
Automatically Categorizing Procedurally Generated
Content for Collecting Games

Sebastian Risi
Center for Computer Games Research

IT University of Copenhagen
sebr@itu.dk

Joel Lehman
Department of Computer Sciences
The University of Texas at Austin

joel@cs.utexas.edu

David B. D’Ambrosio
ddambro@gmail.com

Kenneth O. Stanley
Department of EECS

University of Central Florida
kstanley@eecs.ucf.edu

ABSTRACT
A potentially promising application for procedural content
generation (PCG) is collecting games, i.e. games in which
the player strives to collect as many classes of possible arti-
facts as possible from a diverse set. However, the challenge
for PCG in collecting games is that procedurally generated
content on its own does not fall into a predefined set of
classes, leaving no concrete quantifiable measure of progress
for players to follow. The main idea in this paper is to rem-
edy this shortcoming by feeding a sample of such content
into a self-organizing map (SOM) that then in effect gen-
erates as many categories as there are nodes in the SOM.
Once thereby organized, any new content discovered by a
player can be categorized simply by identifying the node
most activate after its presentation. This approach is tested
in this paper in the Petalz video game, where 80 categories
for user-bred flowers are generated by a SOM, allowing play-
ers to track their progress in discovering all the ”species”that
are now explicitly identified. The hope is that this idea will
inspire more researchers in PCG to investigate applications
to collecting games in the future.

1. INTRODUCTION
In recent years, games in which players accumulate a col-

lection of diverse artifacts have proven popular. Examples of
such collecting games include Pocket Frogs1, where players
try to collect a diversity of frog breeds with different names,
and the Pokémon series of games2, where players collect di-
verse species of characters. The appeal of such games is ex-
emplified by the over 276,000 ratings that Pocket Frogs has

1Pocket Frogs is produced by NimbleBit, LLC.
2Both Game Freak and Creatures Inc. have released games
in the Pokémon series.

Figure 1: Petalz Balcony View. Players in Petalz can
breed their own unique flowers and share them with other
players through a marketplace. This picture shows an exam-
ple balcony that a player has decorated with various avail-
able flower pots and player-bred flowers. Petalz is designed
as a casual and social Facebook game that is accessible to a
large demographic.

attracted in the iTunes store, averaging to over four stars
overall. The insight that players enjoy collecting artifacts
suggests a potentially exciting opportunity for procedural
content generation (PCG) [19], which offers the possibility
of automatically generating the diversity of artifacts that
players collect. Not only could these artifacts be virtually
unlimited, but they could also in effect be optimized to ap-
peal to players based on the observation of past player be-
havior in the game, as was demonstrated possible e.g. in
Galactic Arms Race [5].

However, a significant obstacle to realizing this vision is
that procedurally generated content does not fall into in-
herent categories that could facilitate crediting players with
increasingly comprehensive collections. That is, to motivate
players to continue playing such a game, some measure of
progress is necessary to show that their collecting is success-
ful. For example, in Pocket Frogs the aim is to collect all

the different breeds of frogs. Therefore, to capitalize on the
potential for PCG to contribute to collecting games, such
content ideally would be categorized automatically by the
game itself.

This paper presents a first such attempt to categorize
procedurally generated content for the purpose of encour-
aging and rewarding players for collecting it. The proposed
approach is to feed a sample of such content into a self-
organizing map (SOM) [8] that subsequently separates it
into as many nodes as are in the map. Once such a map
is thereby organized, any new content can be classified by
identifying the node in the map that responds most intensely
to its presentation. In this way, each node in the map be-
comes a category in the classification scheme, and players
(who do not need to know that the underlying technology
is a SOM) can track how many such categories they have
collected, providing a sense of progress.

This idea is demonstrated in this paper in the Petalz video
game [10] (Figure 1; available on Facebook and through
http://finchbeak.com/index.php/petalz-game/), where play-
ers breed novel flowers that they exhibit on their own per-
sonal balcony. By feeding a sample of such flowers into
a SOM of predefined size, a set of categories is generated
that helps to classify future flowers even though in prin-
ciple the number of possible flowers is unlimited. In this
way, the SOM turns an open-ended space of content into a
concrete set of categories for collection, transforming Petalz
into a bona fide collecting game. Other PCG-driven collect-
ing games in the future could also potentially benefit from
this SOM-based approach.

2. BACKGROUND
This section discusses games based on collecting, as well

as work on PCG in games, and the PCG algorithm in the
Petalz game.

