
Generators that Read
Max Kreminski
UC Santa Cruz

Santa Cruz, California
mkremins@ucsc.edu

Isaac Karth
UC Santa Cruz

Santa Cruz, California
ikarth@ucsc.edu

Noah Wardrip-Fruin
UC Santa Cruz

Santa Cruz, California
nwardrip@ucsc.edu

ABSTRACT
Most discussions of procedural content generation have focused
primarily on the artifacts that generators produce or the process
by which these artifacts are created. Less focus, however, has been
placed on the methods by which generators interpret their input.
Many generators take complex input, act as part of a generative
pipeline, are part of a mixed-initiative communication with the user,
or otherwise need to take context into account during generation.
In these cases, the process by which the generator reads and makes
sense of its input is often just as interesting as the process by which
it produces an output artifact. It is worthwhile to take a closer look
at how generators read. Via a case study of two erasure poetry
generators, we propose the concept of a generativist reading: a
process of reading that produces generative models. Many existing
generators have dual input/output or reading/writing processes
that are presented as a monolithic unit, but our understanding of
both processes and results is enriched when we clearly distinguish
between how generators write and how they read.

CCS CONCEPTS
• General and reference → Design; • Applied computing →
Computer games; • Human-centered computing → Interaction
design theory, concepts and paradigms;

KEYWORDS
procedural content generation, reading, generative pipelines, close
reading, context-sensitive generation, mixed-initiative co-creativity,
generativist readings, erasure poetry generation, proceduralist read-
ings
ACM Reference Format:
Max Kreminski, Isaac Karth, and Noah Wardrip-Fruin. 2019. Generators
that Read. In The Fourteenth International Conference on the Foundations
of Digital Games (FDG ’19), August 26–30, 2019, San Luis Obispo, CA, USA.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3337722.3341849

1 INTRODUCTION
Recent years have seen an increased interest in approaches to pro-
cedural content generation that interpret and meaningfully respond
to complex forms of input, often forms of input that were not origi-
nally intended to be used as input to a generator. Challenges such

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FDG’19, August 26-30, 2019, San Luis Obispo, CA, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7217-6/19/08. . . $15.00
https://doi.org/10.1145/3337722.3341849

as the Settlement Generation Challenge of the Generative Design in
Minecraft Competition [33] have explicitly encouraged a focus on
the development of context-sensitive generators, capable of taking
an arbitrary Minecraft map as input and generating a settlement
that fits well within the context of that particular map. Projects
like WikiMystery [2] have used existing corpuses of open data as a
foundation for the generation of murder mystery scenarios. And
essentially all approaches that fall under the umbrella of procedural
content generation via machine learning [37] begin by training on a
large corpus of input data.

Nevertheless, there remains a tendency in the community to talk
about generation as though it is primarily a process of writing or ex
nihilo creation of artifacts, sidelining or even outright erasing the
sophistication of the increasingly complex components of genera-
tors that concern themselves primarily with the reading of input.
We believe it is worthwhile to look more closely at how generators
read.

At the same time, we observe a tendency within computer sci-
ence research to place an emphasis on correctness and unambigu-
ousness in the development of algorithms for interpreting complex
forms of input. From natural language processing to emotion recog-
nition from face images, much of the literature implicitly assumes
that it is both possible and desirable to produce an objectively cor-
rect and unambiguous interpretation of these complex inputs within
the computer.We contend, however, that extractingmachine-usable
meaning from complex input necessarily entails a creative act of
interpretation: the complexity of the input ensures that it could
always be read differently, and the approach to interpretation that
you choose to apply will affect the nature of the interpretation you
produce.

Moreover, we argue that, for the purpose of procedural content
generation, it is often beneficial to accept “incorrect” and “ambigu-
ous” readings of complex input as valid, enabling our generators to
produce surprising outputs by selecting from among a wide range
of mutually incompatible but equally viable interpretations of the
same input. Likewise, when designing generators to be used in
mixed-initiative contexts, it may be desirable to embrace multivo-
cality by exposing the user to a variety of possible interpretations
of the same input, thereby helping them to see alternatives they
might not otherwise have considered.

There are many different approaches to reading, and within the
humanities, many forms of critical practice are organized around a
particular theory or methodology of reading. Borrowing this lens,
we suggest that different approaches to reading might inform or
inspire the development of novel approaches to procedural gener-
ation, and that analyses of existing generators may benefit from
thorough examination of how these generators read their input in
a way that engages deeply with a particular theory of reading.

https://doi.org/10.1145/3337722.3341849
https://doi.org/10.1145/3337722.3341849

FDG’19, August 26-30, 2019, San Luis Obispo, CA, USA Max Kreminski, Isaac Karth, and Noah Wardrip-Fruin

Figure 1: A portion of a node-graph in SideFX’s Houdini, a
procedural 3D modeling and effects software, demonstrat-
ing how the web of nodes is connected via inputs and out-
puts.

Rather than viewing generators as monolithic black boxes, gener-
ators can be viewed as a pipeline of data transformations [7]. Many
common procedural content generation techniques can be subdi-
vided into modular units that chain into each other, often forming
a complex web. In some fields, such as parametric 3D modeling or
shaders, these connections are made explicit through the use of
node-based interfaces. Node based interfaces explicitly route the
outputs of one stage of the pipeline into the inputs of the next (Fig.
1). In the PCG field, this has been expanded by the Generominos
ideation cards, which model a pipeline of data transformations,
explicitly highlighting the importance of matching inputs and out-
puts [8].

