
In Search of Patterns: Disrupting RPG Classes through
Procedural Content Generation

Alex Pantaleev
Department of Computer Science

SUNY Oswego
Oswego, NY 13126

alex@cs.oswego.edu

ABSTRACT
This paper presents a first attempt at exploring the search
space of Role-Playing Game (RPG) skill systems, with the
hope to find stable patterns outside of conventional RPG
classes. At the foundation of the experiment is a small text-
based game that allows human players to enter RPG combat
and uses an evolutionary algorithm to generate and suggest
new character abilities to them. The content representation
was carefully chosen to be simultaneously simple and ex-
pressive. The evaluation function scores abilities based on
their use by players. While the game is far from finished,
preliminary test results are encouraging.

Categories and Subject Descriptors
K.8.0 [Personal Computing]: General—Games

General Terms
Design, Experimentation

Keywords
Games, procedural content generation, game design, role-
playing games

1. INTRODUCTION AND BACKGROUND
Role-playing games (RPGs) have traditionally employed a
class-based system, starting with the first edition of Dun-

geons and Dragons (TSR 1974), which set the staples of the
genre. A character class aggregates several abilities or skills,
and determines not only the role of the respective character
in the game world, but also his or her potential capabilities.
A class can, therefore, be perceived as a set of constraints on
a character’s development, confining the character’s skills to
a strict subset of the space of all skills. Despite its inherent
limitations, the class-based RPG tradition is strong today,
following the success of massively multiplayer online RPGs
such as World of Warcraft (Blizzard Entertainment 2004).

A skill-based (or classless) RPG, on the other hand, does

PCG 2012 Raleigh, North Carolina, USA

not artificially constrain the set of abilities that a charac-
ter can acquire in the progress of the game. Users are free
to mix and match all available skills and find their optimal
point in the skill space of the game with no designer-imposed
limitations. While there have been several highly success-
ful commercial games to employ a skill-based system (no-
table examples include Asheron’s Call (Turbine Entertain-
ment Software 1999) as well as games developed by Bethesda
Game Studios, such as Fallout 3 (2008) or The Elder Scrolls

series), professional designers prefer the tighter control over
user experience that classes allow them [9].

In addition, RPG players usually build their characters ac-
cording to certain templates even in skill-based games [1].
Such templates, while informal in nature, resemble design
patterns as defined in architecture [2], software engineer-
ing [6], and game design [3]: they describe solutions to com-
mon problems that occur in the RPG combat domain, and
form a language for designing character builds. While this
language is a result of accumulated best practices for creat-
ing optimal character parties in RPGs, it is also a result of
the culture of designer-imposed classes.

This paper describes an initial experiment to explore the
search space of skill-based RPG systems, with the hope of
providing insight into the templates that users prefer and
finding character builds that do not conform to existing pat-
terns. To this end I have built a small game that uses an
evolutionary algorithm to search for optimal combinations
of character abilities in a party in standard RPG combat.
The content representation was chosen carefully to allow the
modeling of important RPG tropes, such as health potions,
purely on the basis of abilities in order to simplify the search.
The interactive and implicit evaluation function is based on
players’ use of abilities while they play the game. The algo-
rithm procedurally creates new abilities, which players can
swap with an existing ability of a character in their party.
Some of the characters’ starting abilities are crafted to con-
form to well-known patterns, which, however, do not con-
tribute to evolution. Hence, users are encouraged to explore
unfamiliar combinations of abilities, rather than strive to-
wards known character builds.

1.1 Situating the Algorithm
The game generates character abilities procedurally using an
evolutionary search technique. Hence, it can be categorized
within the field of search-based procedural content genera-
tion, of which Togelius et al. [22] recently published an ex-



tensive taxonomy and survey. According to the distinctions
the taxonomy makes, the game presented here uses a direct
encoding in the genotype-to-phenotype mapping, since the
genome variables (the genotype) map to attributes of the
character abilities (the phenotype). In addition, the algo-
rithm ranks abilities on the basis of their usage by players,
which makes its evaluation function interactive and implicit.
The abilities themselves are optional content, because play-
ers can choose to avoid a certain ability. Finally, the content
generation algorithm is online, since it is performed during
the runtime of the game.

