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ABSTRACT
Exploration is found in a variety of game genres, but there has been
little research in the context of PCG. This paper investigates the
potential for exploratory agents to provide feedback on how well
levels support exploration, with the ultimate goal of guiding level
generation. We propose several motivations which might drive
exploratory behaviour and model these as metrics within an agent
framework based on context steering. We present a study of how
the different metrics influence exploration of six game levels. It
was found that combinations of metrics lead to distinct exploratory
behaviours, mostly within our expectations.
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1 INTRODUCTION
Exploration is a key part of the player experience in many video
games e.g. Proteus, Journey, ABZU, Gone Home, or Outer Wilds.
It’s found in games across a wide range of genres, such as First
Person Shooters, Adventure games, Open World Games, Walking
simulators and Survival Games. When creating such exploratory ex-
periences, designers should consider how their game environments
will support exploration. There is a need to design for exploration.

The concept of discovery is highlighted as one of the aesthetic
goals within the MDA (Mechanics, Dynamics, Aesthetics) frame-
work for game design [7]. It describes an element of gameplay
where players experience the game as uncharted territory, encour-
aging exploration and the unveiling of new features, areas, or story
elements as they progress.

What is exploration? Meyer defines it as “behavior directed to-
ward acquiring information about the environment.” [8]. Wohlwill
claims that exploratory behaviour involves free search of the envi-
ronment in order to become familiar with its layout and features,
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and exploration directed at an object or feature with which one is
confronted [13].

Görlitz et al [6] further go on to define three subcategories of
exploratory behaviour: affective exploration, exploration driven by
what feels best to the individual; inspective exploration, exploration
to become more familiar/confident with the environment; diversive
exploration, exploration in the hopes of relieving boredom. We
take this distinction as a starting point for evaluating exploratory
behaviour, discussed in Section 6.

Automatic evaluation of game environments in terms of how
well they support exploratory behaviour is a not well studied area.
One notable exception is Stahkle et al.’s PathOS framework [12]
for assisting designers in level and world design. They introduced
various agent profiles to motivate agent behaviour, with one profile
focused on exploration. (2.4.2 describes PathOS in more detail.) This
can be considered an example of an exploratory agent: a type of
agent which traverses a level and explores it in accordance to it’s
features. It surveys an environment, to observe which features are
available in the level, and moves in the direction towards the closest
interesting target(s) or direction(s).

Cook investigated the evaluation of levels with agents using
a vision-based approach. The agents had an objective function
designed to achieve specific framing and player vision goals [3].
This was used in a level generation system with promising results,
yet abandoned. This is another example of how exploratory agents
can be used in a generative system to evaluate levels and help create
more well-designed ones.

We propose several motivations which could be used to moti-
vate exploratory agents for exploring game environments. We also
introduce a framework for implementing an exploratory agent and
several novel approaches to evaluating game environments. Unlike
existing methodologies, which primarily focus on optimization or
task-specific performance, our framework emphasizes the agent’s
ability to engagewith virtual worlds from an exploration standpoint.
This shift not only advances the field by offering a more nuanced
understanding of agent behaviour for evaluating generated content,
but also has practical implications for designing games that are
more suitable for exploration, enhancing both player engagement
and the richness of game worlds. We describe a study where we
examine how our agent explores six example environments accord-
ing to our aforementioned motivations (more information about
these motivations is presented in Section 3).

To summarise, our research introduces a variety of motivations
(operationalised via metrics) tailored to assess different aspects of
exploration, offering insights into how virtual environments can
support exploration. Our experimental analysis reveals distinct
agent behaviours and performance generally within our expec-
tations along with dissimilar path trajectories, aligned with our
motivations given to our agent. This work not only advances our
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understanding of exploratory agents, but also opens avenues for
enhancing PCG by evaluating the potential of environments for
exploration.

2 BACKGROUND
2.1 Exploration and Game Design
Spatial involvement and affective involvement from Calleja’s player
involvement model are quite relevant to exploration [2]. Spatial
involvement is described as “players engagement with spatial quali-
ties of virtual environment". How they might explore, navigate and
internalise through an environment. This aspect of the involvement
model seems to be related to Görlitz et al’s definition of inspective
exploration [6]. Affective involvement is described as "encompasses
various forms of emotional engagement", this includes witnessing
aesthetic views, which in turn may make the player motivated to
see more. This would be related to the definition of affective ex-
ploration. Game design literature has provided many theories as
to why a game may be considered “fun" or engaging for a player,
many of which can be linked back to exploration and Görlitz et al’s
definitions of exploratory behaviour. Giving us an idea of what fac-
tors in exploratory experiences might affect the player experience,
such as; sensational pleasure (e.g. witnessing pleasurable views),
interacting with the world to learn more about it and escapism
through fantastical environments.

