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Figure 1: Various example outputs of Tessera

ABSTRACT
Constraint-based procedural generation has recently had a lot of
interest following the publication of the WaveFunctionCollapse
(WFC) algorithm, but usability issues have restricted the number of
games and projects that have resulted. We present Tessera, a library
and tool for WFC specifically designed to address the practical
issues that arise from constraint based generation. We discuss the
user interface of the tool and useful extensions to the base algorithm
of WFC.

CCS CONCEPTS
• Theory of computation → Constraint and logic program-
ming; •Mathematics of computing→ Solvers; • Applied com-
puting → Computer games; • Computing methodologies →
Spatial and physical reasoning; • Human-centered computing
→ Graphical user interfaces.
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1 INTRODUCTION
Procedural Content Generation (PCG) is the study of generative
methods producing assets for games and other media. One approach
is search-based PCG[33], where a large space of possible outputs is
filtered by criteria specifying what is desirable. Criteria are com-
monly specified as a series of hard constraints, which can be done
declaratively with Constraint Programming languages. Algorithms
for efficiently searching the space given these constraints are called
Constraint Solvers.

WaveFunctionCollapse (WFC)[11] is a recent constraint-based
algorithm for procedural generation. The key idea is an extension
of standard constraint solvers with a "minimal entropy heuristic"
that randomly directs the solver’s search in a way that follows a
user-specified frequency distribution without compromising the
efficiency of the search procedure.

WFC was originally conceived as a texture synthesis algorithm:
the search space is a rectangular grid of pixels, and the constraints
and frequencies are derived from an input texture, called a sample.
There are two modes: simple, that learns constraints regarding pairs
of adjacent pixels; and overlapping, which learns constraints about
small patches of pixels.

When first published, WFC used the Arc Consistency 3
algorithm[20] as the solver, and had no support for backtracking.
These choices position WFC as a deliberate simplification of Con-
straint Programming and Constraint Solving.

Since publication, the range of WFC usage has broadened. For
game level generation purposes, WFC is often used to generate a
grid of tiles instead a grid of pixels, in 2d or in 3d. Constraints on
nearby tiles can be learnt from a sample level or specified by other
means. Adding backtracking or using a different constraint solver
are also common modifications.

WFC quickly met with a lot of interest[13], due to being sim-
ple to implement and understand while producing high quality
results without a complex set of configuration. Another plus is that
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Figure 2: Two examples of runningWFCas texture synthesis
in overlapped mode. The left column is the original sample,
the middle column is midway through processing (showing
unresolved tiles with their average color), and the right col-
umn is the finished output. ©Maxim Gumin. Used with per-
mission

constraint-based generators give qualitatively different output to
classic constructive approaches. WFC’s popularity eventually lead
to several commercial games developed using it for tile-based level
generation[6, 9, 31].

However, none of these games use WFC unmodified. That is
because the algorithm has several shortcomings that make it hard
to take beyond its roots in texture synthesis, including:

• Local similarity - whether in simple or overlapped mode,
WFC constraints only involve nearby tiles. This tends to give
the output a homogenous look that is suitable for textures,
but looks bland and uninteresting when applied to level
design.

• Inconvenience of sample-based input - specifying a sample
as the only major input is extremely convenient at getting a
prototype working immediately, but it scales poorly to more
complex examples. As more tiles are needed, or multiple
rotations, the amount of sample material required to cover
combinations grows exponentially.

• Difficulty of control - for games, it’s typically necessary to
control procedural content to fit the requirements of the
design. That means having ways of parameterizing the gen-
eration, or integrating it with content authored in a different
way.

• Weakness of Arc Consistency 3 Algorithm - this algorithm
is simple to implement, but is slower and less reliable than
more modern constraint solvers.

1.1 Our contributions
In this paper, we present Tessera, a tool for integrating WFC into
Unity3D games that addresses these issues. Tessera supports a wide

variety of controls and options that make it suitable for many sorts
of level generation. A few example are shown in Figure 1.

We propose a new paint-based approach to declare tile adja-
cencies that offers advantages over sample-based input and other
available tools. It is easy to use, and integrates naturally with other
features of Tessera.

Tessera also includes several extensions to WFC intended to
increase the range of possibilities and the ability to control WFC
to achieve desired results. In particular, we introduce a class of
global constraints to supplement the local only behaviour of WFC.
Constraints of this kind have not been applied to WFC before, and
our approach offers performance advantages over similar work in
Answer Set Programming (described below).

