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ABSTRACT 
So called “serious games” have used games (in a sense, virtual 
environments) for reasons other than entertainment.  Particularly 
within the training community, they have garnered increasing 
attention over recent years.  However, means of generating new 
scenarios that have increased training effectiveness has continued 
to be lacking.  Because creating new scenarios is a time-intensive 
and costly exercise. existing scenarios are commonly reused with 
only minor changes, a practice that can hamper training 
effectiveness over time. 

We have been pursuing a thrust of research in automated scenario 
generation.  In this paper, we present our work in the use of 
Functional L-systems for generating scenarios.  We first review 
some of our previous work in defining scenarios; then show how 
Functional L-systems are used to build up the scenarios. 

Categories and Subject Descriptors 
I.6.7 [Simulation and Modeling]: Simulation Support Systems – 
environments.  

General Terms 
Algorithms, Management, Design, Human Factors, Languages. 

Keywords 
Scenario Generation, Simulation, Training, FL-Systems. 

1. INTRODUCTION 
Serious games (and virtual environments, in general) have great 
promise for use in training.  However, for the most part, scenarios 
are created manually, which is a costly and time-intensive 
process.  The consequence is that a small set of scenarios is 
commonly re-used over and over, with few or no changes, which 
can cause reduced training effectiveness. 

We are pursuing a line of research investigating procedural 
generation for automating the scenario building process.  The 
initial focus of our work is in supporting the creation of scenarios 
for Fire Support Teams in the U.S. Marines.  However, the system 
we are building addresses the general case and is, thus, adaptable 
to many other domains. 

Fire Support Teams coordinate artillery strikes and ground attacks 
by aircraft on targets through a complex set of actions.  They 
typically observe the targets and direct such strikes by providing 
direction to the firing units.  Scenarios based on their training 
must provide the team position, artillery and airstrike assets, and 
target(s).  Figure 1 shows an image from one common Forward 
Observer application used for training [1]. 

 

 
Figure 1. A Forward Observer application 

2. SCENARIO-BASED TRAINING 
The use for scenario generation for training arises from the desire 
to increase the effectiveness of the training.  In fact, scenario-
based training is distinguished from simulation-based training.  
Here, simulation-based training refers to the simply use of a 
virtual environment to provide practice of some skills or tasks.  In 
contrast, scenario-based training is based on the targeted creation 
of specific simulator events to create desired psychological states.  

Scenario-based training is now widely accepted.  Through its use, 
trainees can learn to integrate multiple supporting skills, cope 
with realistic distracters, practice their higher-order cognitive 
skills, and exercise naturalistic decision making [2]. However, it 
has been found that development of these advanced cognitive 
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skills requires extensive varied experience [3][4].  This notion 
drives the need for scenario generation to further improve training 
effectiveness. 

3. EXISTING SCENARIO GENERATION 
Before we consider our own approach, we review just a few 
contributions from others.  A complete review is beyond the 
scope of this paper, but here we focus on works that provide some 
key concepts.  Many fields have elements to offer scenario 
generation (such as interactive and narrative storytelling); 
however, our focus here is on actual systems built with training in 
mind. 

One event-based approach to scenario generation was the Rapidly 
Reconfigurable Event-Set Based Line-Oriented Evaluations 
(RRLOE) Generator, developed for Federal Aviation 
Administration (FAA) flight simulators [5][6][7].  RRLOE builds 
scenarios from small, FAA-approved scenarios.  A set of 128 
heuristics determine the adequacy of each constructed scenario.  
RRLOE is highly successful and is still used by the FAA for pilot 
qualification testing and training. 

Similar to RRLOE, the Interactive Specification Acquisition 
Tools, ISAT, uses heuristics to build a scenario using smaller 
scenario pieces [8].  However, in the case of ISAT, each scenario 
piece satisfies some subgoal.  In addition, it performs analysis to 
determine error states in the heuristic model; for example, 
identifying states that are never executed and those with 
conflicting “next” states.  ISAT also allows users to intercede in 
the generation process, permitting scenarios to be more finely 
tailored. 

Pffefferman developed a system for automatic scenario generation 
associated with combat simulations [9].  His focus was on 
adapting a structured “mission file” in order to create a scenario.  
The mission file included information on the situation, mission, 
execution, service support, and command and signal elements.  
An important aspect of his work is in the use of domain-specific 
information (military doctrine in his case) for filling in gaps 
missing from the mission file. 