1.2 Search-Based PCG in Games
The game described in this paper allows players to continu-
ously replace the abilities of their characters with procedu-
rally generated ones. While modeling weapons was explic-
itly avoided, this concept is nonetheless similar to games in
which players are allowed to exchange their weapons with
procedurally generated ones. The most prominent example
of this kind is Galactic Arms Race, a multiplayer game by
Hastings et al. [8]. In this game players can choose to ex-
change any of the limited number of weapons of their space-
ship with procedurally generated ones found in the game
world. The fitness of a particular weapon is a function of
its usage by all players logged into the game server. The
game uses cgNEAT, a search-based algorithm, to evolve the
connection topology of a neural network for each weapon’s
particle system [7].

Borderlands (Gearbox Software 2009) is a commercial first-
person shooter (FPS) in which weapons are also procedu-
rally generated. While both Galactic Arms Race and the
experiment presented here use an evolutionary algorithm
to produce the weapons and abilities, respectively, in Bor-

derlands weapons are randomly created, and then balanced
with respect to the player’s level.

Search-based PCG for games is a new and promising field.
Successful applications include generating tracks and lev-
els [12, 15, 16, 19], maps [20], buildings [14], camera con-
trol [5], unit types [13], and rule systems and mechanics for
games [4, 10, 17, 21].

1.3 Design Patterns
This experiment aims to disrupt and add to existing RPG

character build patterns, which have arisen naturally and
informally among the player community, partly through the
proliferation of designer-imposed class systems. One poten-
tial future development is the identification and formaliza-
tion of new patterns in this domain. This is similar to ef-
forts to identify and enumerate game design patterns [3],
quest and level design patterns in RPGs [18], and FPS level
design patterns [11].

2. EXPERIMENTAL SETUP
The game allows human players to choose abilities for their
party of four characters. Their party is then matched against
another human-controlled party of four characters in stan-
dard RPG combat. For reasons of simplicity the game does
not represent two-dimensional space; every character is reach-
able from every other character for both combat and skill ap-
plication purposes. The game combat thus resembles that of

room-based Multi-User Dungeons (MUDs) or classic Japanese
RPGs.

The game implicitly keeps a fitness score of each ability,
which is based solely on how often an ability is used. The
fitness evaluation function does not attempt to measure how
effective an ability is, because it is assumed that players will
naturally use the most effective ability in a given situation.
Every character has four abilities. A character can only use
one ability every ten ticks. Hence, players need to choose
the best ability a character can apply at a certain moment,
because that same character will only be able to apply one
of his or her four abilities again after some time has passed.

After a battle is over, the game procedurally generates new
abilities. The players are allowed to choose any of those
and substitute them for any abilities that characters in their
party already have. Once players are satisfied with their
characters, another round of combat commences.

2.1 Content Representation
Character abilities are a central concept to the experiment.
A character in the game has a set of parameters, all of which
are important for some aspect of combat. The parameters
are modeled around standard RPG tropes, and will be dis-
cussed in detail later. An ability is a means to influence a
character’s parameter in either a positive or a negative di-
rection over a period of game time; such influences are called
effects.

An effect has four attributes: a parameter to influence, a
value to influence it by (positive or negative), a duration in
terms of game time, and an allowed target: either a friend
or an enemy to the player. When an effect is applied to
an allowed target character, the value of the effect is added
to the target character’s parameter as specified by the ef-
fect. After the effect’s duration has expired, the applied
effect disappears from the target character, meaning that
the effect’s value is subtracted from the respective parame-
ter. This model enables the expression of many RPG tropes.
A health potion, for example, can be modeled by an effect
that can be applied to the health regeneration parameter of
a target character, with a relatively large value and a dura-
tion of 1. During the next game tick the health points of the
respective character will be increased by the health regen-
eration value, and the health regeneration parameter itself
will be reset to its old value, because the effect will expire.

