
Entropy Lost: Nintendo’s Not-So-Random Sequence of 32,767 Bits
Trang Ngo

tqn1@williams.edu
Williams College

Williamstown, MA, USA

Aaron Williams
aaron.williams@williams.edu

Williams College
Williamstown, MA, USA

s1s2s3s4s5s6s7s8s9s10s11s12s13s14s15s16 s63s64 s62 . . . s17
Figure 1: Hundreds of Nintendo Famicom and NES games, including Donkey Kong, lost entropy by shifting LFSR bits in the wrong direction.

ABSTRACT
Early video games didn’t have hardware support for random num-
ber generation, so developers used software-based RNG. We show
that hundreds of games in the Nintendo Famicom / NES
library regenerate the same pseudorandom sequence of 32,767 bits,
although the machine code for doing so comes in more than one
hundred variants. We identified the disparate implementations us-
ing a simple regular expression that matches the following “finger-
print” of operations: LDA, AND, STA, LDA, AND, EOR, CLC, BEQ, SEC, ROR.
These instructions implement a classic 15-bit linear feedback shift
register associated with 𝑥15 + 𝑥7 + 1 (i.e., tap the 15th and 7th bits).
However, many games devoted more memory to the LFSR’s state.
For example, Donkey Kong (1983) used 8 bytes (or 8 ·8 = 64 bits), The
Legend of Zelda (1986) used 13 bytes, and Super Mario Bros. 3 (1988)
used 9 bytes. In each case, additional entropy is lost by a simple
programming error: the bits are shifted in the wrong direction.

KEYWORDS
Nintendo, Famicom, NES, RNG, linear feedback shift register, bug

1 INTRODUCTION
In the iconic first stage of Donkey Kong (1981), the eponymous ape
rolls barrels down girders and ladders in an effort to thwartMario’s
ascent to Pauline1. The challenge uses randomization: There is a
25% chance that a barrel will roll downward from the top of a ladder.

1.1 Donkey Kong’s Backwards����Barrels Bits
Nintendo designed their first cartridge-based home console — the
Famicom (, 1983) / Nintendo Entertainment System (, 1985) —
so that it could play an accurate version of their new arcade hit
[3]. Without dedicated hardware for generating random bits, Nin-
tendo (or more precisely, Ikegami [27]) needed to realize this early
example of procedural content generation using a software-based
method. Their solution was a linear feedback shift register (LFSR)
with 8-bytes (or 8 ·8 = 64 bits) of memory for its state. However, due
to a programming error they only obtained 15-bits of randomization.
As a result, the game continually cycles through the same sequence
of 32,767 random bits, instead of 18,446,744,073,709,551,616 bits if
the bytes had been leveraged optimally. Conveniently, the program-
ming error can be understood by an apropos analogy: the barrels
(i.e., bits) are rolled in the wrong direction.
1Or vice versa in the Donkey Kong: Pauline Edition (2013) hack by Mike Mika [28].

We show that the LFSR code in Donkey Kong was modified and
optimized in dozens of different ways over the following decade,
but the same underlying design (and limitation) rolled over. As a
result, hundreds of Famicom/NES titles generate the same sequence
of 32,767 “random” bits. Examples span the lifetime of the platform,
starting with Famicom launch titles Donkey Kong and Popeye (1983),
and ending with the NES’s final commercial release Wario’s Woods
(1994). Many of these games appear to have had higher ambitions,
as Donkey Kong (1983), The Legend of Zelda (1986), and Super Mario
Bros. 3 (1988), all dedicate at least 8 bytes to the LFSR. The flaw was
also hard-coded in the BIOS of Nintendo’s Japan-only peripheral,
the Famicom Disk System (FDS) (1986).

1.2 Entropy Lost
Weobtained our results by searching the catalog of Famicom/NES/FDS
games for a particular “fingerprint” of machine code instructions.
More specifically, we constructed a regular expression and used
the command-line tool bgrep by nneoneo [34], which is a binary
counterpart to the familiar text-based tool grep.

Our results point to a loss of entropy in several ways.
(1) A sequence isn’t really “random” if hundreds of games use it.
(2) There is an upper-limit to the content that can be generated.
(3) We can pinpoint the randomization code and turn it off.
The first point may lead to RNG manipulation by speed-runners.

The second point has been observed in Dr. Mario (1990) as there
are 32,767 different puzzles per difficulty level [32, 33] [43] [31, 45].
The third point is seen in Figure 2, where “zeroing out” the LFSR
state provides insight into how these classic games used RNG.

1.3 Outline
The rest of the paper is organized as follows.

• Section 2 discusses the mathematics behind LFSRs, and the
pursuit of an adjustable two-tap LFSR for the NES.

• Section 3 shows how an LFSR can be programmed correctly.
• Section 4 illustrates how a handful of games generate the
same sequence of 32,767 bits in different ways.

• Section 5 provides the regular expression that we used to
search the Famicom/NES/FDS libraries.

• Section 6 concludes with a summary of our results and
methodology, additional results, future research, and addi-
tional resources found in an associated git repository [46].

We aim to make this material accessible, so sections begin with non-
technical summaries. Links to technical results are also provided.

1

https://orcid.org/0000-0001-6816-4368

(a) Donkey Kong with PAR code 0018:00.
The barrels fall down every ladder that
Mario is not blocking. The fireballs

vibrate but do not move.

(b) Duck Hunt with PAR code 05EC:00.
Each duck follows one of two flight

patterns alternating for even/odd ducks.
The second pattern is shown above.

(c) Super Mario Bros. with PAR code
07A7:00. Bowser’s flames always

proceed along the lowest of the three
possible heights.

(d) Excitebike with PAR code 0018:00.
The CPU racers (cyan and purple above)
do not change between the four lanes of
the track, except to avoid dirt patches.

Figure 2: Removing randomization allows us to observe the baseline behavior in many NES / Famicom games: Donkey Kong’s barrels normally
fall down ladders with 25% probability; the ducks in Duck Hunt continually change course; Bowser’s flames in Super Mario Bros. follow different
trajectories; rival racers Excitebike change lanes. These behaviors stop when randomization is turned off. More specifically, a single Pro Action
Replay (PAR) code that zeroes out one byte of the LFSR’s state in RAM will cause every random bit to be 0.

For background results on retrogame archeology and procedural
content generation, see [5] and [20] [40]. The Famicom and NES
use a modified MOS 6502 CPU, and the Easy6502 tutorial [30] is an
excellent resource for those interested in quickly learning 6502 as-
sembly programming. The mathematics behind LFSRs can be found
in Golomb [19]. We use NES as a shorthand for Famicom/NES/FDS.

2 LINEAR FEEDBACK SHIFT REGISTERS
A linear feedback shift register is a simple and elegant method for
generating pseudorandom bits. The pseudo refers to the fact that
the bits are not truly random. By way of analogy, suppose that we
flipped a coin seven times, and the results were as follows:

tails, tails, heads, tails, heads, heads, heads.
An observer may interpret this sequence as random. However, their
opinion may start to change if the next seven flips yield the same se-
quence, as does the following seven flips, and so on. Similarly, every
LFSR eventually starts repeating its sequence of bits. Applications
choose to use a specific LFSR based on the length of sequence it
generates, the speed in which it can generate each bit, and the num-
ber of bits of memory 𝑛 its state requires. Unfortunately, there is no
simple method for creating an LFSR with the maximum sequence
length2 for a given 𝑛. Instead, programmers use trial-and-error, or
refer to previously generated results found in tables (e.g,. [41]).

