
Maintenance in Procedural Level Design: Lessons from Ludoscope
Daria Protsenko

University of Amsterdam
Amsterdam, Netherlands

daria.protsenko@student.auc.nl

Joris Dormans
Ludomotion

Amsterdam, Netherlands
joris@ludomotion.com

Riemer van Rozen
Centrum Wiskunde & Informatica

Amsterdam, Netherlands
rozen@cwi.nl

Abstract
Procedural level generation empowers level designers with tools
for generating many levels from a single specification, while engi-
neers maintain the level generator. Despite advances in procedural
techniques, little is known about their impact on long-term system
maintenance. We explore how Domain-Specific Languages (DSLs)
can help improve procedural level design processes, and support
maintenance by integrating level design sketches into generator-
agnostic tools. This short paper examines the evolution of Ludo-
scope, a state-of-the-art level generator used in the games Unex-
plored 1 and 2. In over a decade, it has grown in complexity, with
Unexplored 2’s generator now containing over 20K rewrite rules.

We investigate how Ludomotion addressed maintenance chal-
lenges, and how this impacts procedural level design. Our approach
combines: 1) a bottom-up analysis of Ludoscope; and 2) a top-down
exploration of a generic DSL for “level blueprints”. This paper con-
tributes the first step and discusses ongoing work on a reusable
framework for procedural level design. Our work takes a promising
first step towards industrial-strength maintenance solutions.

CCS Concepts
• Software and its engineering → Visual languages; Software
maintenance tools; • Applied computing→ Computer games.

Keywords
Procedural Level Design, Sketches, Feature Modeling, Roguelikes
ACM Reference Format:
Daria Protsenko, Joris Dormans, and Riemer van Rozen. 2025. Mainte-
nance in Procedural Level Design: Lessons from Ludoscope. In Interna-
tional Conference on the Foundations of Digital Games (FDG ’25), April
15–18, 2025, Graz, Austria. ACM, New York, NY, USA, 4 pages. https:
//doi.org/10.1145/3723498.3723784

1 Introduction
Procedural level generation provides tools and techniques for gener-
ating a wide variety of game levels from a single specification, lead-
ing to engaging stories, wondrous encounters, challenging quests
and epic journeys [11, 17]. These tools enable level designers to
specify levels independently, while software engineers focus on
maintaining the generator, effectively separating concerns. Over the
years, various algorithms and tools have been proposed for creating

This work is licensed under a Creative Commons Attribution International
4.0 License.

FDG ’25, Graz, Austria
© 2025 Copyright held by the owner/author(s).
ACM ISBN /25/04
https://doi.org/10.1145/3723498.3723784

secret

path

n

nw

nc

(a) Mine Level - Variant A

R

secret

path

n

nw
n

ne

(b) Mine Level - Variant B

Figure 1: Procedural Level Design Sketches

these generators, e.g., leveraging grammars (rewrite rules) [9, 22],
Answer-Set Programming [15], and evolutionary algorithms [1].
These approaches have improved in usability, speed and quality [21],
integrating visual notations, design patterns [2], and level sketches
to improve procedural level design workflows [13]. However, due
to a lack of empirical studies, little is known about the impact on
long-term maintenance of level designs and generators in practice.

To shed light on this issue, we study the evolution of Ludoscope,
a grammar-based level generation engine by Ludomotion based on
the Missions and Spaces framework [6, 9]. Over the past decade,
it has been successfully applied in creating generators for Unex-
plored 1 and 2, two roguelike games that center around procedurally
generated dungeons, quests and adventures. During this time the
code has grown significantly in size and complexity. Unexplored 2’s
generator, for instance, consists of over 20K rewrite rules.

We aim to understand how Ludomotion has addressed the as-
sociated maintenance challenges, how this affects the level design
process, and what improvements are needed for better long-term
maintenance solutions. We investigate how Domain-Specific Lan-
guages (DSLs) can help support procedural level generation and
improve both level design and generator maintenance [14]. Specif-
ically, we study how level design sketches can be integrated into
generator-agnostic tools that abstract from underlying generator
implementations [20]. Our approach consists of two steps.