An effect is strictly defined as either a benefit or a cost to
the character that applies it. All character parameters in the
game are beneficial to the respective character when their
values increase, and detrimental when their values decrease.
Respectively, an effect is a benefit if its value is positive and
its target is friendly, and a cost if its value is negative and its
target its friendly; the cost/benefit determination is inverted
for enemy targets.

Every ability has exactly two effects, which are applied to-
gether when the ability is used: one benefit, and one cost.
The two effects together have a total of eight attributes.
These eight attributes form the genome that the genetic al-
gorithm uses to evolve new abilities.



In addition, all effects have an integer-valued worth in the
game. When an ability is created, it compares the worths
of its benefit and cost and adjusts their value attributes, if
necessary, to prevent the players from climbing the hill of
infinite benefit at zero (or negative) cost. The balancing
function impacts the value attributes (hence, the genome)
directly, and is the last step the evolutionary algorithm takes
before it offers the evolved abilities to the players. That im-
pact is significant for evolutionary purposes if the balanced
ability is selected for evolution later.

2.2 Game Mechanics
A character in the game has health points, magic points, and
eight parameters that can be influenced by abilities. Those
are:

• Maximum health points. This parameter sets the up-
per boundary of a character’s health points.

• Maximum magic points. As above, for magic.
• Health regeneration. The value of this parameter is

added to a character’s health points each tick.
• Magic regeneration. As above, for magic.
• Damage. The damage that a character deals when it

attacks.
• Armor. The protection a character has from damage

when attacked.
• Dodge. The chance of evasion a character has when

attacked.
• Speed. How soon the character can attack again.

Each parameter has a minimum and a maximum value.
Abilities cannot push parameter values outside of their al-
lowed ranges. All characters start with the same initial val-
ues of all parameters. Hence, any differences among charac-
ters will be a result purely of effects applied to those char-
acters.

Whenever a character’s health points drop to zero, the char-
acter is incapacitated and cannot enter the current battle
any more. Whenever a character’s magic points drop to
zero, all effects that are a result of the character’s abilities
are erased.

A character can only attack once every n game ticks, where
n is determined by the character’s speed. A character can
attack any character of the opposing team. The target of
the attack has a chance to dodge that depends on its Dodge
parameter, and if unsuccessful, its health points decrease by
an amount determined by the attacking character’s Damage
and the defending character’s Armor.

A character can only use an ability once every ten game
ticks. This number cannot be influenced in any way during
the course of a battle. When an ability is used, the player has
to choose a target for the beneficial effect of the ability and a
target for the detrimental effect of the ability. Those targets
can be any characters in the battle, as long as they conform
to the respective effect restrictions (friend or enemy).

The representation and mechanics described above are ca-
pable of modeling a large array of standard RPG tropes,
and were specifically chosen to be able to express most of

the character build templates inspired by RPG classes. The
starter parties of four characters have one ability per char-
acter that is crafted after these templates. For example, one
character has a “damage dealer” ability. This is a pattern
that arose from the fighter class, and the respective ability
has applied beneficial effects to increase its damage parame-
ter at a magic point cost. The other three characters have a
“nuker” (mage), a “healer” (cleric), and a “fragile speedster”
(rogue) ability, respectively.

2.3 Evolving Character Abilities
To ensure diversity, the game keeps a population of abilities
above a certain fitness value. While only two players can
currently participate in a game, an archive of evolved abili-
ties is kept between game instances. Characters start with
a mixture of random abilities and pre-crafted abilities, as
described previously. The latter do not contribute to evolu-
tion.

Once a battle ends, the game ranks all eligible characters’
abilities according to their accumulated fitness, and uses a
roulette-wheel selection scheme to select a population of par-
ents. Since the variables in a chromosome are of different
types (some are enumerated, some are integer-valued), the
algorithm then performs discrete recombination, followed by
a low-probability mutation, to produce the offspring. There
is also a small chance that a random member of the archive
will be added to the offspring.