LFSRs have been used for procedural content generation in video
games dating back to Pitfall! (1982) on the Atari 2600 [29] [5]. In this
pioneering example, David Crane used an 8-bit LFSR to generate
the elements on 255 different screens. Since then, his code has been
optimized and modified to create new adventures [44] [22].

In Section 2.1 we illustrate LFSR concepts with examples, and
compare them to de Bruijn sequences. Section 2.2 then considers
two strategies for creating ‘adjustable’ LFSRs; Strategy A is useless
and we’ll see it again in Section 4. Section 2.3 provides the classic
15-bit LFSR that is the basis for the RNG in the games we study.

2Maximum-length LFSRs use primitive polynomials over F2 which are irreducible (i.e.,
like prime numbers they cannot be factored). Irreducible polynomials seem to be
distributed randomly, although Turán’s problem [6] suggests structure [12, 13, 18, 25].

s1 s2 s3 s4
s2 ⊕ s4

A 4-bit LFSR with𝑇 = {2, 4}
(i.e., tap the 2nd and 4th bits).

0001

1000

0100

0010

1001

1100

0110

1011

0101 0011

0111

1111

1110
1101

1010

00000

0 1

0 1

0

0

0 1

1 1

1

0

0 1
1

State graph w/ cycle lengths 1, 3, 6, 6.
(a) A 4-bit LFSR with polynomial 𝑥4 + 𝑥2 + 1. Starting at seed state
0101 it repeatedly generates the sequence 001010 of new random bits.
(The sequence comes from the first bit of each state along the cycle.)

s1 s2 s3 s4
s3 ⊕ s4

A 4-bit LFSR with𝑇 = {3, 4}
(i.e., tap 3rd and 4th bits).

0001 1000

0100

0010

1001

1100

0110
10110101

0011

0111

1111

1110

1101

1010

0000

1

0 1
0

0

0

0

0

1

1

1

1

00

1

1

State graph w/ cycle lengths 1, 15.
(b) A maximum-length 4-bit LFSR with polynomial 𝑥4 + 𝑥3 + 1.

Starting at seed state 0101 it repeatedly generates 111100010011010.
Note: This sequence is only one bit shy of a de Bruijn sequence of
order 𝑛 = 4: Simply replace 000 with 0000 to obtain 1111000010011010.
Figure 3: An LFSR’s behavior depends on its taps (shown in gold).
Here (a) and (b) contain two 4-bit LFSRs and their state graphs. To see
how theywork, consider the transitions from state 𝑠 = 𝑠1𝑠2𝑠3𝑠4 = 0101.
In (a) the next state is 𝑠′ = 𝑠′1𝑠

′
2𝑠

′
3𝑠

′
4 = 0010 because the new bit 𝑠′1

equals 𝑠2 ⊕ 𝑠4 = 1 ⊕ 1 = 0. In (b) the next state is 𝑠′ = 𝑠′1𝑠
′
2𝑠

′
3𝑠

′
4 = 1010

because the new bit 𝑠′1 equals 𝑠3 ⊕ 𝑠4 = 0 ⊕ 1 = 1. Note that the new
red bit is computed from the tapped bits, and the blue bits shift right.
These two transitions are highlighted (with tapped bits underlined)
as edges in their state graphs above. Only (b) is a maximum-length
LFSR, since its non-zero states form a single cycle of length 24−1 = 15.

2

2.1 Definition and Examples
An 𝑛-bit linear feedback shift register3 consists of an 𝑛-bit binary
string 𝑠 = 𝑠1𝑠2 · · · 𝑠𝑛 and a set of tap indices 𝑇 ⊆ {1, 2, . . . , 𝑛}. The
LFSR’s state is the value of the binary string. An LFSR is incremented
to the next state by updating the state to 𝑠 ′ = 𝑠 ′1𝑠

′
2 . . . 𝑠

′
𝑛 as follows

𝑠 ′𝑖+1 = 𝑠𝑖 for all 1 ≤ 𝑖 < 𝑛 and 𝑠 ′1 =
⊕
𝑖∈𝑇

𝑠𝑖 (1)

In other words, each bit in 𝑠 is shifted into the next index in 𝑠 ′, and
a new value enters as the first bit in 𝑠 ′. The value of the new bit 𝑠 ′1
is the xor of the tapped bits in 𝑠 . An 𝑛-bit LFSR with that taps its
highest bit (i.e., 𝑛 ∈ 𝑇) can be specified by an associated polynomial
(∑𝑖∈𝑇 𝑥𝑖) + 1 over GF(2). These ideas are illustrated in Figure 3.

Each increment produces one new random bit. Typically, the new
bit 𝑠 ′1 is treated as the random bit, and the remaining bits are then a
recording of previously generated bits. For example, if the current
state is 𝑠 = 𝑠1𝑠2𝑠3𝑠4 = 0111, then 0 is the most recent random bit.

2.1.1 State Graphs and Cycle Lengths. Repeated increments of an
𝑛-bit LFSR will eventually return it to a previous state. This is
visualized by an LFSR’s state graph. The vertices of this graph are
the𝑛-bit binary strings, and there is a directed edge from state 𝑠 to its
next state 𝑠 ′ that is labeled with the new bit 𝑠 ′1. The edge labels along
each cycle give the sequence of new bits generated by the LFSR.
For example, the LFSR in Figure 3a cycle generates 001010 when
starting from 0101, whereas Figure 3b generates 111100010011010.
The state graph always contains a loop (i.e., a cycle of length one)
around the all-zero string 𝑠 = 00 · · · 0 because its tapped bits are
zero, and so 𝑠 ′1 = 0 by (1). More broadly, we are interested in the
list of cycle lengths in the state graph of an LFSR.

2.1.2 Maximum-length LFSRs. An 𝑛-bit LFSR is maximum-length
if its cycle length list is 1, 2𝑛 − 1. That is, every non-zero string is
in one cycle. Maximum-length LFSRs always have two properties:

(1) 𝑛 ∈ 𝑇 (i.e., the highest state bit is tapped);
(2) |𝑇 | is even (i.e., the number of taps is even).

These conditions alone are not sufficient, as seen in Figure 3a.

2.1.3 De Bruijn Sequences. A de Bruijn sequence of order 𝑛 is a
cyclic sequence of length 2𝑛 containing each 𝑛-bit binary string
exactly once as a substring. Unlike LFSRs, most constructions and
algorithms for generating these pseudorandom sequences are easily
“adjustable” (i.e., they work for all 𝑛) so their use could have avoided
the errors found in this article. This includes the granddaddy de
Bruijn sequence (as named by Knuth [23]) from the 1930s [26] which
can be generated efficiently [14, 35]. There are also new approaches
[1, 2] [10, 11] [21, 38, 39] and frameworks [16, 17] whose sequences
appear more or less random [15] or intentionally include fewer
strings [36, 42] [8] [9, 37]. A maximum-length LFSR’s non-zero
sequence is one bit shy of a de Bruijn sequence (see Figure 3b).

2.2 Towards ‘Adjustable’ LFSR Randomization
Some games require more robust randomization than others, so a
function providing an ‘adjustable’ amount of randomization would
be useful. In a low-memory environment like the NES, the function
should use less memory when generating less robust randomization.

3Our discussion will be limited to Fibonacci (cf. Galois) LFSRs.

s1 s2 s3 s4
s2 ⊕ s4 s5

extra
bit

A 5-bit LFSR with𝑇 = {2, 4}
(i.e., tap the 2nd and 4th bits)

00010

10001
01000

00101

10011
11001

01101

10110

01010

01110

01111
11110

11100
11011

10100

00000
00001

11010

0110010111

01001

10000

00111

00011

00100

01011

10101

00110

10010

11000

11101

11111

State graph w/ grove lengths 1, 3, 6, 6
and heights ℎ = 1.