For example, considerWaveFunctionCollapse (WFC), a constraint-
based and example-driven approach to procedural content gener-
ation. WFC is composed of two linked generative processes: an
input model that translates an image into adjacency constraint
data, and a probabilistic constraint solver that turns the data into
new generated images [19]. The constraint solver cannot act on
its own without some form of input to specify the constraint data.
The generator needs both its input and its output components to
operate. Further, WaveFunctionCollapse has multiple input models
that read input data with different approaches. By examining how
the different input models process the data that the generator reads,
we can gain greater insight into the process of the generator as a
whole.

As another example, consider that many of the novel generators
created for National Novel Generation Month (NaNoGenMo)1 draw
on the same source texts—frequently including Alice in Wonderland,
Moby-Dick, and The Odyssey—yet produce very different outputs.
This is possible in part because each generator takes a different
approach to reading its input text.

1https://nanogenmo.github.io/

In this paper, we first discuss the reasons we might want our
generators to interpret and respond to complicated forms of input—
or, in other words, to read. Then we investigate, from a humanities
perspective, what exactly it means to read, with an eye to how a
diverse range of existing approaches to reading might inform the
development of new approaches to procedural content generation.
Next we introduce the concept of generativist readings: readings of
texts that take the form of sets of rules for producing more texts of a
similar nature. We present a brief comparison of two similar erasure
poetry generators that are differentiated almost exclusively by their
approaches to reading. Finally, we discuss the broader implications
of a deeper investigation of reading in the context of generative
methods.

We focus our investigation primarily on generators that read
complex inputs which were not originally intended primarily as
inputs to a generator. A generator that reads complicated generator-
specific configuration files, for instance, is of less interest to us than
a generator that reads Minecraft worlds or arbitrary English texts.
Nevertheless, generators that read complicated forms of generator-
specific input may still be amenable to some of the same forms of
analysis, so we do not exclude them entirely from the scope of our
interest.

2 WHY DOWEWANT OUR GENERATORS TO
READ?

2.1 Context-Sensitive Generation
There are a wide range of problem domains that call for context-
sensitive forms of procedural content generation: the generation
of artifacts that, rather than standing alone, are expected to fit in
to some existing complex context. One example of a problem that
calls for context-sensitive generation can be found in the Settle-
ment Generation Challenge of the Generative Design in Minecraft
Competition [33], which tasks competitors with building a gen-
erator that can produce a convincing settlement on any arbitrary
chunk of terrain in the voxel-based construction gameMinecraft. In
order to reward competitors for producing generators that are truly
context-sensitive, competitors are not given access to the specific
maps that will be used as testbeds for their settlement generation
processes. Therefore, they must do their best to produce generators
that are capable of functioning in a wide range of potential con-
texts, and are disincentivized to produce generators that are prone
to overwriting large swaths of the existing terrain without regard
for how a generated settlement might fit more naturally into its
surroundings.

In other cases, it is often desirable to generate content that fits
around or fills the gaps between a number of fixed “landmarks”
without overwriting those landmarks. This too necessitates genera-
tors that are capable of reading and responding to an established
context.

2.2 Generative Pipelines
Building on the notion of context-sensitive generation, it is im-
portant to acknowledge that many generators do not operate in
a vacuum. In particular, especially in games that make extensive
use of procedural content generation, a single generator is often
merely one component of a larger generative pipeline that consists

https://nanogenmo.github.io/

Generators that Read FDG’19, August 26-30, 2019, San Luis Obispo, CA, USA

of many generators wired together end-to-end. In these situations,
the complex output of one generator becomes complex input to an-
other generator, and the downstream generator must then interpret
the input in some nontrivial way in order to generate an output
artifact that matches or meaningfully adapts to the input artifact.

When working with procedurally-generated base terrain, a fre-
quent problem is to appropriately respect the elevation of the
terrain when placing objects, particularly when generating build-
ings, towns, and road networks on rough terrain [12]. For example,
Minecraft settlement generation is itself an instance of a problem
where generative pipelining leads to a need for downstream genera-
tors that are capable of interpreting and responding to the complex
output of upstream generators (in this case, the base terrain gener-
ator itself) [33]. Likewise, world generation in the roguelike Caves
of Qud makes use of multiple distinct generators, each of which
feeds into other generators in the pipeline [14].

2.3 Mixed-Initiative Co-Creativity
When building mixed-initiative co-creative tools [40] that attempt
to use procedural generation to supplement or augment the work of
a human user, it is especially critical for the generative systems em-
ployed by the tool to be capable of reading or interpreting whatever
the human user has created so far. In cases where the generator is
not capable of doing this, it is likely to step on the user’s toes in
various ways, for instance by overwriting their work and replacing
it with generated content.