2.1 Collecting Games
Video games nearly always feature some form of collection,

from the coins and stars collected in Super Mario Brothers3

to the weapons and achievements collected in modern first
person shooters. However, a popular recent trend is to bring
collection to the forefront and make it the focus of the game.
Pocket Frogs, in which the player’s goal is to collect and
breed as many different types of frogs as possible, is one such
game. Pocket Frogs has been successful in part because it
taps into the natural human desire to find new items and set
attainable goals [9]. Other popular games heavily integrate
the idea of collecting, such as Rage of Bahamut4 and other
virtual collectible card games.

Such games also incentivize social interaction among their
players, which can help them complete their respective col-
lections. For example, games in the Pokémon series restrict
the distribution of creatures such that some creatures are
only found in certain versions of the game. Thus players
must trade with others owning other Pokémon versions if
they want to “catch ’em all,” as the game’s slogan suggests.
This approach has been extended to online social games such
as Outernauts5, which also presents players with a large ar-
ray of monsters to collect, trade, and battle.

3Copyright Nintendo, http://www.nintendo.com
4Copyright Mobage
5Copyright Insomniac Games

However, a major cost in designing games with a central
goal of collection is that the artifacts to be collected are often
individually designed by humans to be visually appealing,
distinguishable, or otherwise separate and unique. There
must also be a large number of such artifacts, or players will
too quickly exhaust the game’s content. This paper presents
an alternative approach, wherein the items to be collected
are created and categorized by the game itself, without di-
rect human design.

2.2 Procedural Content Generation
PCG algorithms allow parts of the game (e.g. maps, tex-

tures, items, quests, etc.) to be generated algorithmically
rather than by direct human design [6, 19]. This approach
can reduce design costs and also benefit players by pre-
senting them with unique experiences each time they play.
For example, the popular Diablo series6 generates dungeons
with PCG algorithms that players explore. Many PCG ap-
proaches rely on a fixed set of parameters or random number
generators, but recently focus has shifted towards applying
artificial intelligence approaches to enhancing PCG.

Of particular note are evolutionary computation and other
search-based approaches [19] that can further save on devel-
opment costs and may be able to produce unique content
beyond what human designers can create. One popular tech-
nique is interactive evolutionary computation (IEC [17]), in
which the user guides evolution. One such example is Neu-
roEvolving Robotic Operatives (NERO [16]), in which play-
ers guide the evolution of a team of fighting robots. In an-
other, Galatic Arms Race (GAR [4, 5]), weapons are evolved
automatically based on user behavior. Other examples in-
clude Avery et al. [1], who evolved several aspects of a tower
defense game, Shaker et al. [13] who evolved levels for the
platform game Super Mario Bros, and Togelius and Schmid-
huber [18], who experimented with evolving the rules of the
game itself.

2.3 The Petalz Video Game
The game discussed in this paper, Petalz [10], creates vir-

tual flowers through a PCG algorithm. The central game
mechanic for players is to maintain and breed a collection
of unique flowers. All players possess a balcony (Figure 1),
which they can decorate with various items and flower pots
that are purchased in the game’s market. This market is also
where flowers bred by other players can be bought and sold.
Players can also interact by visiting each other’s balconies
and watering or liking the flowers there.

New flowers are discovered through an IEC process in
which players breed offspring by selecting a single flower
for mutation (i.e. slight variation), or by mating two flowers
through cross-pollination. Figure 2 shows an example of the
results of such mating.

2.3.1 Generating Flower Images and Shapes
This section provides context by explaining the encod-

ing behind the flowers in Petalz. However, it is important
to note that the idea for classifying procedurally generated
content through a SOM in this paper in principle is inde-
pendent of the specific encoding.

Flowers in Petalz are encoded by a special kind of compo-
sitional pattern producing network (CPPN [14]). CPPNs
are a variation of artificial neural networks (ANNs) that

6Copyright Blizzard Entertainment, http://blizzard.com/

+ ⇒

Figure 2: Flower Cross-pollination. By mating two
flowers, children that exhibit the traits of both parents can
be created. This approach gives players a powerful and in-
tuitive means to explore the space of flowers.

differ in their set of activation functions and how they are
applied [14]. While ANNs often contain only sigmoid or
Gaussian activation functions, CPPNs can include both such
functions and many others. The choice of CPPN functions
can be biased toward specific patterns or regularities. Ad-
ditionally, unlike typical ANNs, CPPNs are usually applied
across a broad space of possible inputs so that they can
represent a complete image or pattern. Because they are
compositions of functions, CPPNs in effect encode patterns
at infinite resolution and can be sampled at whatever resolu-
tion is desired. Other successful CPPN-based applications
include Picbreeder [12], MaestroGenesis [7], EndlessForms
[3], the Galactic Arms Race (GAR) video game [4], folded
wire robots [11], and virtual soft-body robots [2].