(a) Strategy A: add one useless bit to the LFSR in Figure 3a. The same
type of growth from cycles to groves occurs starting from Figure 3b.

s2 s3 s4
s3 ⊕ s5 s1 s5

extra bit

A 5-bit LFSR with𝑇 = {3, 5} and
cycle lengths 1, 31 (cf. 1, 3, 6, 6).

s1 s2 s3 s4
s4 ⊕ s5 s5

extra bit

A 5-bit LFSR with𝑇 = {4, 5} and
cycle lengths 1, 3, 7, 21 (cf. 1, 15).

(b) Strategy B: add one risky bit to the LFSRs in Figure 3.

Figure 4: Illustrating two potential strategies for creating an “ad-
justable” LFSR in which the taps stay in the same relative positions.
Strategy A adds bits above the highest tap, while Strategy B adds bits
below the lowest tap. These strategies are illustrated here by adding
a single bit to the 4-bit LFSRs in Figure 3. If the goal is to increase
the pseudorandom sequence length by adding bits, then Strategy A
is useless (see Figure 5), while Strategy B is risky.

This goal leads to the following idea: Start with an existing 𝑛-bit
LFSR, and add extra bits of memory if requested. More specifically,
we could initialize an (𝑛+𝑒)-bit LFSR, which is identical to a known
𝑛-bit LFSR, but it uses 𝑒 extra bits of memory, where 𝑒 is a parameter
set by the game. The extra bits could be added in one of two places.

Strategy A: After the highest tap. These extra bits will be useless.
Strategy B: Before the lowest tap. These extra bits will be risky.

Either way, the taps shift together and stay in the same relative
positions. This is analogous to playing a piano chord on different oc-
taves, as your fingers (i.e., the taps) keep the same relative positions.
Now we consider the effectiveness of the two strategies.

2.2.1 Strategy A. This strategy is useless for gaining random-
ization. To start understanding this point, consider Figures 3a–4a.
Both state graphs have four subgraphs, which are cycles of length
1, 3, 6, 6 in Figure 3a with appendages in Figure 4a. As a result, both
LFSRs ultimately generate repeating sequences of length at most 6.
Further explanation requires some basic graph theory terms [7].

If an 𝑛-bit LFSR taps the highest bit (i.e., 𝑛 ∈ 𝑇), then its state
graph partitions into directed cycles (e.g., see Figure 3). Otherwise,
its state graph partitions into more complicated subgraphs. A grove
of length ℓ and height ℎ is a directed cycle of length ℓ in which the
root of a perfect binary tree4 of height ℎ − 1 is attached to each
vertex of the cycle, with additional edges directed towards it. A
grove of height ℎ = 0 has no appendages and is simply a cycle.

If an𝑛-bit LFSR has highest tap 𝑡∗ = max(𝑇) with 𝑡∗ ≤ 𝑛, then its
state graph partitions into groves of height ℎ = 𝑛 − 𝑡∗. Furthermore,
the grove lengths are the same as the cycle lengths in the 𝑡∗-bit
4A perfect binary tree of height ℎ contains 2ℎ leaves and 2ℎ+1 − 1 total vertices, with
each leaf having distance ℎ from the root. When ℎ = 0 it is simply a single root vertex.

3

0001010

0001100 0001111
0001101 0001110

0001011

0001001

0001000

000101
000100

000111

000110

00010 00011
0001

h = 0 h = 1 h = 2 h = 3
1000

0100

0010

0101

1010

10001
01000

00101
01010

10100
01001

10000

00100
01011

10101

100010001010

010100
101000

010001

010000

100000 100001

001000

001001

100011

001011

010110010111

010101
101011

101010

101001
010011

010010

10001010010100

0101000
1010001

0100010

0100011

1000110 1000111

0010110

0010111

0101100
0101101
0101110
0101111

1000100 0010011
0010010
0010001
0010000

0010101

01010100101011

1010111 1010100
1010110 1010101

0101001
1010011

1010010

0100111
0100110
0100101
0100100

1010000

0100001

0100000

1000000
1000001
1000010
1000011

(a) Groves of height ℎ = 0, 1, 2, 3 are generated by the 4-bit LFSR 𝑥4 + 𝑥2 + 1 with ℎ useless bits. The
ℎ = 0 grove is a cycle in Figure 3a, while the ℎ = 1 grove is in Figure 4a. Each grove has one

highlighted state with prefix 0001 on its cycle; it is a cyclic substring of its cycle’s sequence 000101.
The other highlighted states differ in a suffix of length ≤ ℎ (with the first differing bit overlined).

0001010

0001111

0001

0

0 1

0 1

0 0

0 1

0 1

0

1

1
0

(b) The sequences generated from
non-cycle vertices are the same as the

sequences generated from cycle vertices.
For example, the highlighted strings in (a)
generate the sequence 101000 101000 · · · .

Figure 5: Strategy A does not increase randomness: (a) the useless bits add height to the groves; (b) the generated bit sequences are unchanged.

LFSR with taps𝑇 (i.e., the LFSR without the extra bits). For example,
consider Figures 3a–4a. Note that the 4-bit version of the LFSR has
cycle lengths 1, 3, 6, 6 while the 5-bit version of the LFSR has grove
lengths 1, 3, 6, 6. See Figure 5a for examples of taller groves.

Although taller groves contain more states than shorter groves,
they do not increase the lengths of the random sequences generated
by an LFSR. More specifically, the sequence generated starting from
a state outside of the cycle simply duplicates the sequence generated
from one of the states on the cycle. This point is explained in Figure
5b. For this reason, Strategy A is both predictable and useless.

2.2.2 Strategy B. This strategy is risky for gaining randomization.
This is shown by Figures 3–4b; note that the extra bit can cause the
cycle lengths to increase or decrease. More specifically, the extra bit
transforms the not maximum-length 4-bit LFSR in Figure 3a into a
maximum-length 5-bit LFSR in Figure 4b (left). On the other hand,
the extra bit transforms the maximum-length 4-bit LFSR in Figure
3b into a not maximum-length 5-bit LFSR in Figure 4b (right).

As mentioned earlier, there is no simple way to determine the
cycle lengths of an LFSR. Moreover, there is no simple way to
predict how adding extra bits change the cycle lengths. In general,
we expect more bits to lead to more randomization, but this is not
guaranteed. Hence, Strategy B can be beneficial or detrimental.

2.3 A Classic 15-Bit LFSR with Two Taps
When working on an 8-bit system, it makes sense to allocate some
number of bytes to an LFSR’s state. In particular, a two-byte LFSR
has 2 · 8 = 16 state bits. However, there is a drawback to choosing
𝑛 = 16 bits. Recall that a maximum-length LFSR requires an even
number of taps, so the fewest number of taps is two. Reducing the
number of taps is helpful, since implementations often use more
instructions when more taps are used (see Section 4). Unfortunately,
there is no 16-bit LFSR using only two taps, so at least four taps are
required. This leads to an appealing alternative choice:

𝑛 = 15 with 𝑇 = {7, 15} or equivalently, 𝑥15 + 𝑥7 + 1. (2)

This two-tap LFSR ismaximum-length. Its taps are also byte-separated
meaning that all of its tap positions differ by full bytes5. This prop-
erty simplifies the LFSR’s implementation since the taps are aligned

5This LFSR is byte-separated since its taps are one byte apart, i.e., 15 − 7 = 8 = 1 · 8.

on a single bit (i.e., on 𝑏1 in this case). We name it Nintendo’s classic
15-bit LFSR, although its exact origin is unknown to the authors.

