
Design Motifs: A Grammar Based Approach

Joseph Mazeika, Jim Whitehead
University of California, Santa Cruz

{jmazeika, ejw}@soe.ucsc.edu

ABSTRACT
The notion of generating artifacts using a design motif has
a long history in the tradition of generative systems, how-
ever no formal definition of design motif currently exists.
We present a formal definition that unifies these previous
approaches, while also proposing several novel systems that
incorporate this definition, in a way that allows generators
to switch the design motifs that they generate with.

Categories and Subject Descriptors
I.2.1 [Artificial Intelligence]: Applications and Expert
Systems—Games; I.3.5 [Computer Graphics]: Compu-
tational Geometry and Object Modeling

Keywords
Design Motif, Procedural Content Generation, Grammars

1. INTRODUCTION
A design motif is defined as a set of visible features that
fuzzily defines group membership for a set of objects. These
can range in specificity from the very loose design motif that
defines the set of all automobiles, and the highly specific
design motif for Ford Mustangs. Design motifs are found
in all kinds of objects, from the automotive examples, to
art movements and laptop designs. The features of a design
motif can be as simple as a color scheme, or as complex as
changing the size and shape of a given feature in a design,
such as making a fireplace in a building twice as tall, or even
changing how the parts of a design are constructed. While
individual motifs are simple to describe, no formal definition
of design motif currently exists, much less one that could be
embodied in a computational system. In order to correct
this, we built a generator that incorporates this definition in
a simple, but expressive, domain: specifically, the domain of
Lego models.

Legos are an appealing domain for this research, because
the company itself provides strong examples of design mo-

tifs in its products. Legos are typically marketed in kits -
collections of pieces that can be assembled to form a par-
ticular model: such as a car, a building, or a spaceship.
But, more importantly, Lego has various groups of models
that the company presents, called themes. These themes
range from generic genres to focused sub-themes to licensed
themes that are based on other properties popular in the
target demographic. For instance, we have instances of the
Lego Space theme, and contained within it, themes such as
Lego Mission to Mars or Lego Space Police. While all of
these all pull from the same global set of bricks, Lego uses
different design motifs to distinguish the various sub-themes
from each other.

2. PRIOR WORK
Since the advent of the shape grammar [12], many attempts
at generating designs that visually resemble hand-authored
specifications have been made. These approaches range from
work done by Pugliese and McCormack in generating arti-
facts with a particular brand identity [7, 9], to systems which
generate buildings that invoke the principles of particular ar-
chitects [1, 5, 13]. The individual systems are only able to
generate one particular style of artifact - for instance, Kon-
ing and Eizenberg’s prairie house grammar is only able to
generate this one class of house, using the particular con-
straints given to these houses. However, they all aim to do
a similar task, the generation of artifacts that share common
and distinct visual elements, or design motif. Similar work
has been done in the context of procedural filters [14], with
where the authors construct a system for altering the ap-
pearance of a 3D scene by mapping it through a filter. How-
ever, this work only addresses the surface level appearance,
and does not allow for changes in the form of the object.

In addition, Legos have been used previously in generated
systems - mostly focused on physical realization of struc-
tures and generating physically sound objects [3, 4, 15]. Le-
gos also have some useful properties that we can exploit
in this domain: they are a modular system that incorpo-
rates both simple rectangular bricks and elaborate decora-
tive pieces. This allows designs that feature unusual shapes
and curved portions with very little additional effort. Ad-
ditionally, while most of the work on shape grammars has
been focused on two-dimensional space, there is precedent
for using them in 3D [2, 8].



Figure 1: Two sample kits from the Space Police
theme (Source: [10], [11])

3. DESIGN MOTIF
Figure 1 shows two kits from the Space Police theme. The
main vehicles in both of the images show common design
principles. First and foremost, we have the superficial sim-
ilarities. The designs of both spaceships feature the same
color scheme: white bodies, with blue glass compartments
and black accents. The weaponry on the ships is represented
by translucent, light green cones, and blue and red translu-
cent pieces that invoke the lights of a modern police vehicle.

More subtly, both space ships feature bilateral symmetry,
with very unusual but streamlined appearance, and neither
design directly resembles anything that exists in the world
today, but that feel reasonable in a futuristic setting. They
both feature differing but similar chunks that represent the
thrusters in the ship, and other kits from the same theme
also feature these same features.

This particular set of features is by no means either neces-
sary or sufficient to encompass all design motifs, however it
provides us we a good sample of the feature space for design
motifs.

4. THE SYSTEM
Currently, a simple grammar that generates Lego car models
has been constructed. This grammar incorporates a simple
design motif consisting of a color scheme and a few simple

Figure 2: System Diagram

decorative elements. Each of the decorative elements has
the binary option of being present or not present, while the
color scheme is a simple ordered list of the colors of bricks
to be included in the design. The first color is the primary
color in the model, the second is the secondary, and so on.