This behavior can be seen in the context of mixed-initiative 2D
platformer level design tools with Morai Maker [15], an AI-driven
game level editor in which a human user and an AI level designer
take turns collaborating on a single shared design. Unlike earlier
human/AI collaborative level design tools such as Tanagra [35],
which provides the human user with a suite of tools for communi-
cating their design intent to the AI directly, Morai Maker attempts
to infer what it should do in response to the human user’s actions
largely without explicit guidance. Partly as a result of this lack of
guidance, the AI collaborator has a tendency to apparently ignore
or repeatedly overwrite the human user’s edits to the shared design,
which can produce frustration in users who desire a greater degree
of control over the design process. The user experience of Morai
Maker under its current design constraints, then, hinges on its abil-
ity to read the design the user has created so far, ideally with an eye
to deriving an understanding of the user’s intention purely from the
actions they have taken. Improving the AI collaborator’s capability
to read the human user’s partial level designs would directly result
in an overall improvement to the user experience of collaborating
with the AI.

3 WHAT DOES IT MEAN TO READ?
There are many different kinds of reading. Within the humani-
ties, the term “reading” has taken on an expansive definition as
an umbrella term under which a wide variety of approaches to
the analysis and interpretation of texts may be considered. Indeed,
following the linguistic turn [32] in the humanities, the term “text”
has itself taken on a broader meaning than in its original sense of
purely linguistic or written works, and is now widely understood

to encompass all kinds of cultural artifacts [13, 21], from advertise-
ments to zoo signage. As such, the notion of “reading” is a contested
one, and merits further examination if we are to apply it as a lens
to the understanding of generative methods. We do not attempt
a comprehensive survey of all possible approaches to reading, as
such an undertaking would be well outside the scope of this work.
Instead, we offer samples of several diverse perspectives on the
question of what it means to read, with the goal of illustrating the
range of approaches that are possible and hinting at how different
approaches to reading might inform or inspire different approaches
to procedural generation.

3.1 Close Reading
Close reading is “the thorough interpretation of a text passage by
the determination of central themes and the analysis of their de-
velopment” [18]. “Close reading concerns close attention to textual
details with respect to elements such as setting, characterization,
point of view, figuration, diction, rhetorical style, tone, rhythm,
plot, and allusion,” often examining the gap between what is said
and what can be inferred [30]. The methodology is evaluated, in
part, by its explanatory power for the details of the presentation.

A generator that performs a close reading of its input is con-
cerned with the details of the input. Interactive Data Visualization
Inc.’s SpeedTree, to give one example, pays careful attention to the
shape of the nearby terrain—at a fairly high level of granularity—
when placing a tree.

3.2 Distant Reading
Positioned in contrast to close reading, in distant reading “the re-
ality of the text undergoes a process of deliberate reduction and
abstraction” [27]. Rather than concerning itself with the details of
presentation, distant reading is a process that operates on mod-
els and visualizations of the text. This thousand-foot view reveals
commonalities and structures that would otherwise go unseen but
that can now be visualized by graphs, maps, trees, and other data
structures.

One approach to designing a generator is to program a model of
the process that created the desired result, or has a visual similarity
to the desired result. In the first case, a teleological terrain genera-
tor [1] might include simulations of geological processes, erosion,
the shifting flow of rivers, and so on. In contrast, an ontological
terrain generator [28] might use Perlin noise to emulate the shape
of the desired terrain. In either case, the generator is modeling a
system, and both creating and analyzing the generator involve a
process of reading via that model.

3.3 Critical Approach
A critical approach to reading is performed by mapping a theory
onto a literary work to explain its meaning, a two-directional pro-
cess where “the theory should illuminate a work, and a work should
illuminate a theory” [30]. We can characterize image generation
via deep learning neural networks (such as Deep Dream [26]) as
a generator that reads its input by mapping a theory (learned in
training) onto the input image.

FDG’19, August 26-30, 2019, San Luis Obispo, CA, USA Max Kreminski, Isaac Karth, and Noah Wardrip-Fruin

3.4 Hermeneutics
A grammatical hermeneutic reading attempts to derive the meaning
of a text through analysis of elements that are present within the
text itself, rather than from elements outside the text, such as the
intention of the author [39]. For our purposes, an important factor
to recognize is that this often deliberately results in multiple paral-
lel readings of a single text. For example, the European medieval
exegesis of sacred texts, influenced by Aquinas, simultaneously
looked for four senses in every text: a literal (sensus literalis), moral
or tropological (sensus tropologicus), allegorical (sensus allegoricus),
and mystic (sensus anagogicus) sense [5] [17, p. 99].

The recognition that a single work can have multiple senses
challenges the assumption that a reading will arrive at a single,
unambiguous classification. A text can be read in multiple ways
simultaneously, and multiple generators can produce a variety of
valid interpretations—even mutually incompatible interpretations—
of the same input.

3.5 Poetics
In contrast to hermeneutic approaches to reading, poetics repre-
sents an alternative perspective that focuses instead on the felt
effects of a text in the reader [10, 31]. Whereas it is fairly straight-
forward to see how close or distant reading might be employed in
the construction of a generator, it is less obvious how the frame-
work of poetics might be applied to a machine reader, especially
insofar as the term “felt effects” may be interpreted as concerning
itself primarily with a text’s physiological effects. Nevertheless, gen-
eration based on a subjective experience of a text—perhaps from the
perspective of one interpreting agent among many in an artificial
artist commune such as CheapArtistsDoneQuick [9] or The Digital
Clockwork Muse [34]—remains an intriguing possibility.