3 PROGRAMMING AN LFSR
Programming an LFSR on the NES involves two design decisions:

(1) Bit direction. The direction in which to shift the bits.
(2) Byte order. The order in which to shift successive bytes.

We illustrate these decisions in Section 3.1 by visualizing Donkey
Kong rolling barrels along one or more girders6. With this analogy,
the key to a correct implementation is to roll each barrel over the
highest tapped bit last (excluding useless extra bits).

In Section 3.2, we turn our attention to 6502 programming.

3.1 Design Decisions
In this subsection we consider implementing an LFSR in a high-level
data structure, and then in 8-bit assembly language.

3.1.1 List Implementation: Bit Shift Direction. Let’s first consider
a simplified setting for implementing an LFSR: Each bit of the
state 𝑠 = 𝑠1𝑠2 · · · 𝑠𝑛 (1-based indexing) is stored as an entry in list
ℓ = [ℓ0, ℓ1, . . . , ℓ𝑛−1] (0-based indexing). In this setting, we only
need to make the first design decision: the direction to shift the
bits/entries. If we shift right, with the newly computed bit entering
on the left, then we need to place the highest tap on the right side.
Otherwise, if we shift left, then we need to put the highest tap on
the left side. These two options are illustrated in Figure 6.

3.1.2 8-Bit Assembly Implementation: Byte Order. When we im-
plement an LFSR in an 8-bit assembly language, we again need
to decide the direction in which to shift the bits. However, it re-
quires an additional design decision: the order in which the bytes
are shifted. The two decisions lead naturally to 2 · 2 = 4 correct
implementations of an LFSR, as illustrated in Figure 7.

We also note that the byte order can’t be implemented incorrectly
in the classic 15-bit LFSR from Section 2.3. This is because the taps
are byte-separated (i.e., in the same positions on each state byte)
and there is a tap on each byte. Thus, each byte plays the same role.
It’s possible that the flexibility in this special case contributed to
errors when programmers added extra bytes to the LFSR.

6In these images, the barrels roll in one direction, not back-and-forth as in the game.
4

s1s2s3s4s5s6s7s8s9s10s11s12s13s14s15s16s17s18s19s20s21s22s23

`6`5`4`3`2`1`0 `7 `14`13`12`11`10`9`8 `15 `22`21`20`19`18`17`16

(a) Shifting bits to the left through a list of length 𝑛 = 23.

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s19 s20 s21 s22 s23

`6`5`4`3`2`1`0 `7 `14`13`12`11`10`9`8 `15 `22`21`20`19`18`17`16

(b) Shifting bits to the right through a list of length 𝑛 = 23.

Figure 6: When implementing an LFSR in a high-level data structure
like a list, we can allocate one entry per bit. Increments can shift the
entries to the right or the left, and this decision determines where
the taps should be located. These example show the correct state bit
locations in 𝑠1𝑠2 . . . 𝑠23 for the 23-bit LFSR with taps𝑇 = {15, 23}.

s1 s2 s3 s4 s5 s6 s7 s8

s9 s10 s11 s12 s13 s14 s15 s16

s17 s18 s19 s20 s21 s22 s23 s24

b1b2b3b4b5b6b7 b0

b1b2b3b4b5b6b7 b0

b1b2b3b4b5b6b7 b0

®

¬
low
byte

middle
byte

high
byte

(a) If rotating bits starting from
the low byte, then tap the 𝑏1 bits
on the middle and high bytes.

s1s2s3s5s6s7s8

s9s10s11s13s14s15s16

s17s18s19s21s22s23s24

b1b2b3b4b5b6b7 b0

b1b2b3b4b5b6b7 b0

b1b2b3b4b5b6b7 b0

®

¬
low
byte

middle
byte

high
byte

s4

s12

s20

(b) If rotating bits starting from
the low byte, then tap the 𝑏6 bits
on the middle and high bytes.

s1 s2 s3 s4 s5 s6 s7 s8

s9 s10 s11 s12 s13 s14 s15 s16

s17 s18 s19 s20 s21 s22 s23 s24

b1b2b3b4b5b6b7 b0

b1b2b3b4b5b6b7 b0

b1b2b3b4b5b6b7 b0

®

¬

low
byte

middle
byte

high
byte

(c) If rotating bits right starting
from the high byte, then tap 𝑏1
on the middle and low bytes.

s9s10s11s13s14s15s16

b1b2b3b4b5b6b7 b0

b1b2b3b4b5b6b7 b0

b1b2b3b4b5b6b7 b0

®

¬

low
byte

middle
byte

high
byte

s12

s17s18s19s21s22s23s24 s20

s1s2s3s5s6s7s8 s4

(d) If rotating bits left starting
from the high byte, then tap 𝑏6
on the middle and low bytes.

Figure 7: Four correct ways to implement a 23-bit LFSR with taps
{15, 23} on an 8-bit CPU like the MOS 6502. The implementations
can shift each byte’s bits to the right or left, and can perform the
three shifts starting from the lowest or highest addressed byte.

3.2 6502 Programming
3.2.1 Instructions. A 6502 instruction consists of an operation to-
gether with operands. Most instructions read or write the accumula-
tor register A or an auxiliary register X and Y. A status byte includes
the carry flag bit. The following operations will be used when we
consider specific LFSR implementations in Section 4.

• Tapping a bit is accomplished with AND. Specifically, tapping
bit 𝑏1 is AND #$02, while tapping bit 𝑏6 is AND #$40.

• Tapped values are combined with EOR (xor). This step is
simplified in the classic LFSR as its taps are byte-separated.

• A byte shifts left or right with ROL or ROR, respectively. The
carry flag shifts in, and then it is set to the bit shifted out.

• The branching operations BEQ and BNE jump over some num-
ber of bytes (or to a label) if A is equal or not equal to 0.

• Enter and exit a subroutine with JSR and RTS; goto with JMP.
• The accumulator A is loaded with a byte using LDA, and its
byte is stored in memory with STA.

The three letter names (e.g., ROL) are an operation’s mnemonic.

3.2.2 Addressing Memory. The 6502 is an 8-bit CPU but it has 16-
bits of addressable memory. If the operands specify a full two-byte
address, then the operation uses Absolute mode. If the first byte is
omitted, then it is assumed to be zero. Operations using this feature
use Zero Page mode in reference to the first 256 bytes of memory.
Other addressing modes may use X or Y as an offset. An operation
whose operand is a constant is said to use Immediate mode.

4 CLASSIC NINTENDO GAMES
This section examines a handful of important NES games and their
LFSRs. Each classic game uses the classic LFSR from Section 2.3
with some number of extra bytes. Due to programming errors, the
extra bytes are always useless, rather than risky, as per Section 2
and 3. Section 3.2 can be used as a reference when reading the code.

We begin with a launch title for the Famicom in Section 4.1 and
end with the last commercial release for the NES in Section 4.5.

4.1 Donkey Kong (1983)
The LFSR increment code for Donkey Kong is in Figure 8b. Addi-
tional initialization code is provided in Figure 8a for those who
wish to run the code. The LFSR allocates 8 bytes of memory for the
state at addresses $18–$1F. The intention was to add 6 extra bytes
to the classic LFSR from Section 2.3. However, it places the extra
bytes on the wrong side of the taps, thus the extra bytes are useless,
and the 15-bit LFSR is generated instead of a 63-bit LFSR.