The abilities evolved in this way are then presented to the
players. The players can attach any ability from the off-
spring to any of their characters, discarding a previous abil-
ity (which, however, may already have been placed in the
archive based on its fitness). Any abilities that were not
chosen are discarded.

3. RESULTS AND DISCUSSION
The first tests of the game resulted in the need to tweak
the balancing function due to the strategy to gather abili-
ties that attack directly the enemy health point regeneration
value at any non-health-related cost, following the “nuker”
character build. While this strategy was not completely
dominant, it still dominated a large number of other strate-
gies. After the balancing function was reevaluated and ad-
justed, four different users played a total of six games, with
an average of approximately fourteen battles per game. Sev-
eral interesting patterns emerged.

One of those concerns the durations of effects. A character
can only use one ability every ten ticks, but there is no re-
striction on the duration of an effect, as long as the duration
is positive. It is quite possible, with the correct combina-
tion of abilities, to have applied effects that amplify with
time. Hence, one emergent strategy was to somehow survive
the first few ticks of battle, continuously applying low-value
long-term benefits (either positive effects on friends or neg-
ative ones on enemies), and win the end game. This often
required the sacrifice of two or more characters from a party.

Another interesting pattern, closely related to the previous
one, exploits a game mechanic: when a character’s health
reaches zero the character does not die (and is not removed
from the game), and is instead incapacitated. This mechanic



exists to explain the fact that all characters are available in
consequent battles. An incapacitated character, while inca-
pable of affecting the game in any way after incapacitation,
will not have any previously applied effects erased from the
game, either. Hence, another interesting pattern was charac-
ters applying long-term effects and then becoming incapac-
itated, in effect sacrificing themselves. An extreme version
of this pattern is an ability that applies a long-term effect
as its benefit, and reduces the health of the character that
uses it to zero as its cost.

A third pattern emerged that directly counters the previous
one. Magic points were initially included in the game to
be used as costs to counter beneficial effects, according to
RPG tropes, and every character’s magic point regeneration
parameter is initially set to a positive value. However, the
game mechanic that erases all previously applied effects by
a character whose magic points drop to zero, in combination
with the previous two patterns, converted magic points to
a valuable commodity. Abilities that attacked or defended
magic point regeneration became highly sought after.

Some of the standard patterns, such as healing, also arose
during these preliminary tests. Since the initial healing abil-
ity did not participate in fitness calculations, some charac-
ter parties kept it throughout the tests, while others de-
veloped separate healing abilities, with larger benefits (and
costs), and applying the costs to parameters other than
magic points.

The emergence of the new patterns described in this section
is very encouraging at this early stage. With the further de-
velopment of the game and the participation of more players,
providing fresh perspectives, more patterns that disrupt the
traditional character builds are likely to arise. While it can
be argued that these patterns arose as a result of the me-
chanics of this specific game, they can nevertheless inform
the design of future games.

4. CONCLUSIONS AND FUTURE WORK
This work described an initial experiment to explore the
search space of skill-based RPG systems through procedu-
ral content generation. To that end, a small game was de-
veloped that allowed players to participate in RPG combat.
Preliminary results are promising, and several interesting
patterns were identified.

An obvious avenue for improvements to the game is making
it more visually attractive in order to increase the number
of testers. As an example, the interface can be improved
by the addition of graphics, since it is currently text-based
after the MUD genre: users type commands in a terminal
window to control their characters.

A more interesting improvement is to develop a continuously
running server for the game and allow an unlimited number
of players to participate. Currently, the largest possible par-
ent population size is thirty-two (two character parties, four
characters with four abilities in each one). More simultane-
ous players, with a server aware of them, will increase the
parent population and produce interesting abilities reflecting
combinations of player styles.

Finally, the game mechanics could be expanded to cover a
much larger subset of RPG tropes such as sneaking, traps,
ranged attacks, etc. This will also entail converting the com-
bat from room-based to spatial, which will in turn allow the
emergence of new ability patterns to reflect tactics on a two-
dimensional map.

