their content. Therefore, we present
a novel approach aimed at enriching virtual entities in game worlds
with information about their roles, how they relate to others, and
how they can affect and interact with players, NPCs, and with each
other. We discuss several requirements to achieve these goals, and
introduce a semantic model to represent game worlds. In order
to support and validate this model, we have developed Entika, a
framework to facilitate the deployment of semantics during game
development, as well as its maintenance during run-time. Fur-
thermore, we briefly discuss several applications that demonstrate
the power of this semantic model for game worlds. After care-
ful evaluation of our semantic game world model and framework,
we conclude that a semantically rich world representation can sub-
stantially assist designers in creating much more consistent game
worlds.

Keywords

game worlds, semantics, object interaction

1. INTRODUCTION

The visual quality of game worlds increased massively in the
last three decades. Representations evolved from pixelated two di-
mensional drawings to stunning, beautifully lit, and highly detailed
three dimensional visualizations. The closer game worlds depict
reality, the more noticeable it is for gamers when objects do not
behave accordingly. And the better graphics get, the bigger this
gap between visual and behavioral realism becomes. For example,
objects not strictly necessary for gameplay purposes often remain
dead and players are unable to interact with them.

Moreover, the problem of this lack of coherence between the vi-
sual representation of the world and the way it feels, behaves or
reacts, hinders the immersion when playing a game. More specifi-
cally it breaks spatial immersion, which Bjork and Holopainen [6]
explained as the experience when playing in a perceptually con-
vincing game world, i.e. when it both looks and feels real.

In the fields of linguistics, computer science and psychology, se-
mantics is the study of meaning in communication. When focusing
on virtual environments for computer games, we call semantics all
information conveying the meaning of a virtual world and its enti-
ties’ [33]. In this work, we will investigate whether semantics can
be applied to game worlds to describe the actual meaning of virtual
world objects, therefore going beyond their mere visual represen-
tation. In doing so, we want to get a step closer in bridging the gap
between the look and the feel of game worlds.

To better understand why this gap is present in many games, it
is important to take a look at how a game engine is typically struc-
tured. A game engine is an integrated software system of many dif-
ferent components. These components can be 2D or 3D rendering
engines, physics engines, sound engines, scripting interfaces, arti-
ficial intelligence (AI) components, and many others. Developers
often assemble a game engine as a patchwork of new components,
components created for previous games and middleware compo-
nents providing ready-to-use solutions for particular elements of
game development. Next to the many technical issues involved in
integrating all these different components, it is a challenging task
to create and maintain the coherence between all the different rep-
resentations of an object in the game world.

These objects are represented in the first place as a set of prop-
erties used for both development and gameplay purposes. One can
think, for example, of a unique ID, the maximum amount of gun
ammo, or the price of a shop item. In addition, an object is pre-
sented in the game, whether that is visible by means of a geometric
model, a particle system, or an icon, or audible through the use of
sounds and music. Increasingly often, some physics information is
present as well, like a mass value and a bounding box, which can
be used by a physics engine to properly apply physics (e.g. grav-
ity) and detect collisions. Finally, a game object can show some
basic behavior, usually defined by scripts that, for example, can
prescribe how to move or how to cause damage to the avatar of the
player. Although presentation, physics, and behavior make use of
some properties, they are usually stand-alone, and only defined for
their particular purpose. There is, therefore, a general lack of co-
herence between the properties used by all different game engine
components. This lack of coherence could be solved by develop-
ers by investing a lot of time and money in properly blending the
components they currently have in use, but this is not a structural,
long-term solution.

Graphics engine

Player interaction Physics engine

Semantics

Content Al engine

Gameplay code

Figure 1: Representing semantics as the centralized object rep-
resentation communicating with all game components.

Moreover, this coherence is nowadays more difficult to maintain,
as the popularity of exploration and sandbox-style games such as
Grand Theft Auto IV [32] is pushing the demand for bigger, more
detailed game worlds. Because it would be too expensive and time-
consuming to manually create every detail in these game worlds,
the importance of procedural modeling, which can automatically
generate parts of game worlds, has significantly increased.

The Sims [23], featuring a complex world with interactive ob-
jects and dynamic characters, shows how possible object interac-
tions were specifically built-in for the purposes of that entertain-
ment series [10]. Interactivity is perhaps the most unique element
of games compared to other art forms. However, it makes it all
the more difficult for their creators to deliver a spatially immersive,
consistent, and believable product. It is one thing to design, or gen-
erate, a coherent game world, it is yet another to keep it coherent.
A game world is not only changing and responding to a player’s
or agent’s actions but also to objects and other entities in the game
world. Maintaining a consistently realistic game world is a major
challenge for any game developer.

We argue that what is truly missing here is a glue to keep ev-
erything together: glue to combine the different components of a
game engine, and more specifically the different representations of
the objects used by these components; glue to integrate different
procedural generation techniques; and glue to maintain the coher-
ence when the game world is evolving over time. It seems that an
integrated semantic representation is necessary to be applied in the
context of game worlds. This approach is shown in Fig. 1.

It is important to wonder why such a powerful idea of a single
semantic representation for all game components is not yet used
today. Up till now, most game developers only add object and world
data in an ad-hoc way, specific to their current game and specific for
the component that requires it. An obvious reason is the extra work
it involves. It clearly involves more efforts of the designers to add
this generic semantic information discussed above. It is therefore
important that defining semantics is not too time-consuming, and
that such specifications are reusable between different development
projects. The reusable nature of such a specification should largely
compensate for the necessary extra efforts.

Therefore, in this article we present a novel approach to enrich
virtual entities in game worlds with semantics, henceforth called
semantic game worlds, in order to improve the generation and con-
sistency of those worlds. We prefer to use the term entities instead
of objects, because it encompasses everything that can be inside
the world, including substances like wood and water, living entities
like animals and humans (possibly the player), and abstract entities
like a company’ or "an enemy’.