First, we take a bottom-up approach by reverse engineering
Ludoscope and Unexplored 2, extracting domain knowledge from
source code to identify generator-specific features [18]. Second, we
follow a top-down approach to explore how a generator-agnostic
DSL for “level blueprints” can bridge the gap between level de-
sign sketches and generator implementation, proposing generative
solutions that target the extracted generator features. This paper
contributes the first step: an analysis on the maintenance of Ludo-
scope and Unexplored 2.

2 Related work
We describe related work on tools that integrate visual notations,
patterns, and design sketches, and relate maintenance techniques.

https://orcid.org/0009-0005-0839-220X
https://orcid.org/0000-0001-7033-1292
https://orcid.org/0000-0002-3834-682X
https://doi.org/10.1145/3723498.3723784
https://doi.org/10.1145/3723498.3723784
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3723498.3723784

FDG ’25, April 15–18, 2025, Graz, Austria Daria Protsenko, Joris Dormans, and Riemer van Rozen

Level Design
Sketches

Level Templates

Phantom Grammar
(Rewrite Rules)

Phantom Engine
(Generator)

Game Levels
translate

implement

require

run

generate

Figure 2: Ludoscope’s Multi-tier Level Generation Strategy

2.1 Level Design Sketches
Level designers create high-level visual design schematics to reason
about essential gameplay qualities of before the levels are generated.
These designs can take the form of sketches that represent abstract
game levels [5]. Figure 1 shows an example of a hand-crafted sketch
of a Mine level for Unexplored 2, created by Ludomotion. This
sketch shows two variants with distinct progressions, puzzles and
secret passages. We will discuss this sketch in detail later on.

Gameplay qualities can manifest inside generated game levels
in a myriad of ways. Therefore, designers need languages, tools
and techniques for authoring procedural designs. Mixed-initiative
and co-creative design tools address two key needs [11]. First, they
automate the process of visually encoding design intent into level
generators. Second, they augment manual play testing, alternating
between manual and algorithmic steps. We give three examples.

Sentient Sketchbook is a tool for sketching and generating level
designs as tile maps using metrics and genetic algorithms [13]. The
tool integrates automated playtests that ensure paths are navigable
meshes, and provides visual telemetry in the form of heatmaps that
predict choke points and safe areas.

The Evolutionary Dungeon Designer (EDDy) is a tool that in-
tegrates patterns for visually expressing dungeon elements, such
as rooms, quests and narrative structures [1, 2]. The tool provides
design patterns that can introduce structure, and guide the evolu-
tionary dungeon generation [2].

Ludoscope, the engine and tool we study in this paper, visually
expresses level generators using rewrite rules [6, 9]. These gen-
erators step-by-step transform levels, adding details to tile maps,
graphs, strings and Voronoi diagrams.

Aside from patterns and metrics, designers still lack reusable
visual notations for expressing procedural level designs [20]. In
this paper, we study how to integrate level design sketches into the
procedural level design process. Specifically, we investigate how
sketches play a crucial role for Ludoscope and Unexplored 2.

2.2 Maintaining Level Generators
Software engineers design and maintain reusable tools, engines
and level generators that support the level design process and im-
plement level designs. However, due to the large conceptual gap
between level designs and implementations, creating high-quality
generators is challenging. The term “procedural oatmeal” refers to
the problem of generated levels being repetitive, lacking variety,
and offering little replay value [4]. Additionally, the lack of reli-
able solutions for testing, debugging, and maintenance hinders the
large-scale adoption of more advanced PCG techniques in industry.

In Software Engineering, meta-programming refers to the cre-
ation of programs that analyze and manipulate other programs.
Language workbenches are tools that facilitate the creation of such
programs, e.g., compilers, interpreters, and generators [7]. Applying

Create Level
Design Sketch

Design Level
Gen. Strategy

Implement
Rewrite Rules

Translate into
Level Template

Generate Levels
with Ludoscope

Does the
generator work
as expected?