For an example of an existing generative technique that may
exhibit something like mechanical felt effects, consider word vec-
tors, which are constructed through a mechanical analysis of word
adjacencies [23, 24]. Because word vectors describe points in a
much larger continuous space, they allow for a kind of “seman-
tic bleed” between adjacent words, similar to how ambiguity and
wordplay operates in textual poetics for human readers. Further,
word vectors capture semantic relationships in the text that was
read [25], indirectly modeling or mimicking some of the subjective
effects of reading in human readers through their very method of
construction.

3.6 Proceduralist Readings
Proceduralist readings represent still another approach to reading,
this time an approach native to game studies and focused primarily
on the interpretation of interactive or rule-based texts such as
videogames. Proceduralist readings “address a convergence point
between [...] expression and interpretation” and focus on “internal
readings of a game’s dynamic” yielding “meaning derivations” [38].
These meaning derivations are structured logical arguments for
the interpretation of the game’s mechanical and sensory cues as
the higher-level meanings that emerge as the game’s dynamics and
aesthetics.

Proceduralist readings have themselves been proceduralized:
building on the Operational Logics framework as a game descrip-
tion language, Martens et al. describe a procedure for automated
reasoning about games [22]. This proceduralization, in turn, has
become an essential component of Gemini [36], a generator of ab-
stract games. Gemini provides users with a specification language
that they may use to specify what arguments they want the gener-
ated games to make. Gemini then uses this specification to guide
its search within the design space of possible games, identifying
and returning games that may be read in the desired ways.

3.7 Takeaways
As evidenced by the brief sampling here, a wide variety of theories of
reading have been introduced, and each such theory has interesting
potential implications for generators that read. Proceduralizing
various approaches to reading may prove a successful strategy for
the discovery of new approaches to generation. Moreover, deep
engagement with a particular theory of reading may enable deeper
analysis of existing generators that process complex inputs.

It is also important to note the double meaning of the term
“reading” as it is commonly understood: the same term applies both
to the process of interpretation and to the concrete interpretations
that are produced through the application of this process. Reading
a text produces a particular reading of the text in question, and
a reading of a text may be examined, understood, or interpreted
as a concrete artifact or text in and of itself. Therefore, when a
generator reads an input text, it may be useful to consider the
reading it produces as an artifact that merits examination, even if
this reading is not intended to be directly consumed or experienced
by the generator’s audience at the end of the generative process. In
the following section, we further examine the implications of this
view.

4 GENERATIVIST READINGS
By analogy to proceduralist readings, we propose the notion of
generativist readings. A generativist reading is an interpretation of
a text consisting of a set of rules for generating artifacts similar
to or based on the text. Much like a proceduralist reading of an
interactive text focuses on deriving meaning from the rules or pro-
cedures within the text, a generativist reading attempts to answer
the question of what this text can tell us about how to produce
more similar texts.

Generativist readings need not be exclusively constructed by me-
chanical processes. Oftentimes, when we create generators to pro-
duce types of artifacts that were previously exclusively handmade,
we essentially find ourselves manually conducting a generativist
reading of a corpus of examples. For instance, if a human reader
was to read Moby-Dick and handcraft a Tracery [6] grammar that
utilizes vocabulary and sentence structures drawn from the book
to produce sentences that sound plausibly as though they could be
drawn directly from the source text, the resulting grammar would
constitute a generativist reading of the text. Similar practices are
not uncommon among Twitter bot creators, who may often begin
by writing out the source text that a generator will try to imitate
and then recursively substitute grammar rules in place of concrete
words, gradually sublimating the text itself into a statistical model

Generators that Read FDG’19, August 26-30, 2019, San Luis Obispo, CA, USA

of the text. Manual generativist readings may even be used as an
instrument of critique: consider Umberto Eco’s proposal of algo-
rithms for plot generation in the style of various filmmakers as a
way of parodying those filmmakers’ styles. [11]

However, in practice, many generativist readings are constructed
by mechanical processes. Mechanical processes of generation that
rely on generativist readings typically begin by conducting one or
more generativist readings of an input text or corpus. The generator
then queries or manipulates these readings to produce individual
output artifacts. For instance, text generation with Markov chains
follows a two-step process. First, the computer conducts a gen-
erativist reading of the source text by moving over the text and
tracking the overall frequency with which each word it encounters
follows each other word. Then, the process of generation employs
the statistical model created through reading to write new texts that
imitate the read text. This same structure can be observed in many
forms of generation, especially in procedural content generation via
machine learning [37], which hinges entirely on the construction
of generative models from which individual output artifacts can
then be sampled.

Some practitioners in the generative art world recognize the
reading process as an intrinsic part of generation. For example, in
the view of everest pipkin:

When I say that the creative act is the reader’s, I
imply the creator as well as the audience. When
working with generative text, it is impossible
not to read. One has to look for bodies of text
that can function as useful sources for tools; big
enough, or concrete enough, or with the right
type of repetitive structure; learnable. And then
one has to read the output of such machines,
refining rules and structures to fix anything
that breaks that aura of the space one is look-
ing for. In this, we are not unlike the medieval
scholar who studies holy verse to become fluent
enough in that space that it becomes building
block. [29]

Generators with more complexity stem from reading with more so-
phistication: comparedwith aMarkov chain, the better performance
of Long Short Term Memory neural network architecture [16] can
be partially attributed to a more in-depth reading process that takes
into account correlations that are more complex than the short
horizon a reasonable Markov chain can remember.