In the following sections, we present the main characteristics of
semantic game worlds, and discuss several techniques that we de-
veloped to design and use them. After an overview of related work

in the next section, we will introduce a semantic model for game
worlds in Section 3. Entities in this model will be analyzed and
described in more detail in Section 4. The Entika framework to
support this model is introduced in Section 5. Section 6 continues
with a showcase of several applications that could benefit from se-
mantics, after which an evaluation of the model and framework is
given in Section 7. Finally, our main conclusions can be found in
Section 8.

2. RELATED WORK

Adding semantics to entities in game worlds is no easy task, as
there is a serious lack of tools to specify it in current game devel-
opment environments. Although the role of semantics in virtual
environments is receiving increasing attention, so far not much re-
search has been done on adding semantics to game worlds [33],
let alone with the purpose of making objects more functional or
improving the overall gameplay.

Research in artificial intelligence proposed the notion of ontolo-
gies, due to the lack of shareable and reusable knowledge bases
[12]. In the context of this research, ontologies define the meaning
of objects and the relations between them. Important relationships
are generalization and inheritance, where classes are related, and
each subclass inherits the features of its superclass [15]. The class
“car’, for example, has ’vehicle’ as its parent. Another important
relation is instantiation, which relates a class with each of the indi-
viduals that constitute it, e.g. A ’Ferrari’ is an instance of "car’.

In 1975, Minsky introduced the concept of frame-based knowl-
edge representation [26]. A frame is a representation of a stereo-
typed situation, e.g. ’being in a living room’, which contains related
information, such as the expectations of what might happen next.
By interconnecting related frames into frame-systems, transforma-
tions between frames can be defined in order to represent, among
others, actions, changes, and cause-effect relations. Frames them-
selves are organized in a hierarchy, and contain slots to specify par-
ticular (attribute) values. Inheritance is used to let sub-frames have
access to attributes of their super-frames [28]. The notion of frames
gained a widespread facilitation in the research fields of philosophy
and artificial intelligence.

A decade after the introduction of frames, Douglas Lenat started
the Cyc project [22][21]. He attempted to create a global ontology
and a large knowledge base to represent common sense knowledge.
Over the years, this system, of which parts were made publicly ac-
cessible through OpenCyc, has been expanded with thousands of
concepts, facts, terms, and millions of human-defined relations be-
tween them. All assertions are formulated in CycL, a frame-based
language, and the CycL constraint Language, a more powerful, but
slower predicate calculus to express more complex knowledge.

Smart objects [19] were a successful proposal for adding seman-
tics to virtual objects, dealing with many of the possible user in-
teractions in a virtual environment. Noticeably, smart objects were
primarily devised for manipulation, animation, and planning pur-
poses. An example is an artificial agent that can open a door by
moving its hand to the door knob, using the correct hand posture,
and turning the knob. To model the interaction steps in agent-object
interaction, a framework has been presented to associate smart ob-
jects with user slots [30]. An agent can only use an object when he
has obtained a free user slot for it, after which specific usage steps
can be consulted. Although smart objects are powerful for interac-
tion purposes, they lack the information of what they are actually
useful for. Gutiérrez et al. [13] and Ibanez-Martinez et al. [16]
have both proposed other object representation models.

The Nintendo DS game Scribblenauts [1] is an interesting ex-
ample of how frame-based knowledge representation, semantics,

and ontologies have been used in the game industry. In the game,
players are placed inside an obstacle-filled level and are given a
goal, e.g. reach the exit, or collect stars. This can be achieved by
making clever use of objects, all behaving in a way one expects.
By extracting information from dictionaries and encyclopedias, the
developers created a large database of objects, mapped into a hier-
archy of classes, and each class having a set of properties, such as
physical characteristics and interaction possibilities.

Building upon the related work discussed above, we have de-
scribed how semantic behavior of game objects can be specified by
using services, and how this is integrated in the three main phases
of the game object design process [20]. In a specification phase,
generic object classes can be specified (including their attributes
and services), after which the customization phase allows a selec-
tion of these classes to be customized into a concrete game project
setting. Finally, instances of those objects can be placed in a game
world in the instantiation phase. In this article we will put this
approach in a broader context, starting with the development of a
semantic model for game worlds, introduced in the next section.

3. REQUIREMENTS FOR A SEMANTIC
WORLD MODEL

From examining the current limitations of game worlds and study-
ing the related work, we have identified several possible improve-
ments to the design and quality of game worlds. This section de-
rives some requirements for the specification of game world se-
mantics for both the design phase and the run-time phase. These
requirements need to make sure the proposed semantics specifica-
tion will help provide those improvements.

When trying to apply research on semantics to virtual worlds, we
notice that much of the important information to store in a seman-
tic representation of a game world is already present in some form
or another. Bits and pieces of information are scattered throughout
the different components of the game engine. Models are linked to
scripts that describe their behavior upon interaction, the Al com-
ponent stores information about agent behavior, the textures of a
model often hold a clue to what materials the model is made of,
etc. More often than not, there is no real cohesion between the data
in these different components. A wooden table might have a wood-
like texture attached to it, but the physics engine will likely have no
way of using that information to actually treat that object as made of
wood. This means that designers and programmers need to define
repetitious data and, moreover, this could lead to inconsistencies in
the gameplay that break the player’s immersion.

A centralized knowledge base of a semantic game world repre-
sentation is therefore the basis for many important benefits. This
semantic representation should be a consistent source of informa-
tion that needs to be accessible by all components of the game en-
gine and that is understandable by both man and machine. A se-
mantic model fit to be used for game worlds should, at least, allow
designers to express all of the following aspects of game worlds:

e What a geometric model actually represents: what type of
object it represents, what classes it belongs to.

e The essential physical or other characteristics of the objects
in the game world, e.g. the damage that can be dealt by a
sword, what matter it is made of, how it looks, how it sounds.

e The way a player (and other characters) can interact with the
game world and its objects.

e How objects relate to each other: how they are placed relative
to each other, what their dependencies are, ownerships etc.

e How the objects behave over time, possibly influenced by
other objects in the world.

This information will make it possible to have the different game
components to gather information from a single, centralized and
consistent knowledge base, but it will also allow people working on
the game, whether they are artists or programmers, to have a better
understanding of the game world they are working on and to have
a more expressive language at their disposal when communicating
with the machines they work with, e.g. to more easily express their
intent when creating procedural content generation algorithms.