2.2 Player Uncertainty
Uncertainty can be argued to come through piecing together the
underlying theme(s) or narrative(s), which some exploratory ex-
periences focus on; through investigation and observation of an
unknown environment for hidden information (uncertainty from
hidden game elements); or randomness (uncertainty emanating
from random game elements) which are certain types of uncer-
tainty described by Costikyan [4]. Costikyan further goes to intro-
duce many types of uncertainty including player unpredictability,
randomness, hidden information, narrative uncertainty, schedule
uncertainty, and uncertainty of perception. Some types of uncer-
tainty are relevant to exploration. For example, hidden information,
which may include hiding undiscovered areas of a map within fog,
or partially obscuring a view with a rock. Uncertainty of perception,
"the difficulty of perceiving what’s going on in the gamespace", can
also be applied to exploration, partially hiding important objects in
a forest where it might be barely visible or very obscured.

2.3 Exploration Patterns
Exploratory behavior in video games has been investigated to some
degree by Si [11]. They investigated behavioural exploration pat-
terns in games, where a study was carried out to extract behaviour
patterns from 25 human participants while exploring virtual en-
vironments. The games used to investigate participant behaviour
were Starcraft: Brood War and 3 game modes, a pure exploration
game mode (exploring the map as fast as possible within 3 min-
utes), a killing game mode (hunting a certain amount of targets
within 5 minutes) and a searching game mode (requiring finding
an opponents’ base within 4 minutes). Player think-alouds were
collected and thematically analysed. Four main themes were found;

strategy (what strategies people make playing the games), reason-
ing (how players reason about situations and options), conception
(what spatial conceptions about the environments are mapped in
their minds), hesitation (a reluctance to move when encountering
certain situations). From these themes, 4 archetypes of behaviour
patterns were identified; wanderers, seers, pathers and targeters.
Wanderers are an archetype of players who move without a definite
destination or purpose, they have no targets or awareness of map
features.

Seers are a class of player aiming to expand their visibility span,
seeking to reveal as much of the map as possible in as little time as
possible. This can be considered as inspective exploration.

Pathers take into account terrain features to construct patterns
based on prior map knowledge. Again, this may be considered
inspective exploration.

Targeters are an objective-orientated archetype taking into ac-
count terrain features, seeking out landmarks and other identifiable
objects which may serve as hints of target locations. This can also
be considered a form of inspective exploration.

2.4 AI Agents for Exploration
The use of AI agents to assist the evaluation of generated environ-
ments is an integral part of this research project. These AI agents
intend to model exploratory behaviour according to certain metrics.

2.4.1 Curiosity Based Exploration. Pathak et al [1] presents
a comprehensive study on curiosity-driven learning in artificial
agents, with the main focus being on agents that operate without
any external rewards. The study explores various simulated envi-
ronments including games and physics simulations, examining how
agents perform when driven purely by intrinsic motivation, which
is operationalised through curiosity. The authors investigated the
use of different feature spaces for prediction error, discovering that
while random features can suffice for certain environments, learned
features may offer better generalisation capabilities. The research
also highlights the potential limitations of prediction-based rewards,
especially in stochastic settings, and suggests further investigation
into efficient handling of such environments. The techniques used
by Pathak et al are different to ours – our agent is not intended to be
general, in the sense it would explore many different environments
using intrinsic motivation, rather we expect our agent to be given
different motivations and explore in different ways, in different
environments. Our agent framework is also intended to be used to
evaluate environments for exploration.

2.4.2 Agents to Assist Game Design. Stahlke et al introduce
PathOS, predicting player navigation in digital games [12]. Game
designers can gather data from the agents that navigate the world
to improve their level and world design. The goals of the system
were to reduce the burden of playtesting, accessibility for devs, ease
of use for designers and generalisability. This is similar to our goals
proposed with our exploratory agents.

The agents work by simulating player behaviour via motives,
level geometry, agent memory, and entities are taken into account
in calculating these motives as well as what kind of player profile
(e.g. focused more on exploration or combat). “Each motive has a
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vector associated with it assigning a base favourability value to
each type of game entity...”.