While reading is an intrinsic part of machine learning, it is not
confined to neural networks. Procedural generation algorithms like
WaveFunctionCollapse [19] also depend on reading. WaveFunction-
Collapse performs a generativist reading on the images it uses as
input and translates them into a model that can in turn be used to
generate new examples that imitate structures it has recognized in
the input.

Not every generator that makes use of reading as part of the gen-
erative process necessarily conducts a generativist reading. Gem-
ini [36], a generator of simple abstract games based on Martens
et al.’s proceduralization of proceduralist readings [22], conducts
proceduralist readings on the games it generates in order to deter-
mine whether or not they can be interpreted in a way that matches

the arguments the user has specified they want to make. However,
this reading occurs only internally—the things it reads are the in-
complete games that it has itself generated—and it does not build a
generative model of these games based on its reading, but merely
uses its reading to direct its search within the possibility space.

In contrast to Gemini’s proceduralist reading approach, the Ludi
game generation system reads abstract games in terms of their
rules, as formatted in a game description language. Ludi reads game
rules through a process of analyzing self-play simulations. Ludi
then evaluates their fitness as defined by a set of algorithmically-
measured aesthetic criteria [4]. The writing process combines the
read game rules into new mixtures of rules. These are added to
the collection of game descriptions to create the next generation
of games and the reading and writing process repeats. It has been
suggested to us that Ludi uses a form of generativist reading: the
analysis and evolving process is aimed at generating new game
rules that are similar to the game descriptions it read as input,
and it builds up a generative model that attempts to describe the
possibility space of aesthetically interesting game descriptions.

5 CASE STUDY
As an illustration of the potential importance of reading to the gen-
erative process, we now present a brief comparison of two similar
erasure poetry generators: The Deletionist [3] and blackout [20].
Both of these generators are packaged as browser bookmarklets
and present themselves as ways of turning arbitrary web pages into
poetry by erasing most of a page’s text. Moreover, the processes
by which these generators write their modifications to the target
page are both straightforward and nearly identical. The difference
between these two generators thus lies almost entirely in how each
generator reads or interprets a page’s text prior to modification.

The Deletionist interprets each webpage as a single unit, consid-
ering all the text on the page at once rather than breaking it up into
smaller pieces for analysis. It decides which words to erase deter-
ministically, such that running it repeatedly on the same webpage
will produce the same result every time. Its selection of which parts
of the text to retain is based on one of several regular expression
patterns, many of which use either the start or end of words to
determine whether some or part of the word should be retained. In
some cases, for instance, it will choose to retain primarily words
beginning with the letter M, while in other cases, it will choose to
retain words ending with a period. It also frequently retains certain
common whitelisted words, such as “from” and “like”. Once it has
decided which parts of the text to retain, all other parts are erased.

blackout takes a markedly different approach. Rather than treat-
ing the whole page as a single unit, it reads each paragraph in
isolation and makes no attempt to coordinate its reading of one
paragraph with its reading of the next. It reads nondeterministically,
such that running it repeatedly on the same webpage will typically
produce different results from one run to the next. Its selection of
which words to retain, meanwhile, makes use of part-of-speech
tagging and probabilistic fuzzy matching of valid sequences of parts
of speech, recognizing simple declarative sentences that could be
formed by omitting some or all of the words in a paragraph and
selecting some valid sentence for each paragraph.

FDG’19, August 26-30, 2019, San Luis Obispo, CA, USA Max Kreminski, Isaac Karth, and Noah Wardrip-Fruin

Figure 2: An erasure poem generated by running blackout
on one paragraph of the 2019 PCGWorkshop call for papers,
taking the form of a simple declarative sentence.

Figure 3: An erasure poem generated by running The Dele-
tionist on the same input, taking the form of a series of syl-
lables corresponding to musical notes.

A side-by-side comparison of the outputs that these two genera-
tors produce when run on the same input page will further confirm
that the differences between them lie largely in terms of how they
read the input they are provided. This serves to illustrate an impor-
tant principle: for generators that take nontrivial input (and that
can thus can meaningfully be said to consist of a distinct “reading”
and “writing” component), it is possible to alter or replace either the
reading or the writing part without changing the other component
and still get interestingly different results.

Both generators are equipped with a variety of patterns, each of
which is tested against the input before the generator makes a final
determination about how to generate the output poem. This can
be seen as leveraging a form of internal multivocality, embracing
the ambiguity of the reading process by engaging with a variety of
interpretations of the same input. Moreover, in the case of black-
out, the generator creatively misapplies a part-of-speech tagging
algorithm taken from a natural language processing package to de-
liberately preserve ambiguities of interpretation in the source text.
Rather than flattening ambiguous words (which could be parsed as
having several distinct and mutually incompatible parts of speech)
into a single most likely interpretation, as in the typical application

of similar algorithms, blackout avoids this flattening by treating
words as having arbitrarily many distinct part-of-speech tags until
the final poem is rendered.

6 CONCLUSIONS
As we have seen, reading is a useful analytic lens we can use to
better understand how generators process input, including context
sensitive generation, chaining generators together into pipelines,
and furthering mixed-initiative co-creativity.