In addition, there are requirements to which a semantic model
for game world should adhere to:

e Inclusion of semantics should have a low impact on the de-
sign pipeline; reusablity is the key in achieving this goal,
thereby reducing, not increasing, design efforts.

e The semantic model should provide a wide expressive range
to designers; the model shoud allow designers to express
their full intent without any limitations.

e Semantics should further enable procedural generation; this
allows designers to combine and integrate multiple existing
techniques to generate a consistent and coherent whole.

e Designers should be able to define physically sound game
worlds; it should be possible to mathematically express de-
pendencies between object characteristics. Note that this does
not mean that all game worlds need to adhere to real world
physical laws.

e Designers need to be able to approach game worlds and ob-
jects from different perspectives, such as shape, texture, com-
position, function, or behavior.

e The semantic model should provide a consistent way to de-
fine interaction with game worlds.

e The world should be kept semantically consistent throughout
the whole game; maintaining consistency helps immersion.

e Semantically modeled game worlds should enable emergent
gameplay.

In the next section, we will discuss the specification of semantics
for entities while meeting the requirements listed above.

4. SEMANTIC ENTITIES

This section proposes our specification model for game world
semantics. This model can be used as a ruleset to build ontologies,
or alter existing ones, specifically to be used in the context of game
worlds. In this model, we define some concepts, both based on real
world subdivisions of objects and based on common elements often
found in games. Rules and constraints between these concepts are
set and explained. We will analyze entity classes in our model and
describe which semantics can be specified to support them.

4.1 Entities

An entity is the most important concept in our model of semantic
game worlds, and is defined as ’that which is perceived or known
to have a distinct existence’. To expand the semantics of entities,
and easily distinguish one entity from another, we enrich them with
several general concepts. First of all, similar to frame-based knowl-
edge representation, there are attributes, defined as ’characteristics
of an entity’. One can think of attributes like 'mass’, ’edibility’,

Entity
|

I Abstract entity I I Matter

]
I i Physical entity ’

| =]
I I Tangible object I

I Space

Figure 2: An overview of entities.

’comfort’, *color’, and ’health’. Attributes are paired with values,
and in order to express those values more clearly, it is convenient to
define the notions of unit category and unit. A unit is any division
of quantity accepted as a standard of measurement, while a unit cat-
egory denotes those units that are derived from the same base unit.
The value of *mass’, for example, can be expressed with a *weight
unit’, e.g. 'gram’, "pound’, or ounce’. In addition, we expand en-
tities with state groups. A state group is a collection of states, of
which only one can be active at a given time. An advanced coffee
machine, for example, can either be on’ or "off’, and at the same
time, be in ’cappuccino’ or espresso’ mode.

As mentioned before, we have split up entity classes into more
specific classes, in order to define more detailed semantics. A hier-
archical overview of this is given in Fig. 2. First, we have defined
abstract entities, as opposed to physical entities. Abstract entities
do not have a physical representation in the world, even though
they are present in some other way. Examples are companies, or,
more game-oriented, factions or guilds. In contrast, physical en-
tities are present in the world, have a particular position, and are
usually subject to physics.

Probably the most notable physical entities in games are the tan-
gible objects, like mechanically produced swords and ovens, and
natural objects such as trees and ice cubes. Tangible objects are
made up of a type of matter (described in the next subsection) that
is shaped in a particular form, and thus having a particular quantity.
A tangible object is either a separate object, or a compound object
that consists of two or more tangible objects called parts. A table,
for example, can be described as a compound object that consists
of a table top (a separate object made of wood), and several legs
(separate objects made of steel) underneath. The parts or matter
a tangible object is made of, can change its behavior drastically.
Without an engine, for instance, a car cannot drive. Besides being
used as parts, tangible objects can be used to cover other tangible
objects, as well bringing along different behavior. A coat, for ex-
ample, warms the object it covers. One more property of tangible
objects is that they can be physically connected to other objects,
without being a part of it. Electrical devices are the perfect exam-
ple for this, as they are usually connected to a power outlet with a
cable.

In many games, inventories are present in which players can
store their collectibles. There are numerous examples in role-playing
games, where chests can be opened, after which the items in the
chest’s inventory can be looted and put in the player’s (usually
non-physical) inventory. This notion should clearly fit in the above
semantic descriptions. Inventories themselves, however, are "noth-
ing’: they are empty spaces, being able to hold items (tangible ob-
jects) or store matter. This brought us to the concept of spaces:
bounded regions for which clear semantics can be specified. They
have an extent in the world, even though their shapes are not clearly
defined. With spaces, much more possibilities open up. Besides
having inventories of chests (possibly filled with coins) and bottles
(possibly filled with water), for example, a pocket in a jacket is a

possible space as well, just like a parking space. With spaces, one
can even define areas with particular semantics, such as no-walking
zones, checkpoints (for racing games or saving purposes), or areas
that trigger a booby trap.

4.2 Matter

We stated that tangible objects consist of matter. By analyzing
matter, it is possible to define some interesting semantics. Instead
of starting from an engineering point of view, we will look through
the eyes of a physicist. Put simply, anything that has mass and
occupies space is called matter [27]. Matter consists of chemical
elements like hydrogen and oxygen, which are represented in a pe-
riodic table, and are assigned an atomic number and symbol. By
combining chemical elements, matter is formed. Depending on a
set of physical conditions, it has a particular state, represented by
a gas, liquid, solid, or plasma form. In-game, visualization of mat-
ter depends on this state, varying from 3D models to particle/fluid
systems.

We have split up matter in four different types. The first type
are substances, which either consist of pure elements, or a combi-
nation of multiple elements through chemical reactions. Water and
sugar are two examples, as they cannot be broken apart without
chemistry. For the second type, we go one step further, by blending
substances together -physically, not chemically- in order to form
a mixture [11]. Tungsten steel is an example of a mixture. When
two substances, possibly having their own semantic behavior, are
mixed together, they make place for a new mixture, possibly having
its own unique behavior. In role-playing games, for example, this
might be useful for the creation of potions, where different ingre-
dients mixed together can result in a potion with its own specific
effect(s). This already happens in the game The Elder Scrolls V:
Skyrim [5]. Compounds are similar to mixtures, but these are com-
bined chemically, like seawater, nicotine, and shampoo. Finally, we
have included materials, which are either raw or semi-finished (the
result of mechanically processing raw materials). Some examples
are cotton and ore (raw), and steel (semi-finished). This seman-
tics can be very useful for games that deal with resources, which
are usually building simulations or strategy games like Heroes of
Might and Magic [29] and Warcraft [7], or the more recent mobile
phone app Alchemy [3].