The general idea behind the flower encoding in Petalz is
to deform a circle such that the resulting shape resembles a
flower. Because this approach focuses on a radial pattern,
polar coordinates {θ, r} are input into the CPPN (Figure 3).
For each value of θ, the deformed radius of the circle at that
point (rmax) is queried by inputting {θ, 0} into the CPPN.
Next, to fill in the colors of the flower’s surface, each po-
lar coordinate between 0 and rmax is queried with the same
CPPN for a RGB color value. This approach produces a de-
formed, colored circle, but still may not produce flower-like
images. Most natural flowers demonstrate basic radial sym-
metry in the form of their petals; this property is exploited
in the encoding by inputting sin(Pθ) into the CPPN in-
stead of the raw θ value, which creates a repeating pattern
of deformation and coloration. The optional P parameter
allows control over the period of the sine function and thus
the maximum number of repetitions around the circle.

Finally, to further improve the aesthetic of the flowers, the
concept of layers is implemented to reflect that flowers gen-
erally have internal and external portions. To encode this
property, a new flower is queried through the same CPPN
for each layer L. Each such layer is scaled based on its depth
and drawn on top of the previous layer. Thus the inputs to
the CPPN are {θ, 0, L} and the outputs are {R,G,B, rmax}
to determine the shape of each layer (Figure 3). The inter-
nal coloring is then determined by querying the CPPN as
with the outermost layer. Interestingly, because the layers
are queried by the same CPPN, they are mathematically re-
lated, giving a natural look. Further optimizations on this
general algorithm are employed [10] to achieve the fast ren-
dering necessary for an online game.

The flower-encoding CPPNs in Petalz are evolved with
the NEAT algorithm [15]. NEAT begins with a population
of simple neural networks or CPPNs and then adds complex-
ity over generations by adding new nodes and connections
through mutations. By evolving networks in this way, the
topology of the network does not need to be known a priori;
NEAT searches through increasingly complex networks to

L=.5

L=1.0

r

Figure 3: CPPN Flower Encoding. The CPPN that
encodes flowers in Petalz takes polar coordinates (r and θ)
as well as layer (L) and bias (b) values. The outputs are
an RGB color value for that coordinate. The value rmax

is also output, but only checked when r = 0 to determine
the maximum radius for a given θ. The number and topol-
ogy of hidden nodes is evolved by a standard CPPN-NEAT
implementation [14].

find a suitable level of complexity. For a complete overview
of NEAT see Stanley and Miikkulainen [15]. Most impor-
tantly, such complexification, which resembles how genes are
added over the course of natural evolution, allows NEAT to
establish high-level features early in evolution and then later
elaborate on them. For evolving content, complexification
means that content (e.g. flowers in the case of Petalz) can
become more elaborate and intricate over generations.

3. AUGMENTING PCG GAMES WITH
COLLECTION MECHANICS

While collection game mechanics have worked well in en-
gaging players in a variety of different games like Pocket
Frogs or the Pokémon series, how PCG-based games can
be augmented which such mechanics is an open research
question. Although PCG approaches can benefit players by
presenting them with unique experiences and content each
time they play, in PCG games like Petalz [10] or GAR [4],
there are no a priori categories of flowers or weapons for the
player to collect.

Furthermore, though some players thrive in such free-form
games without explicit goals, many other players enjoy goal-
directed game mechanics where concrete purpose is directly
provided (e.g. collect all 80 flower species, collect ten flowers
of a specific species). Therefore a promising idea is to auto-
matically organize the procedurally generated content into
specific categories, thereby providing a means to augment
any PCG game with collection mechanics.

To automatically organize procedurally generated content
requires a classifier that can automatically determine the
category of newly generated content based on a training set
of data. Importantly, this classification has to be meaning-
ful to the player. For example, if the algorithm assigned the
same class to two very differently looking flowers, the collec-
tion mechanic would not add meaning and structure to the
player experience.