By treating the problem of extracting machine-usable meaning
from complex input as a form of reading, we suggest that—when
crafting a generator that reads—it is often desirable to preserve
ambiguity and embrace the possibility of incorrectness, rather than
attempting to read correctly and unambiguously. Interpretation
is essentially a kind of creative act, and different approaches to
interpretation may inform the development of new approaches
to generation. A terrain generator that models a physical process
reads its model in a different way than a tree generator that curves
roots around nearby stones. The idea of a proceduralist reading
is an already accepted methodology in game studies, and, in part,
inspires our introduction of generativist readings.

A generativist reading is an interpretation of a text into a genera-
tor of similar texts. The existing practice of many generative artists
and bot creators can be considered as generativist readings, while
mechanical generativist readings are foundational to many existing
approaches to PCG, including procedural content generation via
machine learning. The greater the complexity of the generator, the
more sophisticated the reading: breakdowns in generative pipelines
can be caused by a mismatch in complexity between the input and
the output, as with Compton et al.’s example of complex input from
a Kinect being effectively reduced to button-presses by a badly
designed pipeline [8].

As a brief illustration, we contrasted two erasure poetry genera-
tors, The Deletionist [3] and blackout [20] and demonstrated that
the differences between them rests almost entirely on the different
approaches to reading the input.

Many generators have interesting approaches to reading. How-
ever, the way generators read is less discussed than how they write,
and seldom separated into a subject worthy of discussion on its
own. Despite this, we have demonstrated several ways in which
particular generators cannot be understood without first examining
how they read. Therefore, when we discuss generators, we should
go beyond discussing what the output looks like and consider in-
cluding a clear separation in our discussion: between the ways in
which a generator writes and the ways in which it reads.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous referees for their
valuable comments and helpful suggestions.

REFERENCES
[1] Alan H. Barr. 1991. Teleological Modeling. In Making Them Move, Norman I.

Badler, Brian A. Barsky, and David Zeltzer (Eds.). Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 315–321. http://dl.acm.org/citation.cfm?id=111154.
111171

[2] Gabriella Alves Bulhoes Barros, Michael Green, Antonios Liapis, and Julian
Togelius. 2019. Who killed Albert Einstein? From open data to murder mystery
games. IEEE Transactions on Games (2019).

http://dl.acm.org/citation.cfm?id=111154.111171
http://dl.acm.org/citation.cfm?id=111154.111171

Generators that Read FDG’19, August 26-30, 2019, San Luis Obispo, CA, USA

[3] Amaranth Borsuk, Jesper Juul, and Nick Montfort. 2013. The Deletionist. https:
//thedeletionist.com. (June 2013).

[4] C. Browne and F. Maire. 2010. Evolutionary Game Design. IEEE Transactions
on Computational Intelligence and AI in Games 2, 1 (March 2010), 1–16. DOI:
http://dx.doi.org/10.1109/TCIAIG.2010.2041928

[5] Harry Caplan. 1929. The Four Senses of Scriptural Interpretation and the Medi-
aeval Theory of Preaching. Speculum 4, 3 (1929), 282–290. http://www.jstor.org/
stable/2849551

[6] Kate Compton, Ben Kybartas, and Michael Mateas. 2015. Tracery: An Author-
Focused Generative Text Tool. In Interactive Storytelling, Henrik Schoenau-Fog,
Luis Emilio Bruni, Sandy Louchart, and Sarune Baceviciute (Eds.). Springer Inter-
national Publishing, Cham, 154–161.

[7] Kate Compton andMichael Mateas. 2017. A generative framework of generativity.
In Experimental AI in GamesWorkshop 2017, at the Thirteenth Artificial Intelligence
and Interactive Digital Entertainment Conference. The AAAI Press, Palo Alto,
California, Snowbird, Little Cottonwood Canyon, Utah USA. https://aaai.org/
ocs/index.php/AIIDE/AIIDE17/paper/view/15896

[8] Kate Compton, Edward Melcer, and Michael Mateas. 2017. Generominos: Ideation
Cards for Interactive Generativity. In Experimental AI in Games Workshop 2017,
at the Thirteenth AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment. AAAI Press, Snowbird, Little Cottonwood Canyon, Utah USA.
https://aaai.org/ocs/index.php/AIIDE/AIIDE17/paper/view/15898

[9] Kate Compton, Johnathan Pagnutti, and Jim Whitehead. 2017. A shared lan-
guage for creative communities of artbots. In Proceedings of the 2017 Co-Creation
Workshop. Eighth International Conference on Computational Creativity, Atlanta,
Georgia, USA.

[10] Jonathan Culler. 2015. Theory of the Lyric. Harvard University Press, Cambridge,
MA, 6.

[11] Umberto. Eco. 1993. Make Your Own Movie. In Misreadings. Harcourt Brace &
Co., San Diego, 145–155.

[12] Arnaud Emilien, Adrien Bernhardt, Adrien Peytavie, Marie-Paule Cani, and Eric
Galin. 2012. Procedural generation of villages on arbitrary terrains. The Visual
Computer 28, 6-8 (2012), 809–818.

[13] P. Ffrench. 2012. Text. In The Princeton Encyclopedia of Poetry and Poetics : Fourth
Edition, Roland Greene, Stephen Cushman, Clare Cavanagh, Jahan Ramazani,
Paul F. Rouzer, Harris Feinsod, David Marno, Alexandra Slessarev, and Inc. ebrary
(Eds.). Princeton University Press, 41William Street, Princeton, New Jersey 08540,
1425–1426.