By defining matter, tangible objects will inherit semantics in the
form of physical and chemical attributes, allowing a wooden table
top to burn, for example, in case one has defined that the material
’wood’ is flammable. In addition to this, we allow each tangible ob-
ject to have one or more layers, made of a type of matter. Paint and
anti-oxidation are two examples, the latter changing the semantics
of steel when applied to it. Insect repellent is another example.

4.3 Relations

Thus far, we have described various semantics of indivual enti-
ties. Now, we would like to introduce a few more concepts that
relate entities to each other.

First, a family is any number of entities that satisfy a set of con-
ditions. Given all defined concepts above, one might include all
red and non-rotten apples with a mass of at least 100 grams, or all
small wooden tables. Instead of being derived based on conditions,
one could also manually combine related entities into a group. An
example of a group is a farm, which may contain a farmhouse, a
field, and a cow.

A predicate is similar to adverbs in natural language; examples
are ’big’, ’beautiful’, and ’tasty’. A unique aspect of predicates is
that they cannot be defined without the point of view of another
entity, and conditions on attributes or states. Humans may find

a building ’tall’ when its height is greater than a particular value,
while a giant may consider this ’small’, having other conditions for
the predicate 'tall’ and ’small’.

Finally, one can think of more relations, such as family relations
(’Jane is the mother of John’), alliances between countries, own-
ership relations ("a person owns a book after buying it’), or place-
ment relations (*a table should be placed on the floor’). To allow the
specification of these relations, we have defined a relationship type.
For each relationship type, relationships can be defined between a
source and target entity.

4.4 Services

Besides describing the physical properties of entities, semantics
can also be used to specify their behavior. This not only allows
designers to create a dynamic game world in which entities undergo
global changes, but it also enables them to let players interact with
entities in a way they expect.

The notions introduced in the previous subsections give us a
foundation for the definition of services, first mentioned in [20].
In the real world, entities have particular functions and provide ser-
vices, which should also be the case for entities in a virtual world;
for example, a jacket has the service of providing warmth to the
person wearing it. As such, services are a very powerful way to
express semantics in game worlds. We define a service as ’the ca-
pacity of an entity to perform an action within a context’. We will
split up this definition and discuss each part in more detail.

Because we want to specify the behavior of each type of entity
(whether it is a book that provides knowledge, a plane that is able
to fly, or a fridge that keeps beverages cool), we define services for
entities, both abstract and physical. We want to define what they
can do, what their behavior is, and how they react to others; hence
the term ’capacity’. The process that is performed by an entity is
described as an action. Actions can be seen as abstract descrip-
tions, defining what happens; they are like verbs in natural lan-
guage: play, boil, eat, shoot, etc. Related to this term, we will also
use the notion of event. This is an action that is accompanied by
an actor, and possibly a target as well. Some examples are the fol-
lowing (with the last one having a target): a kid can play, water can
boil, guns can shoot, and humans can eat food. The generalization
ontology that we have included in our model plays an important
role here. For example, if a gun can shoot, inheritance will make
sure that pistols and machine guns, both children of the *gun’ class,
can shoot too. One more example, where humans need a key to
unlock a door, introduces another aspect of events: artifacts, which
are tangible objects that are used to successfully perform the action.

Within our definition of a service, we used the notion of context.
This context describes all the conditions that should be satisfied in
order to trigger an event. There are many types of conditions, a spa-
tial condition being one of them: if the player is in the vicinity of an
enemy, it will attack him; only buildings that are within a distance
of 5 km will be polluted by a factory; an alarm will be triggered
when there is movement within 10 meters. Conditions can also be
based on the above concepts: an oven should be on before it heats
up the things inside it (states); when the level of health has reached
zero, the player will die (attributes); a car will only drive with an
engine (parts); a fish should be in water in order to live (matter and
spaces); a computer should be connected to a power cable (connec-
tions); an object made of wood can break (matter); kids will only
eat food which they think is tasty (predicates); a key will only open
one specific door (the one with which it has a relationship).

Even though conditions may be satisfied, if nothing happens,
there is no real purpose to define an event. Therefore, events have
at least one effect, which we have split up in either of the following:

e Reaction: A reaction is another action that is performed by
an entity (thus an event itself), possibly, but not necessarily,
the actor or target of the original action. This action-reaction
principle can be seen in many situations: when a button is
pressed, an elevator appears; if an elf attacks an orc, the orc
will fight back; in case the player enters a room, a trap will
be triggered, etc.

e Change: There are many changes one can think of, most of
them being based on the concepts described in Section 4,
with changes on attribute values or states the most common
ones. Given are several examples: an oven will increase the
value of the ’temperature’ attribute of the objects that are
inside it; a locked door will change to the unlocked’ state
when it is unlocked; when eaten, a cookie will decrease the
hunger level of the one that ate it; if a jacket is worn, it will
keep the wearer warm; while running, a human will become
fatigued.

e Creation/deletion: Real-time strategy games often show the
creation of new military units from barracks, usually only
possible when particular resources are supplied. A bomb will
delete itself from the game world when it explodes, just like
a cookie when it is eaten.

o Transfer: Vending machines, such as the ones in BioShock
[17], can supply weapons to humans (e.g. the player). Before
this transfer takes place, the human should have transferred
a coin to the machine.

o Transformation: In a game like The Sims [23], children will
eventually grow up; they are transformed into adults. Al-
though they will keep their attributes (like age and prefer-
ences), being an adult opens up new interaction possibilities
and behavior.

o Relationship establishment: This effect will establish a re-
lationship between two entities. For example, when buying
a new telephone, a relationship is established between the
phone and a number, and another relation between the phone
and the buyer.