A study was conducted with 10 participants that involved the use
and evaluation of candidate applications of the system. Participants
were pre-interviewed and introduced to the system, given a task to
create two levels with assistance from the system.

The authors reported that in the post-task interview the impres-
sions of the system as a design tool were quite positive, though one
participant mentioned how agent behaviour was dissimilar to how
a player would behave.

Nova et al introduce PathOS+ [9], an enhancement of the PathOS
framework, to supplement expert evaluations with simulated player
data generated by AI. This approach addresses subjectivity in ex-
pert evaluations by providing objective simulated player behaviour
data, thus aiming to improve the reliability of expert assessments
in games user research. The potential of PathOS+ is illustrated
through its application in the analysis of gameplay, with a focus on
navigation and player behaviour.

3 MOTIVATIONS FOR EXPLORATION
In this section, we propose different motivations, operationalised
in the form of metrics (described in section 4), which can serve as
reasons to explore a virtual environment. These include:

Looking for Hidden Space: looking for potential space behind
and to the sides of an object, from the viewpoint of the player/agent
or objects not seen before. For example, a large rock obscuring
a building or another object. This can be considered a form of
"targeter" mentioned by Si [11] and a form of inspective exploration.

Landmarks: looking for odd/significant objects that "stick out"
in some way. For example, A house or a tent in a dense forest. This
can also be considered a form of "targeter" mentioned by Si and a
form of inspective exploration.

Objects Arranged in Intentional Patterns: such rocks in
the shape of a square. This can be considered a form of inspective
exploration, as objects with some designer intent in their placement
could draw players to explore.

High Points: such as a top of a hill or mountain. This may
be considered a form of inspective exploration, investigating high
points for better views.

Open Areas: such a large open field. This can be considered a
metric for a form of affective exploration where a player or agent
might want to feel more "free" in open areas.

Lighter Areas: such as a well lit section of a dark environment.
Investigating this can be considered a form of affective exploration,
our agent or a player might feel drawn to lighter areas (in terms
of lighting in the environment) and may even be considered a
"wanderer" archetype as mentioned by Si.

4 AGENT METRICS
There are two different types of metrics, object-based metrics and
direction-based metrics. Having this design ensures a holistic ap-
proach to guide exploration. An object-based metric alone might
encourage focus solely on objects without adequately exploring the
space, while a direction-based metric alone could result in emer-
gent but shallow exploration without meaningful interaction with

objects. Together, these metrics promote a balanced approach, en-
couraging agents to thoroughly explore their surroundings and
engage with objects in the environment. In this paper, we use met-
ric codes to simplify our figures shown in the parentheses next to
each metric name.

4.1 Direction-Based Metrics
Anticipation Direction (ANTD): Checks if there is an object in
a given direction. The umbra and penumbra of the object are cal-
culated (assuming that our agent is the light source). The larger
the umbra and penumbra 1, the higher the score. The umbra and
penumbra, though calculations for shadows, represent the total
potential space there could be behind and to the sides of the ob-
ject, from the viewpoint of the agent. Having an agent know the
potential space may have it react more organically without feeding
it information about the space which it cannot observe with the
camera. This returns a maximum value of 1 and a minimum value
of 0. This metric also has an object based version, to show that
direction based metrics can also be an object based metrics. [11]

Light and Shadow (LAS): Takes a direction and measures its
light intensity. The Higher the light intensity the higher the direc-
tion is scored. The light intensity itself is the score and is between 0
and 1. The light intensity is calculated using Unity’s light probes sys-
tem 2 and evaluating the light’s colour against black and returning
how different (as a percentage) it is.

Elevation change (ELE): Take a direction and check if it hits
a terrain vertex; if it does, then the terrain vertex’s y position is
taken and compared against the agent’s y. If it is greater than the
agent’s y position then a maximum value of 1 is given, depending
on how much greater the y is. The maximum is achieved when the
difference is 10 units or more; every unit less than 10 is given a
penalty of -0.1 until the minimum value of 0 is reached.

Openness (OPE): Takes a direction and measures how "open" it
is by checking if there are any objects within a certain distance. If
there are not, score the direction very highly (a max of 1) otherwise
return a value between 0 and 1 depending on how far the object(s)
are from the agent.

4.2 Object-Based Metrics
Anticipation Object Detection (ANTO): Takes an object, and
checks the umbra and penumbra of the object, using our agent as a
light source. It returns a maximum value of 1 and minimum value
of 0. This metric was included to show that object-based metrics in
this agent can also be used as direction-based metrics.