Are the levels
generated

as intended?

Modify Level
Template

Modify
Rewrite Rules

Identify Level
Design Issues

Identify
Generator Bugs

Legend:

Soware
Engineering

Level Design

yes

no

no

yes

Figure 3: Procedural Level Design Process

these tools to content generation offers two major benefits. First,
creating tools for source code analysis enables empirical studies
on real-world generators, e.g., using software metrics. Second, de-
veloping Domain-Specific Languages (DSLs) helps bridge the gap
between level design sketches and generator-agnostic solutions
that are reusable across different generator back-ends. In this paper,
we leverage Rascal in a reverse engineering approach [10].

DSLs for level generation are becoming increasingly common,
e.g., PuzzleScript [12], Rewrite Rules [9], Behavior Trees, combi-
nations thereof [22], to name a few. Metrics usually work on the
generated levels, e.g., for expressive range analysis [16, 21], and
not on the source code of the generators [19]. Empirical studies of
source code repositories are still rare, with one example being the
analysis of PuzzleScript [8]. Next, in our analysis of Ludoscope we
describe how Ludomotion addresses maintenance challenges.

3 The Evolution of Ludoscope
Ludoscope is an authoring tool for creating level generators that
evolves from the Missions and Spaces framework [6]. Over the
years, Ludomotion has addressed development and maintenance
challenges with a multi-tier level generation strategy called The-
ory of the Place [5], which is schematically shown in Figure 2. To
improve the workflow, they have separated level design (white)
and software engineering (gray) concerns. As a result, the team can
now separately maintain level-specific designs, game-specific gen-
erator implementations (Phantom Grammar), and a fully reusable
generator (Phantom Engine) for both Ludoscope and Unexplored 2.

Figure 3 shows the procedural level design process in the form
of a UML activity diagram. Starting at the top (filled circle), the
workflow splits activities (rounded rectangles) between level design
(white) and software engineering (gray). Arrows and horizontal
bars respectively indicate sequential and parallel activities, and six-
sized polygons represent choice points. The process ends (circled
dot) when all choice points succeed. Next, we explain this process.

3.1 Designing Level Sketches
The level design process begins with creating sketches. Figure 1
shows two sketches of a simple Mine Level for Unexplored 2. The
notation describes level designs in terms of places (circles), locked

Maintenance in Procedural Level Design: Lessons from Ludoscope FDG ’25, April 15–18, 2025, Graz, Austria

1 encounter(name="mine", type="Destination")
2 setVariant(notVariant="ab", choose="a or b")
3 mainEncounter(chance=0.5f, encounter="RANDOM")
4 questEncounter(chance=0.1f, encounter="RANDOM")
5 addLocation(id="mainSite", direction="north"...)
6 addLocation(structure="[small,medium]|placeIsNorth"...)
7 addLocation(features="[roomIsPlace|clearing|spawnLair"...)
8 if(variantOr="a")
9 addLocation(id="secretSite", direction="northEast"...)
10 ...
11 else()
12 addLocation(id="secretSite", direction="northEast"...)
13 ...
14 endIf()
15 addConnection(variantOr="ab", start="secretSite", end="mainSite", ...

Figure 4: Simplified Level Template of the Mine Level

doors (closed bars), keys (key symbol), and objectives (stars), and
paths that connect them (arrows and open rectangles). In variant
A, the player enters a mine path and walks into the main room, but
the entrance is barred. The player must find a secret room, obtain a
key, and reach the level’s end, marked by a star. Variant B is similar
to Variant A, but with extra elements. From the main hall, a rope
leads to a secret room, and players can take refuge in another room
accessible from the hall. The sketches are annotated with names,
relative positions and directionality, e.g., n and nw refer to north and
north-west, and secret indicates a place needs to be discovered.