The same incorrect implementation appears in Donkey Kong Jr.
(1983) and Donkey Kong Jr. Math (1983). It has three easy fixes:
change the tapped bits or byte order or shift direction. Each fix
appears in 8c–8e. Nearly identical code appears in Spartan X (,
1984) / Kung Fu (, 1985) at a different location, Excitebike (1984),
and Clu Clu Land (1984) with the LFSR state in addresses $10–$17.

4.2 Launch Titles including Popeye (1983)
Among the three launch titles for the Famicom (Donkey Kong, Don-
key Kong Jr., and Popeye), the less "ambitious" Popeye is the only
one which implemented the LFSR correctly without useless bytes.

One of the NES launch titles, Duck Hunt (1985), also adds useless
bytes. Figure 9b shows that it deviates from Donkey Kong by only
wasting 4 bytes, and by storing the state bytes off of the zero-page
at $05EC-$05EF. This same code appears inWild Gunman (1985).

So far for the Famicom/NES’s launch titles, we have seen varia-
tions to the Donkey Kong code such as different location of LFSR
code (e.g. Kung Fu), different number of state bytes used, and using
the non-zero page mode (Duck Hunt andWild Gunman).

5

start:
jsr init
jmp loop

init:
LDA #$FF
STA $18
STA $19
STA $1A
STA $1B
STA $1C
STA $1D
STA $1E
STA $1F
RTS

loop:
jsr LFSR_inc
jmp loop

(a) Initialization. Use
this auxiliary code to
run (b) in Easy6502.

LFSR_inc:
LDA $18 ; load lowest byte
AND #$02 ; tap b1 (7th bit)
STA $00 ; temporary storage
LDA $19 ; load next byte
AND #$02 ; tap b1 (15th bit)
EOR $00 ; xor aligned taps
CLC ; clear carry
BEQ rors ; test the xor
SEC ; set carry

rors:
ROR $18 ; shift lowest byte
ROR $19 ; shift next byte
ROR $1A ; shift useless byte
ROR $1B ; shift useless byte
ROR $1C ; shift useless byte
ROR $1D ; shift useless byte
ROR $1E ; shift useless byte
ROR $1F ; shift useless byte
RTS ; return

(b) Incorrect implementation of the
LFSR increment in Donkey Kong.

LFSR_inc:
LDA $1E
AND #$02
STA $00
LDA $1F
AND #$02
EOR $00
CLC
BEQ rors
SEC

rors:
ROR $18
ROR $19
ROR $1A
ROR $1B
ROR $1C
ROR $1D
ROR $1E
ROR $1F
RTS

(c) Fix 1: Tap the highest
two bytes not lowest.

LFSR_inc:
LDA $18
AND #$02
STA $00
LDA $19
AND #$02
EOR $00
CLC
BEQ rors
SEC

rors:
ROR $1F

ROR $1E

ROR $1D

ROR $1C

ROR $1B

ROR $1A

ROR $19

ROR $18
RTS

(d) Fix 2: Start from the
highest byte not lowest.

LFSR_inc:
LDA $18
AND #$40
STA $00
LDA $19
AND #$40
EOR $00
CLC
BEQ rols
SEC

rols:
ROL $1F

ROL $1E

ROL $1D

ROL $1C

ROL $1B

ROL $1A

ROL $19

ROL $18
RTS

(e) Fix 3: Shift left from
highest byte; adjust taps.

Figure 8: (a)–(b)Donkey Kong (1983) accidentally implements the classic 15-bit LFSRwith taps𝑇 = {7, 15} instead of a 63-bit LFSRwith𝑇 = {55, 63}.
This is because it adds 6 bytes on the wrong side of the taps (i.e., Strategy A not Strategy B). This error limits the length of the generated
pseudorandom sequence to 215 − 1 = 32,767 bits. The code can be fixed in several different ways: (c)–(e) follow Figure 7a, 7c, 7d, respectively.

LFSR_inc:
LDA $18
AND #$02
STA $00
LDA $19
AND #$02
EOR $00
CLC
BEQ rors
SEC

rors:
ROR $18
ROR $19
RTS

(a) Popeye (1983).

LFSR_inc:
LDA $05EC
AND #$02
STA $07
LDA $05ED
AND #$02
EOR $07
CLC
BEQ rors
SEC

rors:
ROR $05EC
ROR $05ED
ROR $05EE
ROR $05EF

(b) Duck Hunt
(1985).

LFSR_inc:
LDX #$00
LDY #$07
LDA $07A7
AND #$02
STA $00
LDA $07A8
AND #$02
EOR $00
CLC
BEQ rors
SEC

rors:
ROR $07A7,X
INX
DEY
BNE rors

(c) Super Mario Bros. (1985).

LFSR_inc:
LDA $00,X ; A = mem[0+X]
AND #$02 ; A &= 2
STA $00 ; mem[0] = A
LDA $01,X ; A = mem[1+X]
AND #$02 ; A &= 2
EOR $00 ; A ^= mem[0] (nb. sets Z)
CLC ; Clear carry bit (C = 0)
BEQ rors ; If Z == 0, branch to rot
SEC ; Else, set carry (C = 1)

; Thus, C = Z = (A != 0)
rors:

ROR $00,X ; Rotate byte mem[0+X]
INX ; X = X + 1
DEY ; Y = Y - 1
BNE rot ; If Y == 0, branch to rot
RTS ; Return from LFSR_inc

(d) Famicom Disk System BIOS (1986).

LFSR_inc:
LDA $0580
AND #$02
STA $00
LDA $0581
AND #$02
EOR $00
CLC
BEQ rors
SEC

rors:
ROR $0580
ROR $0581
RTS

(e)Wario’s Woods
(1994).

Figure 9: LFSR implementations in classic games and systems, ranging from a launch title for the Famicom in (a) to the final NES release in (e).
Each code block implements the LFSR associated with 𝑥15 + 𝑥7 + 1 and repeatedly generates the same sequence of 32,767 bits. However, that was
not the intention of (b)–(d), which all repeat the Donkey Kong error in Figure 8. The correct implementations in (a) and (e) use two bytes for the
LFSR’s state starting at zero-page address $18 and non-zero-page address $0580, respectively. In (b) four bytes starting at $05EC are used, while
(c) uses eight bytes starting at $0727 and puts the RORs in a loop. In (d) the X and Y registers are used as parameters: X gives an offset that allows
multiple LFSRs to exist simultaneously; Y gives the number of bytes for the LFSR state, although all values of Y > 2 lead to useless bytes.

4.3 Super Mario Bros. (1985)
After the Famicom/NES’s launch titles were released, the LFSR code
evolved with sophisticated 6502 programming. For example, the
repeated ROR instructions are rolled into a loop by using the X and
Y registers. This is seen in Super Mario Bros. (see Figure 9c) which
still makes the same mistake as Donkey Kong with its extra bytes.

A close examination of the Super Mario Bros. loop shows that
the X and Y registers are used inefficiently: X stores an offset to the

shifted byte (and is initialized to 0); Y stores the number of bytes to
shift. An obvious simplification is to initialize X to the number of
state bytes and ignore Y. In fact, this change would also fix the LFSR
by shifting the bytes starting from the highest byte as in Figure 7c.

6

4.4 Famicom Disk System BIOS (1986)
The LFSR code continued to be refined after Super Mario Bros. In-
stead of hardcoding the X and Y registers, they are now used as
parameters to be set before calling the increment code.