[14] Jason Grinblat and Brian Bucklew. 2019. Math for Game Developers: End-to-
End Procedural Generation in ‘Caves of Qud’. https://www.gdcvault.com/play/
1025914/Math-for-Game-Developers-End. In Game Developer’s Conference 2019.
San Francisco, CA USA.

[15] Matthew Guzdial, Nicholas Liao, Jonathan Chen, Shao-Yu Chen, Shukan Shah,
Vishwa Shah, Joshua Reno, Gillian Smith, and Mark Riedl. 2019. Friend, Col-
laborator, Student, Manager: How Design of an AI-Driven Game Level Editor
Affects Creators. In Proceedings of ACM SIGCHI Conference on Human Factors in
Computing Systems (CHI).

[16] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Computation 9, 8 (1997), 1735–1780. DOI:http://dx.doi.org/10.1162/neco.
1997.9.8.1735 arXiv:https://doi.org/10.1162/neco.1997.9.8.1735

[17] R. Hollander. 2001. Dante: A Life in Works. Yale University Press.
[18] Stefan Jänicke, Greta Franzini, Muhammad Faisal Cheema, and Gerik Scheuer-

mann. 2015. On close and distant reading in digital humanities: A survey and
future challenges. In Eurographics Conference on Visualization (EuroVis)-STARs.
The Eurographics Association, Vol. 2. 6.

[19] Isaac Karth and Adam M. Smith. 2017. WaveFunctionCollapse is Constraint
Solving in the Wild. In Proceedings of the 12th International Conference on the
Foundations of Digital Games (FDG ’17). ACM, New York, NY, USA, Article 68,
10 pages. DOI:http://dx.doi.org/10.1145/3102071.3110566

[20] Max Kreminski. 2017. blackout. https://mkremins.github.io/blackout. (March
2017).

[21] Yuri Lotman. 1977. The Structure of the Artistic Text. University of Michigan:
Department of Slavic Languages and Literature, Ann Arbor, Michigan.

[22] Chris Martens, Adam Summerville, Michael Mateas, Joseph Osborn, Sarah Har-
mon, Noah Wardrip-Fruin, and Arnav Jhala. 2016. Proceduralist readings, Proce-
durally. In Proceedings of the Twelfth AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment. https://www.aaai.org/ocs/index.php/AIIDE/
AIIDE16/paper/view/14061

[23] Tomas Mikolov, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. 2013. Efficient
Estimation of Word Representations in Vector Space. CoRR abs/1301.3781 (2013).
arXiv:1301.3781.

[24] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013.
Distributed Representations of Words and Phrases and Their Compositionality. In
Proceedings of the 26th International Conference on Neural Information Processing
Systems - Volume 2 (NIPS’13). Curran Associates Inc., USA, 3111–3119. http:
//dl.acm.org/citation.cfm?id=2999792.2999959

[25] Tomas Mikolov, Wen tau Yih, and Geoffrey Zweig. 2013. Linguistic Regularities
in Continuous Space Word Representations. In Proceedings of the 2013 Conference

of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies (NAACL-HLT-2013). Association for Com-
putational Linguistics. https://www.microsoft.com/en-us/research/publication/
linguistic-regularities-in-continuous-space-word-representations/

[26] Alexander Mordvintsev, Christopher Olah, and Mike Tyka. 2015. Inceptionism:
Going deeper into neural networks. (2015).

[27] F. Moretti and A. Piazza. 2005. Graphs, Maps, Trees: Abstract Models for a Literary
History. Verso.

[28] F. Kenton Musgrave. 2003. 14 - A brief introduction to fractals. In Texturing and
Modeling (Third Edition) (third edition ed.), David S. Ebert, F. Kenton Musgrave,
Darwyn Peachey, Ken Perlin, Steven Worley, William R. Mark, John C. Hart,
F. Kenton Musgrave, Darwyn Peachey, Ken Perlin, and Steven Worley (Eds.).
Morgan Kaufmann, San Francisco, 428 – 445. DOI:http://dx.doi.org/10.1016/
B978-155860848-1/50043-7

[29] everest pipkin. 2016. A Long History of Generated Poetics: cutups from
Dickinson to Melitzah. (2016). https://medium.com/@everestpipkin/
a-long-history-of-generated-poetics-cutups-from-dickinson-to-melitzah-fce498083233
Archived by WebCiteÂő at http://www.webcitation.org/76fwxfAz5.

[30] Herman Rapaport. 2011. The Literary Theory Toolkit: A Compendium of Concepts
and Methods. Wiley-Blackwell, Chichester, West Sussex, United Kingdom.

[31] B. M. Reed. 2012. Poetics, Western. In The Princeton Encyclopedia of Poetry and
Poetics : Fourth Edition, Roland Greene, Stephen Cushman, Clare Cavanagh, Jahan
Ramazani, Paul F. Rouzer, Harris Feinsod, David Marno, Alexandra Slessarev,
and Inc. ebrary (Eds.). Princeton University Press, 41 William Street, Princeton,
New Jersey 08540, 1058–1064. http://ebookcentral.proquest.com/lib/ucsc/detail.
action?docID=913846

[32] Christoph Reinfandt. 2009. Reading Texts after the Linguistic Turn: Approaches
from Literary Studies and Their Implications. In Reading Primary Sources: The
Interpretation of Texts from Modern History, Benjamin Ziemann and Miriam
Dobson (Eds.). Routledge, London, UK, 37–54.