3.2 Implementing Level Generators
Developers implement the generators using Ludoscope, which ex-
presses level transformation pipelines [9, 19]. Its notation, Phantom
Grammar, groups rewrite rules into modules and provides recipes
to apply them. An example tile map rewrite rule that adds a door
(green) in an east wall (gray) is: → . A recipe would
for instance apply this rule twice. Ludocope visualizes this process,
including intermediate results. For conciseness we have to omit a
detailed description here, and instead refer to Karavolos et al. [9].
Unexplored 2’s generator is complex with over 20K rewrite rules.

3.3 Creating Level Templates
There is a significant conceptual gap between level design sketches
and the grammar rules that implement the level generator. To
bridge this gap, Ludomotion has introduced an intermediate nota-
tion called Level Templates. Level Templates raise the abstraction
level, providing a declarative notation that abstracts from specific
grammars and pipelines. Instead, these programs use abstract fea-
tures to describe level properties. Figure 4 shows the template of
the Mine Level from Figure 1. Ludomotion currently maintains
Unexplored 2’s level designs in the form of 84 level templates, with
a combined volume of 2601 source lines of code (SLOC).

3.4 Technical Challenges
Despite their innovative solutions, Ludomotion still faces several
important technical challenges. We aim to tackle these challenges
with DSLs and tools that bridge the gap between level sketches,
level templates, and generator implementations.

For software engineers, maintaining generators that fail to work
as expected is difficult due to missing feature descriptions. Loading
templates via Unexplored 2’s experimental modding interface can

Feature Ct.

setLocation 876
addLocation 308
travelFortune 284
complication 267
encounter 252
...
setVariant 29

(a) Top-level features

Feature Ct.

features 68
direction 36
id 36
themes 33
structure 32

(b) addLocation

Feature Ct.

choose 29
region 4
notVariant 4
specialRegion 3

(c) setVariant

Figure 5: Frequently occurring features and sub-features

Level

Name Type Place Encounter Connection Variant

Chance TypeName Feature Structure Start End Direction

Figure 6: Partial FeatureModel of the Unexplored 2 generator

lead to run-time errors or incomplete levels. Debugging is manual,
requiring step-by-step code inspection. Maintainers need a DSL to:

R1 Specify generator features explicitly.
R2 Verify that the generator implements its features.
For level designers, translating level sketches into templates is

labor-intensive and error-prone due to the lack of IDE support and
syntax highlighting. Level templates are hard to read. Designers
need a visual DSL, similar to level sketches, that enables them to:

R3 Create level designs using places, objectives, keys, and paths.
R4 Check if designs conform to generator implementations.
R5 Generate level templates from level designs.
R6 Debug designs by tracing issues back to their source code

through origin tracking [20].
However, a requirement for DSL design is a detailed analysis of

the application domain and a mapping of the features [18], which
is currently missing. Therefore, we perform the necessary analysis.

4 Reverse Engineering
The Level Templates of Unexplored 2 contain a wealth of informa-
tion. To understand, maintain, and evolve the system, we recover its
conceptual Domain Model by identifying key entities, relationships,
and constraints that define the problem space of level design. We
apply a reverse engineering approach that extracts features from
the Level Templates of Unexplored 2’s level generator.

4.1 Setup and Results
Using Rascal, we construct an EBNF grammar, a formal description
of the syntax of Level Templates. From this grammar, we obtain a
parser that produces syntax trees for all 84 templates, and an IDE
with syntax highlighting. We identify frequently occurring features
in these trees by creating a meta-program that counts keyword
occurrences. Figure 5 shows a summary of the most common ones.

4.2 Domain Analysis
Guided by this knowledge, we reverse engineer what the features
mean, describing them one by one. We apply Feature Modeling, a
proven technique for expressing variability of software products [3].

FDG ’25, April 15–18, 2025, Graz, Austria Daria Protsenko, Joris Dormans, and Riemer van Rozen

1 enum Loc {North, South, East, West}
2 enum Size {Small, Large}
3 root struct Level {
4 String name;
5 set[Place] place; ... }
6 struct Place {
7 String name;
8 Size size;
9 opt Loc location; ... }
10 ...