Large Object Detection (LOD): Takes an object and compares
it against the largest object it had seen during it’s run. A value
between 0 and 1 is returned which represents how big (in terms of
percentage) the observed object is compared to the largest one our
agent had observed so far. If the object is larger than the largest
object observed so far, 1 is returned and the largest object observed
so far is updated to the object seen most recently. This can be
considered a form of inspective exploration, as large objects can
count as landmarks. This can also be considered a form of "targeter"
mentioned by Si, where large objects, specifically, are searched for.

1https://www.astronomy.ohio-state.edu/pogge.1/Ast161/Unit2/eclipses.html
2https://docs.unity3d.com/Manual/LightProbes.html
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Simple Detection (SIM): Takes an object and returns 1, regard-
less of anything else. This is a simple metric designed to investigate
every object that our agent can observe.

Group Detection (GRD): Takes an object and checks if there are
any other objects in a certain radius (2 units) of that object. Each
object that is close adds a 0.1 to the score, to a maximum of 1.

Combinations of metrics are referred to with these codings as
well e.g. ANTD and LAS would be referring to the combination of
Anticipation direction and Light and Shadow metrics.

5 EXPLORATORY AGENT FRAMEWORK
This agent framework uses a system similar to context steering [5],
in which context maps are formed for each measured direction (36
in total). A context map is a projection of the decision space of the
entity onto a 1D array.

This allows for a detailed interest map capturing a thorough
representation of the surroundings while not being very computa-
tionally expensive. Each direction measured exists "within view" of
the agent, meaning that if the direction is within the field of view
of the camera attached to the agent, it is measured.

There are a number of parameters available to set for this agent:
Length of View: The farthest the agent can "see" in units
Field of View: The angle at which the agent can "see" objects

within, independent of the camera attached.
In this framework, interest maps are formed from a list of objects

which are in view of the agent. It uses a camera to detect which
objects are in view and only samples directions within view of its
camera. The highest scoring direction is chosen to be moved in.
There are three main stages to the pipeline, explained below.

Stage 1: Selecting a subset of objects A camera is used to
survey the surrounding area of the agents. Every object which falls
in the agent’s camera frustum is added as an object of interest. The
output from this stage is a list of objects of interest.

Stage 2: Making Interest Judgments The output of stage 1 is
taken and an interest map, a score for each direction and an optional
object associated with each direction is formed. For each direction, a
direction based metric is applied to calculate the directions interest
score. Also, object based metrics are applied, each object has it’s
direction taken and rounded to the closest direction in the direction
interest map (and added to the direction interest map) before the
direction score is updated.

Stage 3: Making a Navigation Decision Finally, the direction
map of Stage 2 is used to make a navigation decision. The direction
of highest interest is chosen. If there is an object which is associated
with the highest scoring direction, that is chosen to be navigated
towards using the navmesh and object coordinates. Objects are only
associated with directions when an object based metric is being
used. Otherwise, simply moving 10 steps in the highest scoring
direction is chosen. If there are multiple directions that are scored
as the highest, a random one is chosen. In context steering a target
vector is used as the velocity or delta on the velocity, whereas
our agent frameworks takes discrete steps in the "best" direction.
Therefore, it cannot be considered context steering, even though it
uses interest maps.

Our agent framework also contains a memory which contains
all the objects it had seen and investigated during it’s run. If an

object had been seen before and investigated (the agent had come
within 10 units of the object), it was marked as visited and is now
discounted from any metric calculations. This pipeline is repeated
every 2 seconds, so the agent would make a navigation decision
and stick to it for 2 seconds and repeat the whole pipeline again.

5.1 Random Agent
The random agent was used to compare with our exploratory agent
to deduce if it performed better, according to our evaluation mea-
sures detailed in the next section. The implementation of the ran-
dom agent is simple. It picks a random direction, within a 135 degree
angle, with a bias angle towards travelling towards the centre of
the level.

The bias angle is calculated by taking the signed angle from
where the agent is currently at to the centre of the level. A random
direction is then chosen within a 135 degree angle and the bias
angle is added to that random angle. The agent travels for 2 seconds
in that direction. Every 2 seconds, the bias angle is recalculated,
and a different random direction is chosen.