Different events can be defined for one particular type of action,
having different actors, targets, contexts, and effects. Take the ac-
tion ’eat’, for example. If a dog eats a dog snack, that will decrease
its level of hunger, and make it happy. For humans, the effects will
likely be different, so it may be wise to define another event for a
human. Furthermore, events and effects should be accompanied by
a notion of time, indicating how long an event should be executed
and how long an effect should last. Some events are discrete and
will only occur one or a few more times (e.g. flipping a switch),
while others are continuous for a fixed amount of time, or everlast-
ing (e.g. getting hungry). The same applies to effects: applying a
bandage might immediately heal the target, while drinking a potion
might heal the target gradually over some time.

S. SEMANTIC FRAMEWORK

To validate the approach presented in the previous sections, we
have developed Entika, a framework that enables game developer
teams to easily declare semantics for their virtual world. Entika
consists of two different modules, and their combined use makes a
very convenient way to design a semantic game world. First, in or-
der to enable game designers to quickly specify semantic entities,
we have created the Semantics Editor. Second, to relieve game
programmers from handling all the semantics during run-time of

a game, we have developed the Semantics Engine. Any design
changes with the Semantics Editor will automatically be picked up
by the Semantics Engine, thus allowing developers to easily refine
and test the semantics in their game. Both modules will be dis-
cussed in more detail.

5.1 Semantics Editor

The Semantics Editor makes it possible for game designers to
edit libraries of entity classes and all other concepts of Section 4.
The idea behind this editor is to specify new classes (including tan-
gible objects, attributes, and actions), and modify or remove ex-
isting ones. Each concept is represented by its own library. To
do so, the editor provides the user with an overview of the avail-
able libraries, and the classes that populate them. Each class can
be specified in great detail, meaning that its semantic information
can be fine-tuned at will, ranging from its name and description, to
relations between that class and other classes. For example, a tan-
gible object can be equipped with attributes, but it is also possible
to define the matter of which it is made, what its relationships with
other objects are, or which actions it can perform. Because of the
implementation of the generalization ontology, derived classes will
inherit the semantic information (including attributes and events)
from their parents, although specific values can be overruled if nec-
essary. When, for example, the ’physical object’ class is assigned
the *mass’ attribute, each underlying child class will inherit this at-
tribute, but the specific mass value can be modified for each one of
them.

In addition to generic and reusable classes, game-specific ob-
jects can be created by basing them on a tangible object. Besides
customization of inherited semantics, game objects can be further
customized with references to e.g. geometric models, textures, and
audio files. For each of these extra properties, conditions can be
specified to indicate when they have to be used. For example, only
when a radio is in the "on’ state, it should play a particular music
file.

Fig. 3 shows a screenshot of the Semantics Editor. On the left,
all libraries are displayed; on the right, some of the semantics of
the selected "human being’ class are shown. The user is able to
modify its names and description, and observe a list with its par-
ents and children (from the generalization ontology). Because of
inheritance, the human being has a health’ and 'mass’ attribute,
defined at one of its parents. In addition, the human has an at-
tribute of its own, "hunger’, having a default value of 10, and rang-
ing from 0 to 100. Usability was one of the aspects that was aimed
for when developing the editor, which has been achieved by pro-
viding a clear and distinctive overview of all information, the pos-
sibility to hide unwanted information, and providing user-friendly
ways to quickly specify semantic information. Actual storage of
the libraries is done in databases, making the semantic information
easily and quickly accessible to game programmers, even without
the editor.

5.2 Semantics Engine

Analogously to what a physics engine does with in-game physics,
the Semantics Engine maintains the semantic consistency of the
world during run-time of a game. After creating entities in the Se-
mantics Editor, instances of them can be placed in a game world.
By making use of the Semantics Engine, game programmers do
not have to implement the execution of semantic behavior of these
instances, as the engine is charged with this handling.

The engine has several main features. First, it maintains all the
game worlds that have been created, and all the instances that have
been placed inside them. During run-time of a game, the engine

eric [ESE=T=)
m,, MV @@+ @ | coect» ing ring > organism > animal» chordate » verisbate» mama > placental » primate »_hominid»_homo » $00

inerited

and citdren

warings [0S e s b Tetamrmics

Figure 3: A screenshot of Entika’s Semantics Editor.

updates all instances, and checks whether they have any active ser-
vices. If so, when the requirements have been satisfied, events are
executed, and the corresponding effects are applied. This means
that attribute values can be changed continually, physical object
instances can be moved from one space to another, substance in-
stances can be mixed together, and new instances can be created,
among many other possibilities. In turn, these changes could result
in the activation of an inactive service, of which the effects will be
applied from then on. For example, if someone uses the ’turn on’
action on an oven, it will get in the "on’ state, making it heat up its
inventory items as long as it stays on.

Note that even though the Semantics Engine can create or re-
move instances during its updates, this does not automatically mean
that their required audio-visual content is actually added to or re-
moved from the game itself. It is still up to the game programmers
to handle this. However, the engine does give a notification when
this should happen. Because of this portable behavior, the engine
can be used in many games.

The engine also offers game programmers several useful tools
to improve in-game object interaction. An example is requesting
what actions are useful to perform on a certain instance, which the
programmer can use for the graphical user interface of a game, or
whatever way he chooses to let the player decide what action he
wants to perform. For example, when a player selects a door, the
engine might (dependent on the defined semantics) propose the ac-
tion ’close’ when the door is in the ’open’ state, while it might
suggest “open’ and ’smash’ when it’s "closed’.

Because of the Semantics Engine, instances are constantly up-
dated, resulting in a lot of dynamics, assuming any semantics have
been defined for them. This leads to adaptive game worlds that
change over time, forcing the player to adapt as well and think
about the results of an action, but also allowing him to think cre-
atively to accomplish something. This is a great improvement with
respect to many games that are currently available. However, it
leads to a downside if the addition of semantics to games results
in too much extra memory overhead, or if processing the handling
of services requires too much time. In order to measure the per-
formance of the current Semantics Engine, we have created three
simple test cases. To provide reliable and representative results,
we have decided not to use a world with different entities, but a
world with instances that are all based on the same entity. We have
upscaled everything to the extreme -the execution time of single
events is less than a millisecond- to check whether the engine is

Table 1: The update time (in ms) of Entika’s Semantics Engine
Nr. of instances || 10 | 100 | 1,000 | 10,000 | 100,000

Test case 1 0 0 5 58 632
Test case 2 0 0 2 30 351

capable of handling a huge amount of semantic instances.