The Framework for Enabling Adaptive Scenario Generation for 
Training (FEAST) uses fine-grained training context analysis and 
knowledge modeling methods to support generation of scenarios 
[10].  Its focus is on dynamic, adaptive training and is unique in 
its use of captured domain knowledge.  A “domain ontology” is 
formed and drives the scenario generation process [11][12]. 

Tbese previous scenario generation efforts provide many lessons 
learned.  RRLOE and ISAT show the possibility of building 
scenarios from smaller, premade mini-scenarios.  The major 
advantage of this approach is that it allows smaller elements to be 
independently developed and then certified as “valid” and stored 
for later use.  Pfefferman’s approach shows us that the structure 
that a specific domain may offer can be key to addressing the 
automated generation desire.  In addition, it also allows such a 
system to have some knowledge to guide it in filling in gaps in 
information.  FEAST takes it one step further showing how an 
operationalized, comprehensive domain ontology can help drive 
scenario generation as well. 

Even with these significant contributions, many challenges 
remain.  In particular, despite the possible advantages of working 

within a single structured domain, there are strong incentives 
(e.g., cost, consistency, verifiability and tool integration)  to build 
a generation system that can adapt to multiple domains.  Most 
importantly, we want to avoid a “stovepipe” approach where we 
build a system for only one set of training applications. 

Still, before we can consider our own system, the concept of a 
“scenario” must be defined and made concrete enough to support 
an automated approach.  In the remainder of this paper, we will 
briefly review our work in defining a scenario in concrete terms 
before going into details of our automated approach. 

4. SCENARIO DEFINITION 
Before a system can be built to automate (or even semi-automate) 
the scenario generation process, a scenario must be defined in 
terms that such an automated process could be built around.  In 
our previous work, we developed a detailed model of a scenario 
for this purpose [13].  Scenarios are defined in terms of training 
objectives, baselines, augmentations and vignettes (themselves, 
defined in terms of triggers and adaptations).  Each is referred to 
as a facet of the scenario and may also have a set of 
“requirements” that must be defined and met. 

Training objectives are a list of specific tasks, appropriate for the 
domain, that potentially require training.  Training scientists will 
further split these objectives into Knowledge, Skills and Attitudes 
(KSAs) that focus the task on a particular learning objective.  The 
selection of training objectives drives the rest of the scenario 
generation process since it determines exactly what is to be 
trained. 

Baselines are the simplest form of scenario.  They are minimal 
(they may contain only the trainee within a particular map or 
database) and take place in perfect conditions (perfect lighting 
and no detrimental weather such as rain).  Baselines provide the 
foundation for the scenario generation process.  When generating 
a scenario, a single baseline is chosen that is appropriate for 
fulfilling the training objective(s) selected. 

Tomizawa and Gonzalez very nicely define the difference 
between scenarios and situations [14].  Situations define a 
snapshot in time while scenarios include events that occur to 
define the overall exercise.  Within our scenario model, 
augmentations help define the initial situation of our training 
scenario.  Specifically, augmentations are used to define initial 
elements of the scenario.  This can include the type and position 
of any friends or opposition, or it may include overall effects 
throughout the scenario (such as nighttime or rain).  Together 
with a baseline, the augmentations define the initial condition 
(situation) of the scenario. 

Vignettes are “mini-scenarios” and provide for events that may 
occur during the scenario (or exercise) itself.  Vignettes add the 
time element to the scenario and help distinguish the scenario 
from a situation.  We build vignettes in terms of a set of triggers 
and a set of adaptations.  Triggers are events that can be detected 
and can be chained together to form a more complex notion.  It 
may include elements such as a specific exercise time being 
reached or an explosion going off near a specific location.  An 
adaptation can be added to a trigger (or a trigger chain) to cause 
some resulting behavior.  Example behaviors include creating a 
new entity (addressing the problem of a key entity being killed 
too early in a training exercise) or killing an entity (if a munitions 



round falls near an entity but does not kill it, it may be desirable 
to kill the entity anyways). 

5. SCENARIO BUILDING 
Obviously, there is a wide range of scenarios that can be built.  
When building a scenario, we use a notion of “scenario 
complexity” in deciding what should be in a scenario.  We define 
scenario complexity as a quantity between 0 and 100, although 
we often split the range into three portions representing novice, 
intermediate and advanced complexities.  Once a desired 
complexity is chosen (usually based upon the trainee’s past 
performance profile), the scenario is built up to that level.  When 
considering complexity, the goal of the scenario building process 
is to create a scenario within a specific complexity range (since 
achieving a specific single value would be difficult). 