2 RELATEDWORK
2.1 Research
There have been numerous investigations into using constraint
solving techniques for PCG. It is appropriate for puzzle, narrative
and level design by appropriate choice of constraints. We will focus
on related level generation work.

Much of the level-based research is focused on a form of con-
straint problems called Answer Set Programming (ASP), using a
declarative syntax such as AnsProlog. ASP for PCG[23] gives a
general introduction to this approach and demonstrates gener-
ating a "chromatic maze" which follows certain generation rules
while always having a path from start to end of a given length.
ASP with applications to mazes and levels[21] describes how path
constraints similar to Teserra’s can be implemented as ASP con-
straints. There are numerous other explorations of ASP level
generation[1, 5, 24, 25, 27].

Tanagra[26] is amixed initiative tool that uses the Choco[12] con-
straint solver to modify user authored levels so that they are always
completable, by setting various linear constraints. Whitehead[36]
discusses using the Z3[7] constraint solver to solve placing square
rooms satisfying adjacency and overlapping constraints, also by set-
ting linear constraints. Choco and Z3 are SMT solvers - a different
class from ASP based solvers[36].

WFC itself is described extensively inWaveFunctionCollapse is
Constraint Solving in theWild[13]. ThenAddressing the Fundamental
Tension of PCGML with Discriminative Learning[14] discusses some
of the possibilities and difficulties of controlling the output of WFC
in mixed-initiative design. Automatic Generation of Game Content
using a Graph-based Wave Function Collapse Algorithm[15] extends
WFC to operate on graphs.

2.2 WFC in Games
WFC is too recent to have seen large commercial uptake, but it
has been used in a few games. They use various techniques and
extensions to make WFC practical for real world design.

Caves of Qud[9] is a 2d roguelike game that uses WFC in over-
lapping mode to generate parts of levels. It runs WFC separately in
different sub areas to avoid the homogeneity problem mentioned
above[4]. It avoids dealing with rotation by using a simplified tileset,
which is post-processed for the final map.

Bad North[6] is a Viking based strategy game that uses WFC
to generate small 3d islands for the player to defend. There are



Tessera: A Practical System for Extended WaveFunctionCollapse FDG’21, August 3–6, 2021, Montreal, QC, Canada

over 400 tiles, some spanning over multiple cells, so the generation
pre-selects a subset of them for each island to give some visual
consistency. A heuristic is applied to ensure the entire level is
navigable[29].

Townscaper[31] is a mixed initiative a town planning toy by the
same author. Users click on the cells of a 3d grid to add / remove
from the town and a WFC variant sets appropriate tiles nearby
to make this so. It features an irregular, infinite grid of degree 4
instead of WFC’s usual square grid.

2.3 Similar commercial tools
There are numerous library implementations of WFC, but only
a few of them have focused on exploring how to easily config-
ure or control the process. They are mostly ports of the original
implementation[11] and behave similarly. That implementation
allows configuration either by giving a sample input, or via an XML
configuration file. The XML configuration contains flat adjacency
lists, and specifies the symmetry of each tile, which is used to gen-
erate additional adjacencies by rotation of the supplied set. This
configuration format has not proven popular, which illustrates the
difficulty of improving on the sample-based approach.

Generate Worlds[8] is a tool for assembling voxel based tiles into
procedurally generated levels. It does not use WFC, but does use a
similar constraint-based algorithm that propagates information a
fixed distance (rather than recursively, as is done in Arc Consistency
3). Tile adjacency information is inferred from the voxels on the
boundary of each tile, meaning new tiles can be added without
worrying about how they combine with existing ones.

Tile Composer[28] is a commercial produce for running WFC
in Unity. Configuration of adjacencies is done via "connectors". A
set is associated with each face of each tile, and adjacencies are
determined by matching items from opposing sets. It also supports
using the Z3[7] constraint solver in place of WFC, in which case it
supports a few additional constraints such as fixing the count of
the number of tiles.

3 TESSERA OVERVIEW
Tessera is divided into two components. DeBroglie[18] is an open-
source C# library handling the computation ofWFC, and the Tessera
Pro[19] package that handles integration into the Unity game en-
gine, UI, and layering in additional features. DeBroglie and Tessera
Pro were developed simultaneously to work together, so we will
not always distinguish which component is responsible for each
feature discussed below1.