As shown in Figure 2, the grammar is a mutli-stage process,
comprised of three main parts. The first is the default ‘car’
grammar which contains the information needed for the ba-
sic high-level structure - at this stage a car is comprised of
wheels, a base, a compartment for the minifigure, a front
and back wall, and a roof. After this initial expansion, each
symbol is passed through the design motif, which determines
how the pieces will be realized as Legos. This process out-
put another set of symbols - called ’piece groups’ - that are
converted into the Lego bricks by a third layer.

In order to insure this level of modularity, the generator uses
the design motif as a bridge between the other two layers.
The design motif, in this case, is simply a set of functions
that map the high-level symbols onto the low-level piece
groups. The design motif handles all non-determinism in
the generation process - any and all choices that happen
in the final layer are completely deterministic, and serve
only to prevent, for instance, issues of overlapping pieces
and choices of filling the space appropriately. However, the
functions contained within the design motif don’t necessarily
need to map to any of the symbols in the grammar; as long
as all of the symbols in the top level grammar are accounted
for, and as long as they are mapped onto valid symbols in



the Interpreter, design motifs and grammars can be mixed
freely.

5. GENERATION EXAMPLE
We start with our baseline grammar:

[Base, Front Wheels, Back Wheels, Compartment, Front Wall,
Back Wall, Roof]

These symbols are fed, one by one, through the design motif,
so we start with the first symbol, Base. This gets expanded
into the motif symbol, still called Base for simplicity, and
also has the color scheme information attached. In this case,
the colors we use are Blue, Dark Grey and Black. Base also
sets up two pieces of information for the interpreter to use -
the locations of the two Wheel pieces that are to be attached
to it.

We then move to the next symbol, Front Wheels. Our design
motif takes this and returns two symbols, one called Wheel-
Type1 and one called WheelHousing1. There are multiple
types of wheels and housings, and so we distinguish them at
this level. We include the color scheme information, as well
as metadata required by the WheelHousing symbol: namely,
that this the Front Wheel set.

At this point, our set of symbols output from the Design mo-
tif are: Base, WheelType1(Front), WheelHousing1(Front).
We continue the process, expanding out each symbol as we
go, until we’ve addressed every symbol in the original gram-
mar. After this process, we have the following string of
symbols:

[Base, WheelType1(Front), WheelHousing1(Front), Wheel-
Type1(Back), WheelHousing1(Back), Compartment, Wind-
ShieldSlope, Wall, Roof]

Notice that the WheelType1 and WheelHousing1 symbols
are repeated, but with different metadata. From here, the
symbols are entered into the final stage. Each symbol is
sequentially read, and the 3D Lego model is output. For
instance, we start with Base. This is made of Lego Piece
52036, placed at position (0,0,0) with no rotations, and col-
ored Black. So, the interpreter simply outputs that line.

Next, we have WheelType1(Front). This consists of 5 pieces—
a plate with pegs for the wheels, the wheels themselves and
the tires. Both the plate and the wheels are Dark Grey, but
the tires are always Black in this symbol, regardless of the
color scheme. All of these pieces are arranged together into
a single unit, which is then translated into place based on
the position set for it by in the Base expansion in the Design
Motif.

All other expansions happen similarly, and in the end, we
get a full car file—in this case, the bottom car in Figure 3.

6. EXAMPLE ARTIFACTS
Figure 3 and Figure 4 show three sample outputs of the
grammar in its current state, using the following design mo-
tifs:

Figure 3: Sample output of the current generator.

Grammar Symbol Red Motif Blue Motif
Primary Color Red Blue

Secondary Color Light Grey Dark Grey
Tertiary Color Black Black

Base Type Basic Basic
Wheel Type Basic Basic

Wheel Position Wide Narrow
Compartment Height Low Raised

Decorative Piece 1 None Sloped Front
Decorative Piece 2 None None

The results are chosen not as an all-encompassing expres-
sion of the grammars capabilities, however, the particular
instances are chosen to show a small range of changes that
can be made within the realm of comparability. Changes
featured in the designs include the color scheme (moving
from red and light grey to blue and dark grey), the position
of the wheels, the height of the cab, and the inclusion of the
additional sloped piece in the blue car. In contrast, Figure
4 is the result of using the first design motif with a different
grammar - one that used a narrower base and a windshield
on both front and back.

These changes are simple on their own, but some of them
have cascading effects. For instance, the placement of the
wheels in turn determines the placement of the curved pieces,
as they are always need to be centered over the wheels. Ad-
ditionally, raising the minifigure compartment height raised
the height of the roof by the same amount, because other-
wise, the minifigure wouldn’t have been able to fit.



Figure 4: A different car grammar, with the first
design motif.