1. In test case 1, humans are becoming hungry, by having a ser-
vice that has an effect on their "hunger’ attribute each second.

2. For test case 2, we let weapon factories produce one new
sword per second.

The update times of the engine for 10, 100, 1,000, 10,000, and
100,000 instances have been measured, and are shown in Table 1.
For all test cases, we have used an Intel Core i7-870 2.93 GHz PC
with 8 GB RAM. For test cases 1 and 2, having 1,000 instances and
services requests more of the engine than 10 instances, but perfor-
mance is still very well. Even with 10,000 instances, the engine will
not slow down a game that much. The extreme scenario of 100,000
instances shows that the engine needs to be optimized, which was
not our primary focus during this research. It is clear that the engine
is not yet capable of handling the events of thousands of instances
at a time, although these extreme scenarios are unlikely to appear
in real game worlds.

6. APPLICATIONS

Semantics is a powerful means for game development, and can
be applied to several domains. In this section, we will shortly dis-
cuss some of the possible applications that are built using our se-
mantic model.

The field of procedural content generation can benefit in at least
three ways. With the concept of relationships, as described in Sec-
tion 4.3, placement relationships can be defined between physical
objects. These relationships can then be used for semantic layout
solving. The layout solving approach we have developed uses step-
by-step procedures to add objects to scenes in a valid and logical
way. In this manner, an entire scene layout can be generated au-
tomatically. The defined placement relationships decide what is a
valid location for an object. Every physical object can have a num-
ber of placement relationships defined that describe where and how
instances of that physical object should be positioned in relation to
instances of other physical objects. A more in-depth description
about the use of our model in semantic layout solving can be found
in [33] and [35].

The integration of procedural content generation techniques to
form complete buildings is still largely unexplored, limiting their
application to open game worlds. In [36], we propose an approach
that integrates existing procedural techniques to generate such build-
ings. With minimal extensions, individual techniques can be coor-
dinated to create buildings with consistently inter-related exteriors
and interiors, as in the real world. The solution, making use of the
semantics of building elements, consists of a framework where var-
ious procedural techniques communicate with a moderator, which
is responsible for negotiating the placement of each element.

Once game worlds are finished, they are usually static and there-
fore valid in the context and the situation for which they were built.
But a game might need the same world under different circum-
stances. Instead of forcing designers to manually rebuild every el-
ement of the game world all over again, we proposed the concept
of using procedural filters [34]. Procedural filters provide a layer

of customization that can be applied to a finished game world or
the objects therein. These filters will not structurally change the
world, but add or change its finishing based on a new context. For
example, we might want the same game world in springtime for
one level of the game, but also in wintertime for another level. Fil-
ters use building blocks to alter the visual appearance of objects in
the game world. A graph built up of these building blocks repre-
sents the procedure that is to be followed by the filter. By using the
semantic information available in the scenes, the filters can more
easily fine-tune the appearance to the specific circumstances of the
game world and of the objects themselves.

Finally, with the addition of a semantic layer to game worlds,
agent behavior can be improved by letting them make use of seman-
tic entities. Entika supports the use of agents, by providing several
methods to search through the instances in a game world. In case
an agent is looking for a specific entity, the Semantics Engine can
provide information about all instances of that entity, so the agent
can find its way towards them and interact with them. For this,
planning and pathfinding techniques are typically required, such as
drives and backward chaining; see for example [2], [4], and [25].
Instead of making an agent aware of everything in the game world,
future work may include agents that have their own worldview, in
which learning patterns are applied to let an agent update its knowl-
edge about the whereabouts of others when he comes across them.
Furthermore, future work might focus on roles and tasks, and fa-
miliar concepts from the BDI agent model: beliefs, desires, and
intentions [8][31].

7. EVALUATION

In this section, we discuss the evaluation results of our semantic
model. We performed a number of interviews with game develop-
ers, both designers and programmers, and talked about our main
problem statement -the lacking object behavior as opposed to the
increase in graphical realism- and the proposed model. Intervie-
wees also had the opportunity to try out the Entika proof of concept
editor by creating a scenario we prepared for them, based on some
notions from basic city building game.

The interviewees confirmed they do not see any significant in-
crease in realism (or higher detail) in current object behavior and
interaction. However, many of them did mention a huge increase in
destructability: many games now allow all (or many) objects in the
game world to be destroyed upon explosions or gunshots. However,
when linked to the proposed model, a concern was raised about the
destruction of objects, leading back to theories about existence and
the philosophical question of what makes an entity that entity. Con-
sider a television that is cut into pieces. Is it still a television? Does
is still provide its usual services? But what about a piece of paper?
Even after cutting it, it is still writable. And a candle? It will only
remain a candle as long as it has not burned up. With more realism
in games, and more possibilities to destroy (objects in) the envi-
ronment, interviewees deemed it necessary to study how partially
destroyed objects get along with semantics, which we do not deal
with in our current approach. We do make use of the aggregation
ontology [15], though, where parts are related to the entire assem-
bly ("a wheel is part of a car’). This ontology might be a step in the
right direction for total destruction.