DeBroglie is a modern WaveFunctionCollapse generator under
a MIT license. It mostly operates in simple mode, although over-
lapped mode is supported via a transformation called "dual graph
constraint binarization"[2]. DeBroglie supports uses a custom im-
plementation of the Arc Consistency 4 Algorithm[17] with support
for backtracking and user defined constraints2. Arc Consistency
4 usually has superior performance to 3, but isn’t fundamentally

1Both components have documentation online which gives further information.
2A configuration option enables Arc Consistency 3 and a solver similar to Generate

Worlds’, but they are rarely useful.

more powerful as it lacks innovations of state of the art constraint
solvers3.

DeBroglie relies on data-driven configuration - the tiles are just
opaque values, basic constraints are specified as lists of tuples and
the grid is defined in terms of a graph structure with adjacencies
and edge labels. More advanced features are supported via user-
specified callbacks that are invoked during generation. The library
is therefore very flexible, but can be hard to configure.

Tessera Pro is a layer on top of DeBroglie that makes the system
friendly to end users. It is opinionated - it specifically works inside
of the Unity game engine and editor, supports the simple mode of
WFC only, and has a specific data model that it is designed to work
with. Tessera’s UI is integrated into Unity’s Editor, and it includes
a run-time component when building a game.

4 KEY FEATURES
4.1 Paint-based tile annotation
Tessera does not use a sample-based input, and instead features a
"painting" system for specifying tile adjacencies.

When editing a cube shaped tile, a bounding cube is displayed,
with each face is subdivided into a 3× 3 grid in which each sub-face
is can be independently painted by choosing colors from palette of
colors (Figure 3). Each color acts as a separate label, and can have
the display color and tool-tip customized. 2d tiles are also supported,
just using edges instead of faces and subdividing into three instead
of 9. Triangular and Hexagon Prism tiles are also supported, using
a different set of faces and slightly modified subdivision scheme.
We’ll refer only to the 3d cube case for consistency, and note that
all Tessera features extend to the other cases.

Figure 3: Top row, several example tiles of a brown path
over green grass. Middle row, the sub-faces of those tiles,
painted green/brown to indicate connections and symmetry.
Bottom row, the same painted tiles, showing only backfaces.
As these tiles will only be used in a 2d grid, there’s no need
to paint the top/bottom in this case.

Tessera uses the painted colors to construct adjacency con-
straints. To determine if two tiles can be placed adjacently, they
are considered side by side in the orientation in question, and the
sub-faces that face each other are paired up. By default, two tiles
can be placed adjacent if and only if all nine sub-face pairs have
matching colors (or are unpainted). In other words, two faces can
be placed together if their color patterns are mirror images. This
provides an intuitive way of describing adjacencies similar to Wang

3Specifically, more modern solvers are often based on DPLL(T)[10] or feature
Conflict Driven Clause Learning[22]
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tiles[35], a system of adjacency constraints which specifies a single
color per face.

Per-face label schemes are superior to sample-based inputs or
adjacency lists as they are much easier to extend to larger tile sets
without needing a combinatorial explosion of inputs. Users can
evaluate at-a-glance if two tiles can connect, and design each tile
in isolation.

Using colors per sub-face instead of a single color per face has
several advantages:

• The system is a superset of the features needed for many
popular labelling schemes, allowing a wide variety of tilesets
to be straightforwardly annotated. Wang tiles, marching
cubes, the blob pattern[34] are all supported.

• Tessera tiles may be configured to be usable in multiple
rotations and reflections. The sub-faces are also rotated /
reflected before the matching process, so adjacencies can be
correctly inferred between tiles of different rotations. This
system easily capture relationships such as "tile A, rotated
by 90 degrees on the x-axis, can connect along the x-axis to
tile B" which other systems struggle to describe4.

• Drawing small patterns on each face can serve as a better
mnemonic than assigning a unique color to every possibility.

• Additional information can be packed into the same for-
mat. For example, path constraints (described below) read
the color of the central sub-face to infer path information.
The mirror constraint infers tile symmetries based on the
symmetry of the painted pattern.