7. FUTURE WORK
First and foremost, the system needs to incorporate more
expressivity, mainly in terms of the range of possible out-
puts. At the moment, there are only so many symbols that
the initial symbols can be expanded into in the design mo-
tif stage, and this is the biggest limitation of the system so
far. As more chunks get authored, the number of possible
artifacts gets expanded.

The other direction that looks promising for this research
would be to redesign the symbol as a constraint solver. By
modeling ”car” as a set of constraints on the entire possibil-
ity set of Lego pieces, and by modeling the design motifs as
further constraints placed upon that system, we can exploit
many of the important properties that we want in this sys-
tem, while leaving the generator free to fill the constraints
in any way that fits the constraints. This also reduces some
of the burden of hand-authoring, and gives the system more
expressivity, almost for free.

The next big question that this word leads to is related to
the core concept of the design motif - specifically, where the
boundaries between design motifs fall. Using results from
psychological research on how humans categorize objects [6],
user studies can be designed to compare similar objects to
discover which features best separate similar motifs from
each other, as well as the converse problem of discovering
how dissimilar objects can be before they’re grouped into
two separate classes.

Finally, we hope to eventually expand into other domains,
such as generated architecture (thanks to all the ground-
work previously lain in generating designs based on specific
architects) and generation of assets for games across a vari-
ety of genres and artistic styles. Currently, games require a
larger number of assets than their artists could ever create.
A system for generating objects that are consistent with a
games given design motif would allow designers to reduce
both the amount of hand-authored content, and the reuse of
the content that they do create.

8. CONCLUSION
Generation using design motifs is an unexplored area of pro-
cedural content generation - while systems are in place that
generate artifacts to match a particular design motif, there
has been no work into expanding this into a more general
case. This research aims to correct this gap, by starting in
the domain of Lego models and then expanding into other
domains using this groundwork. By incorporating the notion
of design motifs in to grammars and grammar-like systems,
artifacts that incorporate a notion of style can be generated
in such a way that they can be checked against the given
style - and similar ones - to ensure that the artifact is a
good example of the motif used to generate it.

9. REFERENCES
[1] G. Çağdaş. A shape grammar: the language of

traditional Turkish houses. Environment and Planing
B: Planning and Design, 23(5):443–464, 1996.

[2] H. H. Chau, X. Chen, A. McKay, and
A. de Pennington. Evaluation of a 3D shape grammar
implementation. In Design Computing and Cognition
04, pages 357–376. Springer, 2004.

[3] A. Devert, N. Bredeche, and M. Schoenauer.
Blindbuilder: A new encoding to evolve lego-like
structures. In Genetic Programming, pages 61–72.
Springer, 2006.

[4] P. Funes and J. Pollack. Computer evolution of
buildable objects. Evolutionary design by computers,
1:387–403, 1999.

[5] H. Koning and J. Eizenberg. The language of the
prairie: Frank Lloyd Wright’s prairie houses.
Environment and Planning B, 8(3):295–323, 1981.

[6] G. Lakoff. Women, Fire, and Dangerous Things:
What categories reveal about the mind. Cambridge
Univ Press, 1990.

[7] J. P. McCormack, J. Cagan, and C. M. Vogel.
Speaking the Buick language: capturing,
understanding, and exploring brand identity with
shape grammars. Design studies, 25(1):1–29, 2004.

[8] P. Müller, P. Wonka, S. Haegler, A. Ulmer, and
L. Van Gool. Procedural modeling of buildings. In
IACM Transactions on Graphics (TOG) - Proceedings
of ACM SIGGRAPH 2006, 25(3), pages 614–623,
2006.

[9] M. J. Pugliese and J. Cagan. Capturing a rebel:
modeling the Harley-Davidson brand through a
motorcycle shape grammar. Research in Engineering
Design, 13(3):139–156, 2002.

[10] Image - 5974 box.jpg - Brickipedia, the LEGO Wiki.
Accessed: 2015-02-19.

[11] Image - Undercover Cruser(Box).png - Brickipedia,
the LEGO Wiki. Accessed: 2015-02-19.

[12] G. Stiny and J. Gips. Shape Grammars and the
Generative Specification of Painting and Sculpture. In
IFIP Congress (2), pages 1460–1465, 1971.

[13] G. Stiny, W. J. Mitchell, et al. The palladian
grammar. Environment and planning B, 5(1):5–18,
1978.

[14] T. Tutenel, R. van der Linden, M. Kraus, B. Bollen,
and R. Bidarra. Procedural filters for customization of
virtual worlds. In Proceedings of the 2nd International
Workshop on Procedural Content Generation in



Games, page 5. ACM, 2011.

[15] M. Waßmann and K. Weicker. Maximum flow
networks for stability analysis of LEGO R© Structures.
In Algorithms–ESA 2012, pages 813–824. Springer,
2012.