Each of the baselines, augmentations and vignettes has an 
assigned complexity level.  Typically, this is a number between 0 
and 100 and is chosen by a subject matter expert.  As mentioned, 
before choosing training objectives, an overall desired complexity 
level of the scenario is entered.  As the baselines, augmentations 
and vignettes are chosen, the current scenario complexity level is 
increased and tracked.  Scenarios must be within the defined 
complexity range to be considered valid for the given trainee.  
Only once a scenario is deemed valid may it be exported to the 
specific training applications. 

Once the facets forming the basis for a scenario are chosen, the 
scenario is conceptually built.  However, there is one final step 
necessary.  Scenario facets will specify a particular component of 
a scenario (such as a Target), but often they will leave some 
parameters of the facet unspecified.  For example, the type and 
position of an entity representing a Target may need to be 
specified.   

Given this approach, we can support a manual scenario generation 
process.  A user can select the complexity and training objectives 
desired; then a baseline, zero or more augmentations and zero or 
more vignettes are added.  The user then satisfies the 
requirements of each facet that are unspecified.  Each facet adds a 
complexity cost to the total scenario (a simple addition of costs is 
currently performed).  The system enforces the desired 
complexity level and will not allow the user to export the scenario 
unless it is within the correct complexity level range.  However, 
this alone does not support automatic or semi-automatic scenario 
generation. 

6. PROCEDURAL GENERATION 
While we wish to support a manual scenario building process (to 
encourage acceptance of the overall process), our main focus is on 
supporting automatic or semi-automatic scenario generation.  The 
cost of building scenarios is a major problem in the simulation 
and training domain.  This, coupled with recent impressive 
demonstrations of procedural generation, motivated us to consider  
the potential use of procedural modeling as a mean to address this 
problem. 

6.1 Previous Scenario Generation Work 
A complete examination of previous work in this area is beyond 
the scope of this paper.  However, in this section we review just a 
few of the most relevant papers related to our research.  

Shape grammars were first used for representing architecture by 
Stiny [15].  In general, they define the replacement of lower detail 
items as well as rules to add, scale, translate and rotate shapes.  
Applied to scenario generation, components within the scenario 
can be altered by performing operations defined within the 
grammar.  Within shape grammars, rules are applied sequentially 
(as is typical in a grammar-based system such as this). 

Lindenmayer systems (L-systems) use formal grammars to define 
how components are altered [16]. Similar to shape grammars, L-
systems are defined by a set of variables, a set of constants, a start 
state of the system and a set of production rules. However, one 
major difference is that L-systems apply the production rules 
repetitively in parallel rather than sequentially (serially) as in 
shape grammars. L-systems use all production rules that match at 
each derivation step and trigger them simultaneously.  

7. FUNCTIONAL L-SYSTEMS 
Functional L-systems (known as FL-systems) are an extension of 
L-systems [17].  The primary difference is that FL-systems use 
terminal functions whereas L-systems use the traditional terminal 
symbol.   The terminal functions can be executed during the 
rewriting process and can provide side-effects during the process.  
For example, this allows creation of objects or evaluation of 
decisions at each step in the rewriting process.  Marvie et al. use 
this approach to create a scene graph of a building scene [17].  

Both L-Systems and FL-Systems can be thought of as “growth” 
approaches where the components are refined over time. Müller 
states that “parallel grammars like L-systems are suited to capture 
growth over time” whereas systems such as shape grammars with 
“a sequential application of rules allows for the characterization 
of structure” [18].  Structure approaches create a generic 
representation and then refine it.   

A question in our research is whether generic scenarios can be 
generated and then refined, and how the refinement process would 
be procedurally governed.  Therefore, we are pursuing a FL-
System approach for scenario generation as growth of scenarios 
seems to better fit our conceptual model. 

FL-systems provide a technique that allows the creation of 
scenario elements based on the terminal symbols in the grammar. 
In addition, the terminal functions allow hierarchical elements to 
be created to fulfill the scenario requirements. For example, a 
series of vignettes can be assembled together into a larger 
scenario using this approach. 

8. SCENARIO GENERATION 
Recall that some of the facets of the scenario described earlier 
may contain requirements.  These are components that the facet 
requires but is not defined inherently within the facet itself.  For 
example, one augmentation may add an additional target without 
necessarily defining the type or position of that target.   