5. REFERENCES
[1] Examples of archetypal class roles. http://tvtropes.

org/pmwiki/pmwiki.php/Main/AnAdventurerIsYou.

[2] C. Alexander, S. Ishikawa, and M. Silverstein. A
pattern language. Oxford University Press, 1977.

[3] S. Björk and J. Holopainen. Patterns in game design.
Cengage Learning, 2005.

[4] C. Browne. Automatic generation and evaluation of

recombination games. PhD thesis, Queensland
University of Technology, 2008.

[5] P. Burelli and G. Yannakakis. Combining local and
global optimisation for virtual camera control. In
IEEE Symp. Computational Intelligence and Games,
2010.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns. Addison-Wesley, 1995.

[7] E. Hastings, R. Guha, and K. Stanley. Neat particles:
Design, representation, and animation of particle
system effects. In IEEE Symp. Computational

Intelligence and Games, 2007.

[8] E. Hastings, R. Guha, and K. Stanley. Automatic
content generation in the galactic arms race video
game. IEEE Transactions on Computational

Intelligence and AI in Games, 1(4):245–263, 2009.

[9] E. Heimburg. Classes vs. open skill systems.
http://www.eldergame.com/2011/01/

classes-vs-open-skill-systems/.

[10] V. Hom and J. Marks. Automatic design of balanced
board games. In AAAI Conf. Artificial Intelligence

and Interactive Digital Entertainment, 2007.

[11] K. Hullett and J. Whitehead. Design patterns in fps
levels. In ACM Int. Conf. Foundations of Digital

Games, 2010.

[12] D. Loiacono, L. Cardamone, and P. Lanzi. Automatic
track generation for high-end racing games using
evolutionary computation. IEEE Transactions on

Computational Intelligence and AI in Games,
3(3):245–259, 2011.

[13] T. Mahlmann, J. Togelius, and G. Yannakakis.
Towards procedural strategy game generation:
Evolving complementary unit types. Applications of

Evolutionary Computation, pages 93–102, 2011.

[14] A. Martin, A. Lim, S. Colton, and C. Browne.
Evolving 3d buildings for the prototype video game
subversion. Applications of Evolutionary Computation,
pages 111–120, 2010.

[15] C. Pedersen, J. Togelius, and G. Yannakakis.
Modeling player experience for content creation. IEEE
Transactions on Computational Intelligence and AI in

Games, 2(1):54–67, 2010.

[16] N. Shaker, J. Togelius, G. Yannakakis, et al. The 2010
mario ai championship: Level generation track. IEEE
Transactions on Computational Intelligence and AI in

Games, 3(4):332–347, 2011.



[17] A. Smith and M. Mateas. Variations forever: Flexibly
generating rulesets from a sculptable design space of
mini-games. In IEEE Symp. Computational

Intelligence and Games, 2010.

[18] G. Smith, R. Anderson, B. Kopleck, Z. Lindblad,
L. Scott, A. Wardell, J. Whitehead, and M. Mateas.
Situating quests: Design patterns for quest and level
design in role-playing games. In Int. Conf. Interactive

Digital Storytelling, 2011.

[19] N. Sorenson, P. Pasquier, and S. DiPaola. A generic
approach to challenge modeling for the procedural
creation of video game levels. IEEE Transactions on

Computational Intelligence and AI in Games,
3(3):229–244, 2011.

[20] J. Togelius, M. Preuss, N. Beume, S. Wessing,
J. Hagelback, and G. Yannakakis. Multiobjective
exploration of the starcraft map space. In IEEE Symp.

Computational Intelligence and Games, 2010.

[21] J. Togelius and J. Schmidhuber. An experiment in
automatic game design. In IEEE Symp.

Computational Intelligence and Games, 2008.

[22] J. Togelius, G. Yannakakis, K. Stanley, and
C. Browne. Search-based procedural content
generation: A taxonomy and survey. IEEE
Transactions on Computational Intelligence and AI in

Games, 3(3):172–186, 2011.