From the perspective of our problem statement, two interesting
notions surfaced by an interviewee: internal consistency and the
domino effect. With internal consistency, the interviewee meant
that it is not always necessary to have a world that is consistent
with the real world, although internal consistency is necessary. It is
unacceptable to have two similar objects behave in a different way.
However, this is still often the case: sometimes a particular object

is usable in one level, because it is associated to the story, while
similar objects in other levels are no longer usable or behave dif-
ferently. This would suggest that a centralized, consistent semantic
representation of the game world and the objects could definitely
increase immersion by helping developers to maintain this internal
consistency. With the domino effect, the interviewee referred to be-
ing allowed to set up constructions of multiple objects that, when
combined, can set off a huge chain of events where the effect of
one object triggers an action in the next, like in Little Big Planet
[24] or The Incredible Machine [18]. The interviewee thought it
would be nice if a player could set up similar constructions in, e.g.,
a first person shooter to defeat an enemy in an ingenious, creative
and original way. However, he also mentioned that sometimes it is
more fun to keep it less complicated so the player can quickly see
what objects can be interacted with, and which cannot. Nonethe-
less, it does seem that detailed object behavior would spark players’
creative thinking. Although this does not cater to all players, it cer-
tainly suits certain playing styles and game genres.

Regarding this last comment, it should be stressed that a seman-
tic game world isn’t but a (powerful) means to serve the gameplay,
and will never automatically make dispensable the creative work of
designers. Care should be taken to avoid overloading entities with
superfluous semantics, as semantics make virtual entities not only
behave more as one expects, but more complexly as well, which
could end up undermining the gameplay. Although this was not
the case for Scribblenauts, the Xbox 360 version of Alone in the
Dark [9] supports this: the need to replace flashlight batteries once
in a while received many complaints of gamers, resulting in the
removal of this function from the later released PlayStation 3 ver-
sion. Game designers will always have to think carefully on which
semantics are desired in a game, and how to achieve a good balance
between a world with convincing behavior and good gameplay. Se-
mantics combined with entities that appear in the background, or
entities that are used by agents, for example, will result in a more
convincing world in the eyes of players, without influencing them
directly. For entities that are in reach of the player, it might often
be wise to moderate their level of detail.

Along these lines, it also important to note that the semantic
framework can work side by side traditional methods of game-
play programming. It is not necessary to employ the framework
for all aspects of gameplay, since that would lead to far. Elements
of gameplay that are vital for the game and are very complex, in-
volving a lot of tweaking, are still better to be left to the traditional
approach. A clear example, is the behavior of cars in racing games
or other games where driving is an essential part of the game.

The reactions of the interviewees to the semantic world model
were generally positive. They were unanimous that such a model
could definitely be useful: it would make it easier to extend games,
there would be opportunities for games with multiple storylines
(branching story arches), it could be a solution to provide emer-
gent gameplay, and it could make the development process easier.
Without mentioning semantic layout solving, one interviewee saw
possibilities in automating game world generation, and potential in
the relationships between objects. There were, however, some con-
cerns about performance and scalability of a potential implemen-
tation. Besides, it would make games more unpredictable, which
makes debugging and testing much harder.

The ease of use of our proof of concept editor was still a concern,
especially with interviewees with a less technical background. To
be really practical and usable, a great deal of effort needs to be put
into the editor’s usability. The main challenge is to offer all the
flexiblity and all the options available in the current editor, but rep-
resenting them in such a way that users are not overwhelmed by all

these options. From the interviews it became clear that the user (es-
pecially when learning to use Entika) needs some more guidance,
comparable to wizards, or through the use of examples.

One interviewee saw some in-game advantage in the fact that it
would allow easier creation of simple simulations. As an exam-
ple he mentioned the game series The Sims. However, with more
of these interaction possibilities, more in-game animations are re-
quired to preserve immersion. Although motion captured anima-
tions still result in more fluidity than other current techniques, cap-
turing them for all possible interactions is unwanted. To circum-
vent this problem, the technique used for smart objects [19] might
be applied. Similarly, the approach used in Tivig [14], a procedu-
ral animation system that supports physical interactions between
characters, might be helpful.

Finally, some interviewees immediately mentioned that speci-
fying all semantic information would take up a lot of time. It is
indeed an interesting question when and by whom the semantic li-
braries have to be populated. Although this is not the topic of our
current research, several possibilities can be devised, from letting
game developers design the libraries and define relations for each
game (which isn’t very practical), to letting them incrementally fill
generic libraries (throughout several development projects), from
which they would derive a specific library for each game. The lat-
ter has the clear advantage that in each subsequent project, more
classes will be available. It is obvious that this does not force de-
signers to reuse entities exactly as they are specified by others, or
in other projects. New additions and relations can always be made
and established. Furthermore, this means that designers do not have
to limit themselves to traditional meanings and behavior of existing
entities: designers that are willing to add original, unusual behavior
to common objects are therefore not prohibited to do so.

8. CONCLUSIONS

Despite exuberant visuals, most current games considerably lack
consistency between the visual representation of the world and the
way it feels, behaves, and reacts. In this article, we argued that this
is due to missing semantics, and because designing game worlds
with semantics poses especially difficult challenges, including the
inherent complexity of maintaining and upscaling all interactions
among entities. We presented a solution to the problem in the form
of semantic game worlds. We set up a sound model for these worlds
by stating several requirements, and by splitting up the entities pop-
ulating them into more specific classes with their own unique prop-
erties, such as attributes, matter, and services.

This approach has been implemented and validated by means of
the integrated Entika framework which effectively supports a sim-
ple and intuitive definition of semantics. Among the numerous ad-
vantages of this approach, its Semantics Editor promotes reusabil-
ity of previously specified entity semantics, and easily supports be-
havior customization as required by each specific game. Further-
more, specified semantics seamlessly blends with our Semantics
Engine, charged with all semantics handling during the game.

In semantically rich game worlds, semantics influences the pre-
sentation, physics, and behavior of entities, and their awareness of
other entities. We believe that enabling designers to create these
worlds will be instrumental to achieve a more consistent world ex-
perience. Besides having entities that are visually convincing, more
and better interaction can be accomplished, due to plausible and
expectable behavior. This in turn is considered one of the key con-
ditions to significantly improve gameplay. The approach presented
here, giving designers the possibility to include convincing seman-
tics, while keeping much control on the fine-tuning of their entities,
is a valuable aid in that direction.