Our technique for semi-automatic scenario generation uses FL-
Systems as the procedural system.  The rules are domain-
dependent and are built to satisfy the requirements of the set of 
training objectives contained within that domain.  We use the 
rules to create elements within the scenario and to more 
intelligently resolve the requirements given by the facets. 



For example, adding the “additional target” augmentation would 
cause a “Target” requirement needing to be resolved.  The FL-
system addresses these unresolved elements.  Specifically, the 
unresolved elements map into symbols of our grammar.  The 
grammar takes the form of: 

<predecessor> : <condition>  <successor> : <probability> 

where the <predecessor> is replaced by the <successor> under the 
probability <probability> if the <condition> is true.  This basic 
structure is the same used by Müller [18]. 

As a simple example, consider the following set of rules: 

Rule 1: {SCENARIO} :  {TO1} : 1.0 

Rule 2: {TO1} : {TARGET}{A}{OBS} : 1.0 

Rule 3: {A} :  {artillery}{POSITION} : 1.0 

Rule 4: {OBS} :  {observer}{POSITION} : 1.0 

Rule 5: {TARGET} : {tank}{POSITION} : 0.5 

Rule 6: {TARGET} :  {apc}{POSITION} : 0.5 

Rule 7: {POSITION} : {position} : 1.0 

Symbols are surrounded by braces.  Those in all capital letters 
represent non-terminals and those in all lowercase represent the 
terminal functions.  Here we have a simple set of rules for the 
creation of a target, an observer of that target and some artillery 
unit to shoot at that target.  Rule 2 lists the basic components 
needed by Training Objective 1.  Rules 3 and 4 have terminal 
functions that will cause the creation of each respective entity 
(Rule 7 consolidates the position selection by calling that 
respective terminal function).  Rules 5 and 6 show how 
probability can add variety by selecting different target types.  
Obviously, the set of rules can be made much more complex to 
provide even greater capabilities and variety than this simple 
example can show. 
The chief advantages of FL-systems in this application are two-
fold.  First, by using terminal functions as opposed to terminal 
symbols, the application has access to higher-level reasoning in 
that the functions can have some advanced computation built 
within them.  Second, the terminal functions allow postponing 
resolving requirements, which allows the basic rule system to be 
built with a fewer number of rules. 
The limitations of FL-systems include the additional work 
necessary to author the rule systems and the need to write the 
terminal functions themselves.  However, both limitations are 
minimal in that each is only performed once per training domain.  
When another training domain is desired (a rehabilitation 
scenario, for example), then a new set of rules and terminal 
functions must be written. 
We have built our system into a tool known as the Procedural 
Yielding Techniques and Heuristics for Automated Generation of 
Objects within Related and Analogous Scenarios, or 
PYTHAGORAS.  It is built as a “scenario generation engine” in 
that it provides the core capabilities needed to build scenario 
generation applications (much like a game engine allows the 
creation of individual games).  This is important in order to 
provide the ability for building scenarios for different domains.  

We have built our first application, a scenario generation system 
for Fire Support Teams known as COGS, on top of this engine.   
Figure 2 shows a snapshot of COGS in manual use mode showing 
the facet library on the left, the scenario editor window in the 
middle and the list of requirements (some satisfied so far; others 
not) on the right.  A status window in the lower-left shows the 
current state of building up the scenario. 
 

 
Figure 2. Snapshot of COGS application 

 
The automated mode consists of a single button “Auto-generate” 
that processes these steps automatically.  The FL-System is used 
to choose scenario facets taking into account the scenario 
complexity desired and variety in facet selection.  The terminal 
functions of the FL-System become particularly important when 
satisfying the “requirements” of each scenario facet.  The extra 
capability provided from a function (as compared to a symbol) 
allows the application to more intelligently choose parameters 
(entity types and position, for example) as necessary.   

9. CONCLUSION 
In this short paper, we have reviewed our previous work in 
defining a scenario and then presented our work in procedural 
generation of scenarios built around this definition.  We use 
Functional L-systems for our system as the use of terminal 
functions provides the additional power we need to create 
elements within the scenario and satisfy requirements of those 
elements.  Our work is built into an engine known as 
PYTHAGORAS and our first application, COGS, which focuses 
on building scenarios for training of Fire Support Teams.  FL-
Systems provide a powerful mechanism for resolving the required 
parameters of scenario facets. 
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