(a) Generator Features

1 Level {
2 name = "mine";
3 place {
4 name = "mainSite";
5 type = Site;
6 if (variant == a){ location = North; }
7 else{ location = South; }
8 ...
9 } ...
10 }

(b) Partial Mine Level Design

Figure 7: Mental Maps descriptions of features and levels

Figure 6 shows a partial Feature Model, a structured analysis of
the capabilities of the level generator. We compare statements to
establish hierarchies of mandatory (closed circle) and optional (open
circle) sub-features. At its core, a level consists of one or more
locations. Levels may have multiple variants, each featuring at least
one location and main encounter, but differing in complications,
travel fortunes, and other elements. Locations vary by theme and
terrain. Some features are ranges, e.g., Location (North, South, East,
West). For conciseness, we have to stop the analysis here.

5 Discussion
We describe lessons learned and discuss ongoing work on a DSL
for level design that tackles the challenges of Section 3.4.

5.1 Lessons Learned
Our study on the evolution of level generators is the first of its kind,
yet the lessons from Ludoscope are familiar. Over time, source code
inevitably grows, making maintenance increasingly challenging. To
manage this complexity, developers need better tools. Raising the
level of abstraction and separating concerns improves the maintain-
ability, but debugging remains a persistent challenge. In particular,
tracking the origin of design elements through the implementation
is essential for understanding and improving generator behavior.

Meta-programming is a powerful enabler for addressing these
challenges. For instance, creating a grammar for Level Templates
was straightforward, requiring only a few hours, a minimal invest-
ment compared to the efforts of long-term maintenance. We also
discovered what is already well-known, namely, that the design of
Domain-Specific Languages requires feature descriptions [18].

5.2 Towards Mental Maps
Based on our analysis Section 4, we create a preliminary language
design for Mental Maps, a generator-agnostic DSL for procedural
level design. Using the DSL, engineers and designers specify gen-
erator features independently from level designs, though not yet
visually, addressing challenges R1 and R3. Figures 7a and 7b re-
spectively show a partial definition of Unexplored 2’s generator
features, and a conformant level design of the example Mine Level.

By tracing feature definitions and uses, the IDE can instantly
check if mandatory features are present and type-correct (R3). In
addition, we have developed a template approach to generate Level
Templates (R5) fromMental Maps, which requires mapping features
to code snippets at a relatively low effort. The validation of the
approach is ongoing. Initial results show it generates valid Level
Templates for simple level designs. However, currently there is

no solution yet for verifying the generator implements all of its
features (R2). We have found that not all feature configurations
result in playable levels when loading templates via the modding
interface. Explicitly defining feature dependencies may be a crucial
next step for making the system more robust. From these positive
initial results on a real-world generator, we conclude it is feasible
to further integrate sketches into procedural level design processes.

6 Conclusions
We have explored how Domain-Specific Languages (DSLs) can help
improve procedural level design processes. We have investigated
how Ludomotion addressed maintenance challenges, and how this
impacts the level design process. We have performed a bottom-
up analysis of Ludoscope, and discussed a top-down generator-
agnostic DSL for “level blueprints”. Based on preliminary results,
we conclude that this approach is feasible. Our work takes a first
step towards reusable industrial-strength maintenance solutions.

References
[1] Alberto Alvarez et al. 2018. Fostering Creativity in the Mixed-initiative Evolu-

tionary Dungeon Designer. In Foundations of Digital Games, FDG 2018. ACM.
[2] Alexander Baldwin, Steve Dahlskog, José M. Font, and Johan Holmberg. 2017.

Mixed-Initiative Pocedural Generation of Dungeons using Game Design Patterns.
In IEEE Conference on Computational Intelligence and Games, CIG 2017. IEEE.

[3] David Benavides et al. 2010. Automated Analysis of Feature Models 20 Years
Later: A Literature Review. Information Systems 35, 6 (2010).

[4] Kate Compton. 2019. Getting Started with Generators. In Procedural Storytelling
in Game Design. AK Peters/CRC Press.

[5] Joris Dormans. 2021. The Theory of The Place: A Level Design Philosophy for
Unexplored 2. Gamasutra (Oct. 2021).