6 EVALUATION MEASURES FOR
EXPLORATORY AGENTS

We would like our agents to be somewhat human-like in the sense
that it would explore a level in a "good-enough" way which gives
meaningful feedback to a designer or generator to improve their
levels. We investigated exploratory behaviour and created two eval-
uation models. An inspective evaluation model, with two inspective
evaluation criteria and a diversive evaluation model, with 1 novelty
measure. These are discussed in the following subsections.

6.1 Evaluating Diversive Exploration
Diversive exploration evaluation serves as ameasure of how "bored"
the agent is during exploration trajectory. This is inspired by Görlitz
et al’s [6] definition of diversive exploration (exploring to relieve
boredom). This measure can show how much novel stimuli the
agent is experiencing across an episode and in turn how much
novel stimuli a player, who might follow a similar exploration
trajectory, may experience.

To evaluate diversive exploration, a custom novelty score was
created where each type of object (e.g. trees, rocks, etc.) is given an
initial novelty score of 0.1. The level is divided into a grid where
each tile is 50x50 units.

When a type of object comes into view of the agent for the first
time, the tile of which the agent is currently in was recorded and the
novelty score associated with that tile is increased (by 0.1 when the
object type is viewed for the first time, when it is considered "new").
When the object type is seen for the first time, it is marked as "seen",
and a penalty is applied to the object’s novelty score, taking it to
0. As time passes, the object type gains a score from 0, at a rate of
0.01 per second (to a maximum of 0.1, the initial novelty score). If
the type is seen again, the object type gets the new score added to
the respective grid tile in which the agent is. This way, if an type
is seen in a very short amount of time after having been observed
initially, the grid tile the agent is in, gains a very small amount of
score compared to when the object type had been marked as "new",
however, when enough time passes, the object type gets back as
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much score as it would have gotten when it was marked as "new".
This system balances between the familiarity of seen object types
and the novelty of unexplored areas. By allowing the novelty score
of an type to recover over time, it ensures that the agent does not
completely disregard previously seen types, which might still hold
some interest after a period.

6.2 Evaluating Inspective Exploration
Inspective exploration evaluation serves as a measure of how much
knowledge the agent has about the environment. This is inspired
by Görlitz et al’s definition of inspective exploration.

We derived coverage of a level for each metric from the heatmap
data; we counted how many of the 50x50 regions the agent had vis-
ited with their respective metrics, and created violin plots showing
the coverage across the engaging and unengaging levels. Counting
the total coverage of an agent can suggest how much total knowl-
edge the agent had about the environment, a high total coverage
would suggest the agent learned a lot andwas exploring in amanner
suggestive of inspective exploration.

We also had an object inspectionmeasure. This was ameasure (in
terms of percentage) of how many objects were seen and visited by
the agent. To be counted as visited, the agent needed to come within
10 units of the object. An agent with a high total object inspection
score suggests it was exploring in a manner which suggested a
"want" to learn about the objects in the environment, whereas a
low one implies the opposite.

7 EXPERIMENTS
To show our implementation of Exploratory Agents and how our
motivations are operationalised via our metrics 4, we conducted
a study with agents exploring six hand-made whitebox levels. We
looked at trajectories of an agent using the above metrics as well as
combinations of metrics, each with different weightings, to show
possible examples of exploratory behaviour in six different envi-
ronments and evaluate them with our evaluation measures.

Four of these levels were based on exploratory experiences; Jour-
ney (Level 1), Proteus (Level 2), No Man’s Sky (Level 3) and Zelda:
BOTW (Level 4) (particularly the starting area, The Great Plateau).
Figure 1 shows top down views of these levels. The additional 2
levels were meant to be considered unengaging experiences. A
dense level (level 5) consisting of many objects, all of the same
type, was included. An almost empty level (level 6), consisting of
few objects, all of the same type, was also included. All levels were
the same size (350x350) units. Let’s Plays of the first four of these
levels were viewed and these were decided as "ideal" or exemplary
versions of exploratory experiences. These levels were chosen to be
modeled because we thought that they represented environments
that supported exploratory behaviour very well. They consisted
of wide open spaces which could be explored in a multitude of
ways, all of which can be considered valid. The unengaging levels
were designed due to the future plan to use these agents to evalu-
ate generated content, so including levels which were considered
unengaging was useful.