(1) The X register continues to provide an offset into the zero
page. This is where the LFSR state bytes are stored.

(2) The Y register continues to provide the number of state bytes.
The first point allows the LFSR state to be anywhere on the zero
page, and for multiple LFSRs to be active simultaneously. The sec-
ond point aims to allow for an adjustable LFSR — associated with
𝑥8𝑌−1 + 𝑥8𝑌−9 + 1 instead of 𝑥15 + 𝑥7 + 1 — but again, the code is
implemented incorrectly. A version of this code was included in
the Famicom Disk System’s BIOS, as seen in Figure 9d. To call the
increment code, a game could set the X and Y registers as follows.

LDX #$17 ; e.g., state bytes start at X = 17
LDY #$0D ; e.g., the state is 13 bytes long
JSR LFSR_inc ; run increment code

4.5 Wario’s Woods (1994)
In the last NES game, Wario’s Woods (1994), the LFSR code reverts
to the classic 15-bit LFSR using only two bytes, as in Figure 9e.

Interestingly, this LFSR is initialized to zero and stays in the
zero-cycle. However, if we edit the state, then it exits the zero-cycle
and continually updates. In other words, the LFSR is updated but
is never actually used. This suggests that Nintendo may have been
shifting away from LFSRs by the end of the NES era.

5 SEARCHING THE LIBRARY
In Section 4, we identified specific games that generate the same
sequence of pseudorandom bits via the classic LFSR. To search the
entire library, we’ll listen for games that sing the following song.

Load AND Store, Load AND Xor, Clear Branch Set Roar!

Nintendo’s Random Song

In Section 5.1 and 5.2 we describe the idea behind our search,
and how to automate it. In Section 5.3 we report on the matches.

5.1 Fingerprint
The implementations from the previous section are quite varied,
but they have one important similarity: Each implementation in-
cludes a progression of ten consecutive instructions with the same
mnemonics. This is shown in Figure 10a and is sung7 at the start of
Section 5. We refer to this sequence of mnemonics as our finger-
print. Our approach is to search the libraries for matches, which are
consecutive instructions with this fingerprint; see Figure 10b–10c.

5.2 Regular Expressions and bgrep
To search for an individual instruction in a ROM file, we need to
consider the different opcodes for the operation and the number
of bytes that follow the opcode. For example, an LDA could be
specified by opcode 0xA5 followed by one byte, or by 0xAD followed

7The first words in this list give the ten words in Nintendo’s Random Song at the start
of this section, with some artistic license taken in the last step.

1. Load (LDA)
2. And (AND)
3. Store (STA)
4. Load (LDA)
5. And (AND)
6. Xor (EOR)
7. Clear carry bit (CLC)
8. Branch if equal (BEQ)
9. Set carry flag (SEC)
10. Rotate right (ROR)

(a) Fingerprint.

LDA $18 ;A5 18
AND #$02;29 02
STA $00 ;85 00
LDA $19 ;A5 19
AND #$02;29 02
EOR $00 ;45 00
CLC ;18
BEQ #$+1;F0 01
SEC ;38
ROR $18 ;66 18

(b) Donkey Kong.

LDA $0580;AD 80 05
AND #$02 ;29 02
STA $00 ;85 00
LDA $0581;A9 81 05
AND #$02 ;29 02
EOR $00 ;45 00
CLC ;18
BEQ #$+1 ;F0 01
SEC ;38
ROR $0580;6E 80 05

(c)Wario’s Woods.

Figure 10: Our song’s fingerprint of three-letter mnemonics in (a)
with examples of matched instructions and machine code in (b)–(c).

by two bytes. There are eight forms of LDA, as summarized by
Table 1. Similarly, there are eight forms of AND, as in Table 2.

Mode Opcodes Bytes
Immediate $A9 2

Zero Page $A5 2

Zero Page, X $B5 2

Absolute $AD 3

Absolute, X $BD 3

Absolute, Y $B9 3

(Indirect, X) $A1 2

(Indirect), Y $B1 2

Table 1: LDA instructions.

Mode Opcodes Bytes
Immediate $29 2

Zero Page $25 2

Zero Page, X $35 2

Absolute $2D 3

Absolute, X $3D 3

Absolute, Y $39 3

(Indirect, X) $21 2

(Indirect), Y $31 2

Table 2: AND instructions.

Therefore, an LDA operation followed by an AND operation can be
realized by 8 · 8 = 64 different pairs of opcodes, which can be easily
described using a single regular expression. As a starting point, the
following regular expression matches any single hex character.

h = 0+1+2+3+4+5+6+7+8+9+A+B+C+D+E+F
For those unfamiliar with regular expressions, each + can be

interpreted as “or”, so the full expression is “0 or 1 or . . . or F”.
Regular expressions can be grouped together using parentheses,
and concatenation is implied when two expressions are written next
to each other. Thus, the following regular expression matches the
byte sequence of an instruction with mnemonic LDA. Specifically,
the left side matches the two-byte versions of the operation, and
the right side matches the three-byte versions.

LDA = (A9 + A5 + B5 + A1 + B1)hh + (AD + BD + B9)hhhh
We can similarly define expressions for every 6502 operation.

This is the regular expression for our operation fingerprint.
(LDA)(AND)(STA)(LDA)(AND)(EOR)(CLC)(BEQ)(SEC)(ROR)
To search for regular expressions in the Famicom and NES li-

braries, we use nneonneo’s bgrep [34], a binary variant of grep.
A bgrep regular expression for LDA appears below, where | and

[] are forms of “or” (like +), while . matches one byte (like hh).
([\xA9\xA5\xB5\xA1\xB1].|[\xAD\xBD\xB9]..)
Similarly, we can construct bgrep regular expressions for each

of the other 6502 operations. Concatenating the operations in the
fingerprint gives the result in the left column in Table 3.

To search an individual NES file for the operation fingerprint, it is
helpful to save the above pattern in a file named fingerprint.re.

7

([\xA9\xA5\xB5\xA1\xB1].|[\xAD\xBD\xB9]..) LDA
([\x29\x25\x35\x21\x31].|[\x2D\x3D\x39]..) AND
([\x85\x95\x81\x91].|[\x8D\x9D\x99]..) STA
([\xB5\xA5\xA9\xA1\xB1].|[\xAD\xBD\xB9]..) LDA
([\x29\x25\x35\x21\x31].|[\x2D\x3D\x39]..) AND
([\x49\x45\x55\x41\x51].|[\x4D\x5D\x59]..) EOR
\x18 CLC
\xF0. BEQ
\x38 SEC
(\x6A|[\x66\x76].|[\x6E\x7E]..) ROR

Table 3: bgrep regular expression for our fingerprint (left) and the
corresponding three-letter mnemonics of the operations (right). For
readability, each operation’s expression is on a separate line; it must
be written on one line—without a new line—when used with bgrep.

Again, the pattern should be saved on a single line, without a new-
line character at the end of the file8. Then the following command
will search for the fingerprint in a ROM file named game.nes.

bgrep -E -f fingerprint.re game.nes
The -E denotes extended patterns (including []), and -f signifies

a search pattern file. Matches output the file name, the location in
the file, the bytes that match the pattern (in red) with additional
context (in black). For example, running the command on Donkey
Kong (Famicom) gives the following output.

Donkey Kong (Japan).nes:00003504: 009d31038e300360a5
1829028500a5192902450018f0013866186619661a661b661c

Note that the matched red bytes appear in Figure 10b.
More broadly, we can run bgrep on all files in a ROMS/ folder with

the following command: bgrep -E -f fingerprint.re ROMS/*

5.3 Number of Matches
Using the bgrep command from the previous subsection, we searched
all of the relevant ROMs in the well-known No-Intro Collection [4].