In the future, we would like to experiment with several exten-
sions for Entika. One of them is the annotation of 3D models, to
indicate where exactly a player or agent can interact with them. As
this is dependent on geometric models that come in a wide vari-
ety of file formats, annotation might pose some difficulties to keep
the framework generic. Another possible extension is procedural
destruction, based on the matter of a tangible object. Improving
agent behavior, including roles, tasks, beliefs, and desires, based on
semantics, is yet another promising extension. Next to the afore-
mentioned extensions, we will keep improving the interface of the
Semantics Editor to achieve more usability, and optimizing the per-
formance of the Semantics Engine, in order to furhter reduce its
overhead in computationally expensive games. All together, we
are confident this will improve semantic game worlds and facilitate
their widespread deployment.

9. ACKNOWLEDGMENTS

This research has been supported by the GATE project, funded
by the Netherlands Organization for Scientific Research (NWO).

10. REFERENCES

[1] 5th Cell. Scribblenauts, 2009. Warner Bros. Interactive.

[2] T. Abaci and D. Thalmann. Planning with smart objects. In
The 13" International Conference in Central Europe on
Computer Graphics, Visualization and Computer Vision:
WSCG, pages 25-28, 2005.

[3] Andrey Zaikin. Alchemy, 2011. Android market.

[4] R. Aylett, A. Horrobin, J. O’Hare, A. Osman, and
M. Polshaw. Virtual teletubbies: reapplying a robot
architecture to virtual agents. In Proceedings of the Third
Annual Conference on Autonomous Agents, pages 338 — 339,
1999.

[5] Bethesda Game Studios. The Elder Scrolls V: Skyrim, 2011.
Bethesda Softworks.

[6] S.Bjork and J. Holopainen. Patterns in game design (Game
development series). Charles River Media, December 2004.

[7] Blizzard Entertainment. Warcraft: Orcs and Humans, 1994.
Blizzard Entertainment.

[8] M. E. Bratman. Intention, plans, and practical reason. CSLI
Publications, 1987.

[9] Eden Studios. Alone in the Dark, 2008. Atari.

[10] K. D. Forbus and W. Wright. Some notes on programming
objects in the sims. 2001.

[11] V. Gold. Compendium of chemical terminology. International
Union of Pure and Applied Chemistry (IUPAC), 1997.

[12] T. R. Gruber. A translation approach to portable ontology
specifications. Knowledge Acquisition, 5:199-220, 1993.

[13] M. Gutierrez, F. Vexo, and D. Thalmann. Semantics-based
representation of virtual environments. International Journal
of Computer Applications in Technology, 23(2/3/4):229 —
238, 2005.

[14] 1. D. Horswill. Lightweight procedural animation with
believable physical interactions. In IEEE Transactions on
Computational Intelligence and Al in Games, volume 1,
pages 39-49, 2009.

[15] M. N. Huhns and M. P. Singh. Agents on the web: ontologies
for agents. IEEE Internet Computing, 1(6):81-83, 1997.

[16] J. Ibdnez-Martinez and C. Delgado-Mata. A basic semantic
common level for virtual environments. International
Journal of Virtual Reality, 5(3):25-32, September 2006.

[17] Irrational Games. Bioshock, 2007. 2K Games.

[18] Jeff Tunnell Productions. The Incredible Machine, 1992.
Dynamix.

[19] M. Kallmann and D. Thalmann. Modeling objects for
interaction tasks. In Proceedings of the Eurographics
Workshop on Animation and Simulation, pages 73-86, 1998.

[20] J. Kessing, T. Tutenel, and R. Bidarra. Services in game
worlds: a semantic approach to improve object interaction.
In Proceedings of the International Conference on
Entertainment Computing, pages 276-281, 2009.

[21] D. B. Lenat. A large-scale investment in knowledge
infrastructure. Communications of the ACM, 38(11):33-38,
November 1995.

[22] D. B. Lenat and R. V. Guha. Building large knowledge-based
systems; representation and inference in the Cyc project.
Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, Ist edition, 1989.

[23] Maxis. The Sims, 2000. Electronic Arts.

[24] Media Molecule. Little Big Planet, 2008. Sony Computer
Entertainment.

[25] I. Millington and J. Funge. Artificial intelligence for games.
Morgan Kaufmann Publishers, 2 edition, 2009.

[26] M. Minsky. A framework for representing knowledge. In
P. Winston, editor, The Psychology of Computer Vision,
pages 211-277. McGraw-Hill, New York, 1975.

[27] J. Mongillo. Nanotechnology 101. Greenwood Publishing,
2007.

[28] B. Nebel. Frame-based systems. In R. A. Wilson and F. C.
Keil, editors, The MIT Encyclopedia of the Cognitive
Sciences. The MIT Press, 1999.

[29] New World Computing. Heroes of Might and Magic, 1995.
3DO.

[30] C. Peters, S. Dobbyn, B. MacNamee, and C. O’Sullivan.
Smart objects for attentive agents. In Proceedings of the
International Conference in Central Europe on Computer
Graphics, Visualization and Computer Vision, 2003.

[31] A.S.Rao and M. P. Georgeff. Bdi agents: from theory to
practice. In Proceedings of the First International
Conference on Multi-Agent Systems, pages 312-319, 1995.

[32] Rockstar North. Grand Theft Auto IV, 2008. Rockstar
Games.

[33] T. Tutenel, R. Bidarra, R. M. Smelik, and K. J. de Kraker.
The role of semantics in games and simulations. ACM
Computers in Entertainment, 6:1-35, 2008.

[34] T. Tutenel, B. Bollen, R. van der Linden, M. Kraus, and
R. Bidarra. Procedural filters for customization of virtual
worlds. In PCG ’11: Proceedings of the 2011 Workshop on
Procedural Content Generation in Games, New York, NY,
USA, 2011. ACM.

[35] T. Tutenel, R. M. Smelik, K. J. de Kraker, and R. Bidarra.
Using semantics to improve the design of game worlds. In
AIIDE *09: Proceedings of the 5" Conference on Artificial
Intelligence and Interactive Digital Entertainment, Stanford,
CA, USA, October 2009.

[36] T. Tutenel, R. M. Smelik, R. Lopes, K. J. de Kraker, and
R. Bidarra. Generating consistent buildings: a semantic
approach for integrating procedural techniques. IEEE
Transactions on Computational Intelligence and Al in
Games, 3(3):274-288, 2011.