It is also worth noting that all colliders (except for the terrain)
on all objects were turned off in all levels. This is to make sure the
agent did not get stuck on any objects while exploring.We generally

(a) Level 1, inspired by Journey (b) Level 2, inspired by Proteus

(c) Level 3, inspired by No
Man’s Sky

(d) Level 4, inspired by
Zelda:BOTW

(e) Level 5 (f) Level 6

Figure 1: Top-down views of the levels tested

expect our coverage and object inspection scores for our levels to be
around 33–66% for our exemplary levels and less than 33% for our
unengaging levels. This range acknowledges the complexity and
unpredictability of dynamic environments, where achieving 100%
inspection and coverage is unrealistic and not necessarily what a
player might target. This range is good for environments where
complete coverage and inspection is less critical than strategic
discovery of key areas and environmental characteristics. An agent
episode consisted of surveying the level for three minutes.

For all of the metrics tested, their position throughout their
spawn was recorded to get path data, as well as how much time
they spent in each 50x50 region of each level. A novelty score was
measured, where each 50x50 region of the level was measured, in
terms of a custom novelty score, as a form of diversive exploration
evaluation. 2 inspective measures were also included, listed in the
previous subsection. An agent episode for the random agent was
simply to run it for 3 minutes, diversive and inspective evalua-
tions for this agent were also measured. Once the agent episode is
finished,the agent is respawned for another episode at the initial
spawn point. The initial spawn point for each level was chosen
randomly and kept the same throughout all agent episodes for each
level. This process was repeated three times with different initial
spawn points (chosen randomly and inspected to make sure that
they were significantly different from the previous spawns). The
limited length and field of view does mean the spawn point will
likely greatly affect the agent paths; to obtain a broader sample, we

https://drive.google.com/file/d/1a_Weg_RP-rAdgu9eqmVCnRUHDR9UKuf_/view?usp=sharing
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tested 3 different spawn points on 3 levels. All individual metrics
for the agent were tested. All pairs for each metric for the agent
were also tested. We expect our novelty heat maps for our exem-
plary levels to have regions where novelty is significantly higher
than the other regions of which the agent explores and some other
regions aren’t as high as the average. We can consider this as drama
showing the agent experiences a variety of object types throughout
it’s trajectory. For the unengaging levels we expect the novelty heat
maps to have more uniform values, as these levels consist of only
one type of object, representing a non-dramatic path that may be
considered unengaging.

7.1 Path Similarity
We also looked at how similar the behaviours were for our metrics,
within the context of each level, using EarthMovers Distance (EMD)
[10] to measure the similarity between the agents’ paths. For each
agent path, we took the time spent in each 50x50 region of the level,
and compared that distribution to those of other paths for the the
same level and spawn point. The EMD between two distributions
𝑃 and 𝑄 is defined as the minimum amount of work to transform
one into another, ‘moving’ time from one region to another. If the
amount moved between two regions 𝑖 and 𝑗 is the flow 𝑓𝑖, 𝑗 , and
𝑑𝑖, 𝑗 is the ground distance between those regions, the EMD for a
distribution 𝑛 ∗𝑚 is defined as 𝐸𝑀𝐷 (𝑃,𝑄) = 𝑊𝑜𝑟𝑘 (𝑃,𝑄 )

𝐹𝑙𝑜𝑤 (𝑃,𝑄 ) and where
𝑊𝑜𝑟𝑘 (𝑃,𝑄) = ∑𝑚

𝑖=1
∑𝑛

𝑗=1 𝑓𝑖, 𝑗𝑑𝑖, 𝑗 and 𝐹𝑙𝑜𝑤 (𝑃,𝑄) = ∑𝑚
𝑖=1

∑𝑛
𝑗=1 𝑓𝑖, 𝑗 .

Using this measure of path similarity, we performed agglomera-
tive hierarchical clustering along with nearest-point linkage of the
metrics, for each individual map and spawn point.

7.2 Experiment Parameters
For the experiment conducted the following parameters were set
to the values described below for the agent:

Length of View: 80. We thought 80 would be an appropriate
distance distance the agent could observe objects as it followed its
path, where it saw about 23% of the level’s total length.

Field of View: 90. We thought this was an appropriate value for
the Unity camera. A 90-degree FOV provides a good angle of vision,
allowing the agent to perceive a significant portion of the environ-
ment at any given time. This mimics a natural field of view similar
to human peripheral vision, making it a good balance between
seeing enough of the environment without excessive distortion.
Also, many first-person games use a FOV around 90 degrees as it
provides a good balance for player experience.