If further customization is needed, the users canmanually specify
which colors may placed adjacent to each other, instead of requiring
an exact match (Figure 5). This feature gives enough expressiveness
to match using adjacency lists. The main limitation of the painting
system is that it does not extend to running WFC in overlapped
mode.

Figure 4: A generated 10 × 10 grid using the tiles painted in
Figure 3, with rotations.

4Note this is mostly important in 3d, where if you have two cube tiles with free
rotation and reflection, there are 8 ways a given pair of faces can align. In 2d, there’s
only 2 ways for edges to do so. That said, painting sub-faces is not sufficiently flexible
to capture all possible symmetry subgroups of a square face. But it does do all the
common ones.

Figure 5: UI configuring possible color matches, with some
deviations from the default for the last color, lilac.

While this painting system shares some similarities with Gener-
ate Worlds[8] and Tiled’s Mixed-set Terrains[16], Tessera’s system
is easier to use and offers a great deal more flexibility.

4.2 Scene integration and multi-pass support
Before running, Tessera scans the Unity scene for any relevant
objects, such as pre-placed tiles or collider volumes with a Tessera
specific annotation. These objects are translated into additional
constraints before WFC is run. This feature allows users to author
part of a scene manually, or with an unrelated procedural generator,
and then use WFC to fill in the remaining details (see Figure 6).

Figure 6: Left, a scene with a some user specified objects:
some pre-placed custom tiles and a volume that restricts the
selection of tiles inside to exclude grass tiles. Right, the same
scene after running Tessera, which has respected the user’s
constraints.

A consequence of this feature is that Tessera naturally supports
multi-pass generation. Tile generated by one generator will be
recognized by another, so that one run of WFC inserts a set of
tiles into the scene, and then a second run interprets those tiles
as constraints for a different generator5. For example a user could

5Tiles can be configured to become another Unity object when generated, so
subsequent passes don’t have to re-use the same object configuration.
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generate a landscape with several biomes, then in another pass
generate vegetation that is consistent with the landscape. It can
also be used to run different generators in different zones of the
same level, similar to the Caves of Qud behaviour described in
Related Work (Section 2).

Figure 7: A multi-pass example. The street plan was gener-
ated with one set of tiles, then another pass fills the blank
areas with skyscrapers, using a 3d grid with a smaller tile
size.

4.3 Multi tile modules
Tessera supports using Unity objects that are large enough to cover
multiple cells in the grid. These are called "big tiles", or modules.
They are supported by internally subdividing the object into multi-
ple tiles, then creating additional adjacency rules that the ensure
the smaller tiles must connect to each other to form the full module.
Then constraints are applied to the grid boundary to ensure that
these tiles always appear together as a complete set.

The tile painting system naturally extends to these modules by
simply giving the module a larger set of faces, and associating each
face with one of the subdivided tiles (Figure 8).

Figure 8: Amodule covering the space of 2×1×2 cells, and its
corresponding painting. It needs 16 faces (144 sub-faces) to
cover the external surface area. Note how the paint on this
is designed to align with the tiles from Figure 3.

This feature mirrors similar behaviour seen in Bad North, which
uses modules to create smoother transitions and larger set pieces
that aren’t restricted to the size of a single cell[30].

4.4 Grid support
The constraints of simple model WFC are only from one adjacent
cell to another. Thus, the algorithm can be described as running on
a graph of nodes with one edge per adjacency[15]. Tessera uses this
to support multiple different "grid types". Tessera supports regular
square, triangular and hexagonal grids, and also irregular 3d grids
based on the surfaces of quad or triangle meshes. Currently the
system is limited to grids with a fixed number of neighbours per
cell, so cannot do arbitrary graphs.

For irregular grids, a trilinear transformation is applied to each
tile to conform it to the boundary of the cell and another transform
aligns the normals between tiles (Figure 9). This allows users to
design cube tiles and have them work on all sorts of grid shapes.

Figure 9: A generated level using a quad mesh of a sphere to
define the grid. The mesh is highlighted in white.

Features like scene integration work based off world space posi-
tioning, so work the same for any shape or degree of grid.

4.5 Constraints
While Tessera is not a fully general constraint solver, the implemen-
tation does permit arbitrary constraints to be configured. These
constraints are consulted during the search process, and can narrow
the domains of variables (i.e. the set of possible tiles for a given
cell). Tessera comes with a suite of constraints, focused on provid-
ing global conditions to supplement the local constraints WFC is
equipped with. This includes enforcing symmetry, or particular tile
counts.