[33] Christoph Salge, Michael Cerny Green, Rodgrigo Canaan, and Julian Togelius.
2018. Generative Design in Minecraft (GDMC): Settlement Generation Compe-
tition. In Proceedings of the 13th International Conference on the Foundations of
Digital Games (FDG ’18). ACM, New York, NY, USA, Article 49, 10 pages. DOI:
http://dx.doi.org/10.1145/3235765.3235814

[34] Rob Saunders and John S Gero. 2001. The digital clockwork muse: A computa-
tional model of aesthetic evolution. In Proceedings of the AISB’01 Symposium on
Artificial Intelligence and Creativity in Arts and Science, Vol. 1. Citeseer, University
of York, Heslington, York, YOlO 5DD, England, 12–21.

[35] Gillian Smith, Jim Whitehead, and Michael Mateas. 2010. Tanagra: A mixed-
initiative level design tool. In Proceedings of the Fifth International Conference on
the Foundations of Digital Games. ACM, 209–216.

[36] Adam Summerville, Chris Martens, Ben Samuel, Joseph Osborn, Noah Wardrip-
Fruin, and Michael Mateas. 2018. Gemini: Bidirectional generation and analysis
of games via ASP. In Proceedings of the Fourteenth AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment (AIIDE 2018). AAAI Press.

[37] Adam Summerville, Sam Snodgrass, Matthew Guzdial, Christoffer Holmgård,
Amy K Hoover, Aaron Isaksen, Andy Nealen, and Julian Togelius. 2018. Proce-
dural content generation via machine learning (PCGML). IEEE Transactions on
Games 10, 3 (2018), 257–270.

[38] Mike Treanor, Bobby Schweizer, Ian Bogost, and Michael Mateas. 2011. Proce-
duralist Readings: How to Find Meaning in Games with Graphical Logics. In
Proceedings of the 6th International Conference on Foundations of Digital Games
(FDG ’11). ACM, New York, NY, USA, 115–122. DOI:http://dx.doi.org/10.1145/
2159365.2159381

[39] Georgia Warnke. 2016. Hermeneutics. (Nov 2016). DOI:http://dx.doi.org/10.1093/
acrefore/9780190201098.013.114 Published Online. Accessed 2019 April 17.

[40] Georgios N Yannakakis, Antonios Liapis, and Constantine Alexopoulos. 2014.
Mixed-initiative co-creativity. In Proceedings of the 9th International Conference
on the Foundations of Digital Games. Society for the Advancement of the Science
of Digital Games.

https://thedeletionist.com
https://thedeletionist.com
http://dx.doi.org/10.1109/TCIAIG.2010.2041928
http://www.jstor.org/stable/2849551
http://www.jstor.org/stable/2849551
https://aaai.org/ocs/index.php/AIIDE/AIIDE17/paper/view/15896
https://aaai.org/ocs/index.php/AIIDE/AIIDE17/paper/view/15896
https://aaai.org/ocs/index.php/AIIDE/AIIDE17/paper/view/15898
https://www.gdcvault.com/play/1025914/Math-for-Game-Developers-End
https://www.gdcvault.com/play/1025914/Math-for-Game-Developers-End
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/https://doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1145/3102071.3110566
https://mkremins.github.io/blackout
https://www.aaai.org/ocs/index.php/AIIDE/AIIDE16/paper/view/14061
https://www.aaai.org/ocs/index.php/AIIDE/AIIDE16/paper/view/14061
http://dl.acm.org/citation.cfm?id=2999792.2999959
http://dl.acm.org/citation.cfm?id=2999792.2999959
https://www.microsoft.com/en-us/research/publication/linguistic-regularities-in-continuous-space-word-representations/
https://www.microsoft.com/en-us/research/publication/linguistic-regularities-in-continuous-space-word-representations/
http://dx.doi.org/10.1016/B978-155860848-1/50043-7
http://dx.doi.org/10.1016/B978-155860848-1/50043-7
https://medium.com/@everestpipkin/a-long-history-of-generated-poetics-cutups-from-dickinson-to-melitzah-fce498083233
https://medium.com/@everestpipkin/a-long-history-of-generated-poetics-cutups-from-dickinson-to-melitzah-fce498083233
http://www.webcitation.org/76fwxfAz5
http://ebookcentral.proquest.com/lib/ucsc/detail.action?docID=913846
http://ebookcentral.proquest.com/lib/ucsc/detail.action?docID=913846
http://dx.doi.org/10.1145/3235765.3235814
http://dx.doi.org/10.1145/2159365.2159381
http://dx.doi.org/10.1145/2159365.2159381
http://dx.doi.org/10.1093/acrefore/9780190201098.013.114
http://dx.doi.org/10.1093/acrefore/9780190201098.013.114

	Abstract
	1 Introduction
	2 Why Do We Want Our Generators to Read?
	2.1 Context-Sensitive Generation
	2.2 Generative Pipelines
	2.3 Mixed-Initiative Co-Creativity

	3 What Does It Mean to Read?
	3.1 Close Reading
	3.2 Distant Reading
	3.3 Critical Approach
	3.4 Hermeneutics
	3.5 Poetics
	3.6 Proceduralist Readings
	3.7 Takeaways

	4 Generativist Readings
	5 Case Study
	6 Conclusions
	Acknowledgments
	References