8 RESULTS AND DISCUSSION
8.1 Inspective Exploration
To perform an evaluation on the inspectiveness of the agent, two
measures were used: coverage and object inspection. The findings
for both measures were quite different, particularly for each of their
metric and metric combinations. However, they can be considered
to perform well, from an inspective standpoint, mostly in line with
our expectations as shown in the results3.

3https://github.com/BKhaleque/Experiments-in-Motivating-Exploratory-
Agents/tree/main

8.1.1 Coverage. The data points, two of which are shown in
Figure 2, for individual spawns show variability around the average
coverage. Some points fall below the lower boundary (33%), which
may indicate an unfavourable spawn point. This is apparent on
every level. Random is well below the lower boundary in all spawn
points, as expected, and every metric on every level has much
greater coverage.

For our exemplary levels, the target coverage was set between
33–66%. Across all 3 spawns, almost all metrics within this target
range on average, indicating successful exploration strategies for
those levels.

Metrics which come below our expected coverage value (on av-
erage) in our exemplary levels include; OPE, LAS, ANTD LAS, LAS
ELE and ANTD. This may have been due to an unfavourable spawn
point for these levels or due to the level features not supporting
these metric’s exploration behaviours, particularly in combinations.
For example, in level 2 having ELE and OPE might not have been
conducive to high coverage as a lot of objects are situated on high
terrain points, which is what ELE is drawn to investigate, whereas
avoiding objects is what OPE is drawn to investigate.

The expectation was that levels 5 and 6, being considered unen-
gaging, would see coverage under 33%. However, the data does not
entirely support this, with most metrics exceeding this threshold,
indicating a higher level of engagement than anticipated. This sug-
gests that while these levels might have been designed or considered
to lack engagement, agents still explored these environments to a
significant extent. High variability around the average is observed
in all spawns.

However, the data from the three spawns show that most metrics
fluctuate around or below 33%, with some dipping well below it.
(e.g. ELE OPE, ELE, OPE and GRD ANTD in level 5 and OPE, GRD
OPE, GRD LAS OPE, ELE, GRD in level 6) This outcome is in line
with the expectation that the unengaging levels would generally
be less conducive to high coverage, likely due to fewer interactive
elements in level 6 or overly complicated navigation in level 5.

8.1.2 Object Inspection. On average, the object inspection per-
centages for our exemplary levels are generally higher than those
for the unengaging levels, however many metrics come below our
expected values for our exemplary levels, this is demonstrated in
Figure 2.

For our exemplary levels, the target inspection was set between
33-66%. Across all 3 spawns, around half the metrics come within
this range, on average. Object inspection is, on average, lower than
coverage in our exemplary levels.

Metrics which come below our expected inspection value (on
average) in our exemplary levels include; SIM GRD, LOD SIM, GRD
ANTD, ANTD OPE, ANTD LAS, ANTD, ANTD ELE, LAS, LAS
OPE, ELE, ELE OPE, LAS ELE and OPE. This, again, may have been
due to an unfavourable spawn point for these levels or due to the
level features not supporting these metric’s exploration behaviours.
However, it is expected at metrics like OPE and those paired with
OPE will have lower inspection values, due to OPE making the
agent prefer to explore areas with fewer objects in them. It is worth
noting that some spawns in some levels with some spawn points
do go above our expected boundary (e.g. GRD ANTD and LOD
ANTD have one spawn above our expected upper value of 66%),



Experiments in Motivating Exploratory Agents FDG 2024, May 21–24, 2024, Worcester, MA, USA

(a) Coverage, Engaging Levels (b) Coverage, Unengaging Levels

(c) Inspection, Engaging Levels. (d) Inspection, Unengaging Levels.

Figure 2: Level coverage and inspection for various metric combinations, ordered by average value. Each point represents an
individual trajectory from a spawn point within a level. Blue plot lines show average value across all levels/spawns. Green/red
dashed lines show our expected upper and lower bounds for exploratory agents.

indicating a very favourable spawn point for these instances. The
random agent, on average and in almost every spawn, had much
lower object inspection scores than any of the other metrics, which
was expected

On average, object inspection scores come much higher and
show much more variability in our exemplary levels than in the
unengaging levels. It should be noted that some metrics exceed
our expected value of below 33%. These include; GRD LAS, ANTO
LOD, LAS ELE, ANTO, LOD SIM, ANTO OPE. These could indicate
favourable spawn points for each of these metrics at all levels. This
is further indicated by some of the data points being far below 33%
in our plot.

In all our exemplary levels the random agent has much lower
inspection scores than our agent, which is what we expected.