• 470 matches total matches across 374 different files.
• 179 titles after removing revisions and regional translations.

For example, Dr. Mario contributes 24 total matches across 9
different files. This is due to several prototypes being in circulation,
including some under the working title Virus, and each includes
multiple implementations. In addition, a regional variant and re-
vision were released. The third total is our approximation for the
number of distinct titles9 , and Dr. Mario contributes +1 to this total.

In the Famicom Disk System library we found the following10.
• 37 total matches across 33 different files.
• 28 titles after removing revisions and regional translations.

In total, we found 508 matches in 207 different titles.

6 FINAL REMARKS
We traced a specific pseudorandom number generator across hun-
dreds of games in the NES/Famicom/FDS library. The classic linear
feedback shift register — associated with 𝑥15𝑥7 + 1 — is beautiful.
It has maximum-length and two byte-separated taps, which allows
it to be incremented elegantly and efficiently. Unfortunately, LFSRs
8By default, some text editors add a newline character to the end of a file.
9For example, we count Spartan X (, 1984) and Kung Fu (, 1985) as the same title,
but not Downtown Nekketsu Monogatari (, 1989) and River City Ransom (, 1990).
We include non-gaming software (e.g., the FamicomBox menu) and several multicarts.
10These matches do not include games that call the LFSR code found in the FDS BIOS.
In other words, these games include their own implementation of the classic LFSR.

are not naturally adjustable (cf. de Bruijn sequences in Section 2.1.3),
and efforts to increase the LFSR’s randomness were unsuccessful
to the point of comedy. Programmers dating back to Donkey Kong
(1983) added bytes to the wrong side of the taps, thus limiting the
games to the same not-so-random sequence of 32,767 bits.

During the course of the article we illustrated how several games
use RNG in Figure 2, explained the mathematics behind useless
bits in Section 2.2, and showed how to fix Donkey Kong’s error by
rotating bits in the other direction (or bytes in the opposite order)
in Figure 8. The machine code from multiple games in Figure 9 led
us to a song of ten mnemonics and a bgrep regular expression that
was used to search the library.

6.1 Additional Results
In an extended version of the paper wewill add the following details.

We reduced the chance of false positives (i.e., matches that do not
implement the LFSR) by refining our bgrep regular expression. For
example, AND operands were hardcoded to #$02, and the operands
for STA and EOR were forced to be equal. None of our restrictions
reduced the number of matches. We also found false negatives (i.e.,
non-matches that implement the LFSR) by relaxing the expression.

Not all programmers made the same mistake. In particular, three
titles by Culture Brain expand the classic LFSR to 𝑥63 + 𝑥7 + 1 (byte-
separated) and correctly rotate the bits and bytes as in Figure 7c.

There are over 100 distinct sequences of machine code bytes
in the NES/Famicom/FDS library that trigger a match. We also
discovered matches in other console libraries, including the SNES.

6.2 Additional Resources
Files associated with this project can be found in [46]; see Figure 11.

110 in 1 (Asia) (En) (Unl) (Pirate).nes
Aa Yakyuu Jinsei Icchokusen (Japan).nes
Abadox (Japan).nes
Adventures in the Magic Kingdom (USA).nes

(a) NESTitles.txt.

1000000100000011000001000
0001110000101000011010001
0000001110100101010011011
1010001001110011101000111

(b) 32767bits.txt.

Figure 11: Additional materials in our git repository [46] include (a)
lists of matches, and (b) the pseudorandom sequence they generate.

6.3 Future Work
We hope this work promotes other tool-based studies on the imple-
mentation of important subroutines on various gaming platforms.
Such studies will help improve CS history, as per Knuth’s call [24].

REFERENCES
[1] Abbas Alhakim, Evan Sala, and Joe Sawada. 2021. Revisiting the prefer-same and

prefer-opposite de Bruijn sequence constructions. Theoretical Computer Science
852 (2021), 73–77.

[2] Abbas M Alhakim. 2010. A simple combinatorial algorithm for de Bruijn se-
quences. The American Mathematical Monthly 117, 8 (2010), 728–732.

[3] Matt Alt. 2020. The Designer Of The NES Dishes The Dirt On Nintendo’s Early
Days. https://www.kotaku.com.au/2020/07/the-designer-of-the-nes-dishes-the-
dirt-on-nintendos-early-days/.

[4] Internet Archive. 2020. [No-Intro] Nintendo - Nintendo Entertainment System.
https://archive.org/details/nointro.nes.

[5] John Aycock. 2016. Retrogame Archeology: Exploring Old Computer Games (1st
ed.). Springer, New York, NY, USA.

[6] Pradipto Banerjee and Michael Filaseta. 2010. On a polynomial conjecture of Pál
Turán. Acta Arith 143, 3 (2010), 239–255.

8

https://www.kotaku.com.au/2020/07/the-designer-of-the-nes-dishes-the-dirt-on-nintendos-early-days/
https://www.kotaku.com.au/2020/07/the-designer-of-the-nes-dishes-the-dirt-on-nintendos-early-days/
https://archive.org/details/nointro.nes

[7] John Adrian Bondy, Uppaluri Siva Ramachandra Murty, et al. 1976. Graph theory
with applications. Vol. 290. Macmillan London.

[8] Ben Cameron, Aysu Gündoğan, and Joe Sawada. 2022. Cut-Down de Bruijn
Sequences. arXiv preprint arXiv:2205.02815 (2022).

[9] Joseph DiMuro. 2019. Classifying rotationally-closed languages having greedy
universal cycles. The electronic journal of combinatorics 26 (2019), P1.35. Issue 1.

[10] Patrick Baxter Dragon, Oscar I Hernandez, Joe Sawada, Aaron Williams, and
Dennis Wong. 2018. Constructing de Bruijn sequences with co-lexicographic
order: The k-ary Grandmama sequence. European Journal of Combinatorics 72
(2018), 1–11.

[11] Patrick Baxter Dragon, Oscar I Hernandez, and Aaron Williams. 2016. The
grandmama de Bruijn sequence for binary strings. In LATIN 2016: Theoretical
Informatics. Springer, 347–361.

[12] Michael Filaseta. 2014. Is Every Polynomial with Integer Coefficients Near an
Irreducible Polynomial? Elemente der Mathematik 69, 3 (2014), 130–143.

[13] Michael Filaseta and Michael Mossinghoff. 2012. The distance to an irreducible
polynomial, II. Math. Comp. 81, 279 (2012), 1571–1585.

[14] Harold Fredricksen and James Maiorana. 1978. Necklaces of beads in k colors
and k-ary de Bruijn sequences. Discrete Mathematics 23, 3 (1978), 207–210.

[15] Daniel Gabric and Joe Sawada. 2022. Investigating the discrepancy property of
de Bruijn sequences. Discrete Mathematics 345, 4 (2022), 112780.

[16] Daniel Gabric, Joe Sawada, Aaron Williams, and Dennis Wong. 2018. A frame-
work for constructing de Bruijn sequences via simple successor rules. Discrete
Mathematics 341, 11 (2018), 2977–2987.

[17] Daniel Gabric, Joe Sawada, Aaron Williams, and Dennis Wong. 2019. A successor
rule framework for constructing 𝑘-ary de Bruijn sequences and universal cycles.
IEEE Transactions on Information Theory 66, 1 (2019), 679–687.