[6] Joris Dormans and Sander Bakkes. 2011. Generating Missions and Spaces for
Adaptable Play Experiences. IEEE Trans. Comput. Intell. AI Games 3, 3 (2011).

[7] Sebastian Erdweg et al. 2013. The State of the Art in Language Workbenches. In
Software Language Engineering, SLE 2013 (LNCS, Vol. 8225). Springer.

[8] Clement Julia and Riemer van Rozen. 2023. ScriptButler Serves an Empirical
Study of PuzzleScript. In Foundations of Digital Games, FDG 2023. ACM.

[9] Daniel Karavolos, Anders Bouwer, and Rafael Bidarra. 2015. Mixed-Initiative
Design of Game Levels: Integrating Mission and Space into Level Generation. In
Foundations of Digital Games, FDG 2015. SASDG.

[10] Paul Klint, Tijs van der Storm, and Jurgen J. Vinju. 2009. RASCAL: A Domain
Specific Language for Source Code Analysis and Manipulation. In Source Code
Analysis and Manipulation, SCAM 2009. IEEE.

[11] Gorm Lai, Frederic Fol Leymarie, and William Latham. 2022. On Mixed-Initiative
Content Creation for Video Games. IEEE Transactions on Games 14, 4 (2022).

[12] Stephen Lavelle. 2013. PuzzleScript. https://github.com/increpare/PuzzleScript
Last visited January 30th 2025.

[13] Antonios Liapis, Georgios N. Yannakakis, and Julian Togelius. 2013. Sentient
Sketchbook: Computer-aided game level authoring. In Foundations of Digital
Games, FDG 2013. SASDG.

[14] Marjan Mernik, Jan Heering, and Anthony M. Sloane. 2005. When and How to
Develop Domain-Specific Languages. Comput. Surveys 37, 4 (2005).

[15] Adam M. Smith and Michael Mateas. 2011. Answer Set Programming for Proce-
dural Content Generation: A Design Space Approach. IEEE Trans. Comput. Intell.
AI Games 3, 3 (2011).

[16] Gillian Smith and Jim Whitehead. 2010. Analyzing the Expressive Range of a
Level Generator. In Procedural Content Generation in Games, PCG 2010. ACM.

[17] Roland van der Linden, Ricardo Lopes, and Rafael Bidarra. 2014. Procedural
Generation of Dungeons. IEEE Trans. Comput. Intell. AI Games 6, 1 (2014).

[18] Arie van Deursen and Paul Klint. 2002. Domain-Specific Language Design
Requires Feature Descriptions. Compututing and Information Tech. 10, 1 (2002).

[19] Riemer van Rozen and Quinten Heijn. 2018. Measuring Quality of Grammars for
Procedural Level Generation. In Foundations of Digital Games, FDG 2018. ACM.

[20] Riemer van Rozen, Georgia Samaritaki, and Joris Dormans. 2022. Debugging
Procedural Level Designs with Mental Maps. In Foundations of Digital Games,
FDG 2022. ACM.

[21] Oliver Withington, Michael Cook, and Laurissa Tokarchuk. 2024. On the Evalua-
tion of Procedural Level Generation Systems. In Foundations of Digital Games,
FDG 2024. ACM.

[22] Jiayi Zhou, Chris Martens, and Seth Cooper. 2024. Authoring Games with Tile
Rewrite Rule Behavior Trees. In Foundations of Digital Games, FDG 2024. ACM.

https://github.com/increpare/PuzzleScript

	Abstract
	1 Introduction
	2 Related work
	2.1 Level Design Sketches
	2.2 Maintaining Level Generators

	3 The Evolution of Ludoscope
	3.1 Designing Level Sketches
	3.2 Implementing Level Generators
	3.3 Creating Level Templates
	3.4 Technical Challenges

	4 Reverse Engineering
	4.1 Setup and Results
	4.2 Domain Analysis

	5 Discussion
	5.1 Lessons Learned
	5.2 Towards Mental Maps

	6 Conclusions
	References