8.2 Diversive Exploration
Novelty values throughout their respective paths are fairly uniform
throughout, with one notable hotspot (the point at which they
spawn, where everything in view is considered "new"). The novelty
remains fairly consistent throughout each metric path with various
high and low points. This is consistent for all our exemplary levels
across all spawnpoints. Not every section in each level is as novel
as each other; however, there are notable novelty hotspots (apart
from the spawn point). This suggests that many parts of some levels
and the paths taken were more novel than others, as we expected.
Regions in the unengaging levels showed a lotmore uniform novelty
scores, which is especially true for level 6, where the level was

mostly empty. There are spikes in novelty score in certain regions
(especially for level 5) though they are less pronounced than in our
exemplary levels. This is consistent throughout all runs. Our agent,
in all levels, compared to the random agent, show far more varied
novelty scores; the main novelty hotspot for the random agent is
the middle of each level, as expected.

8.2.1 Similarity of paths. The dendrograms, shown in figure 3,
formed of the mean EMDs of time spent in each region for each met-
ric of all three spawns, show a diverse range of exploration patterns.
Most metrics in our exemplary levels appear to be more similar to
one another compared to our unengaging levels. This suggests that
our exemplary levels were more conducive to exploration, at least
for our tested metrics, than our unengaging levels, where metrics
were exploring in a less directed way and dissimilarities between
metrics were higher.

In terms of path variations for all tested levels, there is a large
amount, all seemingly focused on their respective metrics, e.g. the
group detector visits groups and pairs, anticipation detector visits
objects with lots of space behind and to the sides, and large object
detector visits large objects. Most singular metrics on most levels
show the expected behaviour and all metrics tested show distinct
behaviour.

8.3 Overall Findings
Overall, coverage, object inspection, novelty and path similarity
measures, for all spawns, generally, come within our expectations,
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(a) Engaging levels

(b) Unengaging Levels

Figure 3: Dendrograms Showing Clustering of Metrics Based
on Path Similarity

for our exemplary levels and our unengaging levels. There is also
evidence here to suggest that our agent provides performs much
more competently than our implementation of a random agent and
may be used to evaluate levels in a generative system.

Compared to other implementations of exploratory agents, PathOS
[12] and PathOS + [9], in particular, is that our agent framework
is more focused on evaluating environments in terms of how well
they support exploration in order to help developers and proce-
dural content generators create environments that are more suited
to support exploration. Motivations for exploring a 3D environ-
ment are not as thoroughly investigated compared to our work.
PathOS/PathOS+ provide a more generalised agent framework for
autonomous play testing more focused towards aiding developers
in finding bugs and potentially predicting player behaviour.

9 FUTUREWORK
The agent demonstrated in this study provides competent inspec-
tive and diversive exploration according to our measures. How-
ever, there are room for improvements. Some improvements to the
current metrics and more metrics shall be investigated; Perhaps
different field of views and length of views for the agent might be
tested to see how it performs. Investigating more/different metrics
is a high priority, including:

Landmark detection - detecting odd/significant objects that
might "stick out" in some way. This models where players who are
interested in significant locations or objects might go, this may be
considered inspective exploration.

Simple pattern detection - detection of patterns in placements
of objects, such as if they were placed in a circular or square pattern,
to see if there was any intention in their placement and how they
could fit into the environment. This models some type of inspective
exploration that players who are interested in finding out more
about the story of the world or the designer intention.

Specific object type detection - finding objects of a certain type
e.g., trees only, rocks only, or apple trees only. Some players/agents
may be interested in looking for specific types of object. Perhaps
this may be considered a type of affective exploration, a player
might feel drawn towards specific object types.

Because the agent is going to be used for evaluating generated
content, testing on a wider variety of levels, including more of
which are not exemplary, may tell us more about how the agent
would evaluate "bad" levels. However, our results suggest that with
our current metrics and evaluation criteria, our unengaging levels
were evaluated as "worse" than our exemplary levels. This suggests
that the agents will be useful in evaluating generated content.

10 CONCLUSION
In this paper we investigated exploratory behaviour and an im-
plementation of exploratory agents. A study is performed that
introduces how exploratory behaviour is modelled via several met-
rics. These metrics and some of their pairs were evaluated using our
own models of inspective and diversive exploration. It was found
that the metrics have their own distinct behaviours and function
as intended and perform mostly within our expectations. Relevant
future work was also mentioned to improve the system.
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