[18] Petar Gaydarov and Konstantin Delchev. 2015. Combinatorial Computations on
an Extension of a Problem by Pál Turán. Serdica Journal of Computing (2015),
257–268.

[19] Solomon W. Golomb. 1981. Shift Register Sequences (1 ed.). Aegean Park Press.
[20] Mark Hendrikx, Sebastiaan Meijer, Joeri Van Der Velden, and Alexandru Iosup.

2013. Procedural content generation for games: A survey. ACM Transactions on
Multimedia Computing, Communications, and Applications 9, 1 (2013), 1–22.

[21] Cees JA Jansen, Wouter G Franx, and Dick E Boekee. 1991. An efficient algorithm
for the generation of DeBruijn cycles. IEEE Transactions on Information Theory
37, 5 (1991), 1475–1478.

[22] Thomas Jentzsch. 2017. Pitfall!x256 (was: Pitfall!x16). https://atariage.com/
forums/topic/267046-pitfallx256-was-pitfallx16.

[23] Donald E Knuth. 2005. The Art of Computer Programming, Volume 4, Fascicle 2:
Generating All Tuples and Permutations. Addison-Wesley Professional.

[24] Donald E Knuth and Len Shustek. 2021. Let’s not dumb down the history of
computer science. Commun. ACM 64, 2 (2021), 33–35.

[25] Gilbert Lee, Frank Ruskey, and Aaron Williams. 2007. Hamming distance from
irreducible polynomials over F2 . Discrete Mathematics & Theoretical Computer
Science DMTCS Proceedings vol. AH, 2007 Conference on Analysis of Algorithms
(AofA 07) (Jan. 2007). https://doi.org/10.46298/dmtcs.3550

[26] Monroe H Martin. 1934. A problem in arrangements. Bull. Amer. Math. Soc. 40,
12 (1934), 859–864.

[27] Damien McFerran. 2018. Feature: Shining A Light On Ikegami
Tsushinki, The Company That Developed Donkey Kong. https:
//www.nintendolife.com/news/2018/02/feature_shining_a_light_on_ikegami_
tsushinki_the_company_that_developed_donkey_kong.

[28] Mike Mika. 2013. Why I hacked Donkey Kong for my daughter. Wired, March 11
(2013).

[29] Nick Montfort and Ian Bogost. 2009. Racing the beam: The Atari video computer
system. Mit Press.

[30] Nick Morgan. 2012. Easy 6502 Simulator. https://skilldrick.github.io/easy6502/
simulator.html.

[31] Trang Q. Ngo. 2020. Python implementation of Dr. Mario algorithms. https:
//github.com/trangqngo/Dr-Mario-virus-generation.

[32] nightmareci. 2012. Dr. Mario virus placement. https://tetrisconcept.net/threads/
dr-mario-virus-placement.2037.

[33] nightmareci. 2013. Dr. Mario. https://tetris.wiki/Dr._Mario.
[34] Robert Xiao (nneonneo). 2015. bgrep. https://github.com/nneonneo/bgrep.
[35] Frank Ruskey, Carla Savage, and TerryMin YihWang. 1992. Generating necklaces.

Journal of Algorithms 13, 3 (1992), 414–430.
[36] Frank Ruskey, Joe Sawada, and Aaron Williams. 2012. De Bruijn sequences for

fixed-weight binary strings. SIAM Journal on Discrete Mathematics 26, 2 (2012),
605–617.

[37] Joe Sawada, Aaron Williams, and Dennis Wong. 2016. Generalizing the classic
greedy and necklace constructions of de Bruijn sequences and universal cycles.
The electronic journal of combinatorics (2016), P1–24.

[38] Joe Sawada, Aaron Williams, and Dennis Wong. 2016. A surprisingly simple de
Bruijn sequence construction. Discrete Mathematics 339, 1 (2016), 127–131.

[39] Joe Sawada, Aaron Williams, and Dennis Wong. 2017. A simple shift rule for
k-ary de Bruijn sequences. Discrete Mathematics 340, 3 (2017), 524–531.

[40] Noor Shaker, Julian Togelius, and Mark J Nelson. 2016. Procedural content gener-
ation in games. Springer.

[41] Wayne Stahnke. 1973. Primitive binary polynomials. Mathematics of computation
27, 124 (1973), 977–980.

[42] Brett Stevens and Aaron Williams. 2014. The coolest way to generate binary
strings. Theory of Computing Systems 54, 4 (2014), 551–577.

[43] taotao54321. 2018. NES Dr.Mario hand simulator. https://gist.github.com/
taotao54321/4ec019a251fdd8f9759fa8a8b5439559.

[44] Sam Trenholme. 2013. Alternate Pitfall maps. https://www.samiam.org/blog/
20130617.html.

[45] Aaron Williams. 2019. Dr. Mario Puzzle Generation: Theory, Practice, & History
(Famicom/NES). In The 22nd Japan Conference on Discrete and Computational
Geometry, Graphs, and Games. 128–129.

[46] Aaron Williams. 2022. Nintendo’s Not-So-Random Sequence. https://gitlab.com/
combinatronics/nintendos-not-so-random-sequence.

9

https://atariage.com/forums/topic/267046-pitfallx256-was-pitfallx16
https://atariage.com/forums/topic/267046-pitfallx256-was-pitfallx16
https://doi.org/10.46298/dmtcs.3550
https://www.nintendolife.com/news/2018/02/feature_shining_a_light_on_ikegami_tsushinki_the_company_that_developed_donkey_kong
https://www.nintendolife.com/news/2018/02/feature_shining_a_light_on_ikegami_tsushinki_the_company_that_developed_donkey_kong
https://www.nintendolife.com/news/2018/02/feature_shining_a_light_on_ikegami_tsushinki_the_company_that_developed_donkey_kong
https://skilldrick.github.io/easy6502/simulator.html
https://skilldrick.github.io/easy6502/simulator.html
https://github.com/trangqngo/Dr-Mario-virus-generation
https://github.com/trangqngo/Dr-Mario-virus-generation
https://tetrisconcept.net/threads/dr-mario-virus-placement.2037
https://tetrisconcept.net/threads/dr-mario-virus-placement.2037
https://tetris.wiki/Dr._Mario
https://github.com/nneonneo/bgrep
https://gist.github.com/taotao54321/4ec019a251fdd8f9759fa8a8b5439559
https://gist.github.com/taotao54321/4ec019a251fdd8f9759fa8a8b5439559
https://www.samiam.org/blog/20130617.html
https://www.samiam.org/blog/20130617.html
https://gitlab.com/combinatronics/nintendos-not-so-random-sequence
https://gitlab.com/combinatronics/nintendos-not-so-random-sequence

	Abstract
	1 Introduction
	1.1 Donkey Kong's Backwards Bits
	1.2 Entropy Lost
	1.3 Outline

	2 Linear Feedback Shift Registers
	2.1 Definition and Examples
	2.2 Towards `Adjustable' LFSR Randomization
	2.3 A Classic 15-Bit LFSR with Two Taps

	3 Programming an LFSR
	3.1 Design Decisions
	3.2 6502 Programming

	4 Classic Nintendo Games
	4.1 Donkey Kong (1983)
	4.2 Launch Titles including Popeye (1983)
	4.3 Super Mario Bros. (1985)
	4.4 Famicom Disk System BIOS (1986)
	4.5 Wario's Woods (1994)

	5 Searching the Library
	5.1 Fingerprint
	5.2 Regular Expressions and bgrep
	5.3 Number of Matches

	6 Final Remarks
	6.1 Additional Results
	6.2 Additional Resources
	6.3 Future Work

	References