Particularly useful are path constraints. Path constraints work
by defining a subset of the tiles, called path tiles. Define a subgraph,
called the path graph, by considering only the cells in the grid with
path tiles in them (Figure 10a). Each constraint asserts some basic
graph theoretic property of the path graph. There are currently the
following constraints (Figure 11):

• Connected - the graph must be fully connected i.e. given two
path tiles, there is a series of adjacent cells between them all
containing path tiles.

• Acyclic - the graph must acyclic i.e. there is at most one
possible path between any two path tiles.
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• Cyclic - every graph node must be inside at least one loop.
• Parity - early failure constraint for specific tilesets6

The path constraints also support directed variants where the
path tiles are not just organized into a set, but also the path can
only connect through the tile on specified faces. In Tessera this
is specified by a set of colors, which are scanned for on the tile
paint the users put on each tile. The directed variants use the same
implementations but use a larger path graph that has multiple nodes
per cell - one for the cell itself, and an additional node per face.
(Figure 10b).

(a) (b)

Figure 10: A grid of cells with fully specified tiles, overlaid
with the subgraph of nodes used by an undirected and di-
rected constraint. Red nodes correspond to cells themselves,
and blue nodes correspond to directed adjacencies from one
cell to another.

Graph-based connectivity constraints have been used for pro-
cedural content generation before[21]. However, previous work
uses Answer Set Programming, which requires connectivity to be
described as large collection of simple logical constraints. This
can be slow to evaluate. Tessera’s global constraints work like any
other SMT solver7, they have a specific theory of graphs and can
take advantage of graph specific properties to achieve much better
performance.

Our connectivity constraint runs a modified version of Tarjan’s
algorithm[32] on the partially generated level. This finds articula-
tion points8 and unreachable nodes, then directs the solver’s search
appropriately. A similar approach is described in [3]. The other path
constraints are also implemented with Tarjan’s, or other depth-first
search techniques.

4.6 Debugging utilities
Tessera comes with several features to assist users with designing
their tiles and constraints. A common problem with constraint-
based generation is when the generation fails, there is no clear
explanation for what caused the issue. If a contradiction occurs

6Tilesets that have directed paths, and all the tiles have an even number of exits.
https://twitter.com/boris_brave/status/1350467618298331137

7Satisfiability modulo theories, i.e. a solver that has extensions beyond the basic
boolean logic of a SAT solver[36]

8Also known as "cut vertices", articulation points are nodes that, if removed, would
separate the graph into multiple connected components. To deal with unresolved cells
during generation, a slightly modified definition is used instead.

(a) Connected (b) Cyclic

(c) Acyclic (d) Acyclic and connected

Figure 11: Example outputs using various path constraints

Tessera will log what location the contradiction is at. It can be
configured to output a minimized set of tiles that cause the issue
to occur, which can indicate to the user if a new tile needs to be
added to the tile set.

When backtracking is enabled, instead of reaching a contradic-
tory state the solver tends to get stuck repeatedly exploring the
same area over and over. In this case, users can enable an animation
of the generation process, stepping through each guess/backtrack
one at a time. This usually highlights the problem area that the
solver tries to generate over and over.

5 CONCLUSION
In this paper, we presented Tessera, a Unity tool for configuring and
running constraint-based procedural generation. We’ve covered
how it makes configuration easy for users, and how it supplies
extensions to WFC to give it more control and power. Both of these
show some improvements from earlier work.

Tessera has been a popular tool for WFC since release, being
ranked #29 in "Tools/Level Design" in the Unity asset store. Mean-
while the library component, DeBroglie, has received less attention
despite having similar features, being free and released earlier. We
attribute this is mostly due to the user friendliness of the design.

We believe that constraint based procedural generation is a rich
area for design, due to its flexibility, and ease of integration with
other techniques and with mixed initiative requests from users.
WFC occupies a "sweet spot" in that it is powerful enough to pro-
duce a wide range of effects, but simple enough that it is comprehen-
sible to users, and doesn’t require using a constraint programming
language to control. Controllability remains an issue, even with
Tessera’s modifications, andwe hope future researchwill streamline
the experience for users even further.

https://twitter.com/boris_brave/status/1350467618298331137
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