In this paper the procedurally generated content is classi-
fied based on the self-organizing map (SOM) algorithm [8].
While many other clustering algorithms could be applied,
the SOM algorithm offers some unique advantages that give

it particular appeal in a game context, which will be ex-
plained in the next section.

3.1 Self-Organizing Map
The SOM [8] is an artificial neural network that performs

an unsupervised mapping from a high-dimensional input
space RD with input input patterns X = {xi : i = 1, ..., D}
onto a two-dimensional grid of neurons. Each neuron j in
the computation layer is connected to each input neuron i
with weight vector wj = {wij : i = 1, ..., D}.

The basic training process works by iteratively presenting
an input vector x to the SOM and then comparing the weight
vectors of the neurons on the grid to that input vector. The
neuron c with the most similar weight vector is called the
best matching unit (BMU) and is defined by the condition:

||x(t)− wc(t)|| ≤ ||x(t)− wi(t)||∀i. (1)

Once the BMU is determined, its weights and the weights
of all the neurons within a fixed distance to the BMU are
updated:

wi(t+ 1) = wi(t) + hc(x),i(x(t)− wi(t)), (2)

where t is the index of the training step and h is called
the neighborhood function, which is commonly a Gaussian
function:

hc(x),i = α(t)e
− ||ri−rc||

2

2σ2(t) , (3)

where 0 < α(t) < 1 is the learning-rate, which decreases
monotonically with the training step t. In addition, ri and
rc are the locations on the SOM map and σ(t) corresponds
to the width of the neighborhood function. The width of the
neighborhood function also decreases monotonically with
the training steps.

The SOM can help with classification [8, 20] by assigning
a class to each neuron and determining the class of a new
sample based on the class of its BMU. In other words, by
feeding a sample of procedurally generated content into a
SOM of predefined size, a set of categories is generated that
helps to classify future content even though in principle the
number of possible content is unlimited. Figure 4 gives an
overview of this approach to categorizing procedurally gen-
erated content.

Two properties of the SOM give it particular appeal in
categorizing procedurally generated content for the purpose
of encouraging players to collect it. First, after training, the
SOM forms a topographic map of the input space, in which
content that is visually similar is also nearby in space. In
this way the SOM can provide an intuitive visualization of
the space of content for the player. Second, the prototype
weight vectors of the neurons on the grid can be visualized
to give the player an idea of categories not yet discovered.

The next section describes how the SOM algorithm is ap-
plied to automatically categorize flowers into different species
in the Petalz video game.

4. EXPERIMENT
In this paper the automatic categorization of procedurally

generated content is tested in the Petalz video game [10]. For
this purpose the game is augmented with a SOM-based col-
lection game mechanic that allows the player to track their
progress in discovering all pre-classified flower categories.

Figure 4: PCG Collection Game Mechanic. The SOM
is first trained with samples of procedurally generated con-
tent (a). Once the SOM is fully trained, new content dis-
covered by the player can automatically be categorized (b).
Tracking the collection progress (c) can then add meaning
and structure to the player experience.

To classify different flowers with a SOM the question of
how to best represent these flowers for training becomes im-
portant. Two different methods for presenting flowers to
the SOM are tested to determine which produces the most
meaningful flower categories. The SOMs for all approaches
have the same size of 5×16 neurons, resulting in 80 differ-
ent categories for user-bred flowers. Each SOM is trained
with a selection of 2,000 diverse flowers that were evolved
by players during the game.

In the phenotypic clustering approach the images of
the training flower are scaled from 200 × 200 pixels to a
50×50 pixel black-and-white version. Because the procedu-
rally generated flowers in Petalz are all symmetric along the
x and y axis it is only necessary to feed the top-left square
(25×25 pixels) into the SOM for training and also classifi-
cation during the game. Therefore each flower is described
by a feature vector of 625 integers.

In the genotypic clustering approach each flower is de-
scribed by its pair-wise genotypic distance to the 2,000 other
flowers in the training set. Following Stanley and Miikku-
lainen [15] the distance δ between two CPPN encodings can
be measured as a linear combination of the number of ex-
cess (E) and disjoint (D) genes, as well as the average weight
differences of matching genes (W): δ = E +D +W .

5. RESULTS
Figure 5 shows examples of the phenotypic clustering by

the SOM. The flowers belonging to the same species show a
clear resemblance to one another, suggesting that the SOM
can produce a meaningful clustering of the procedurally gen-
erated flowers.

Figure 5: Phenotypic Flower Clustering. The picture depicts the 80 distinct species in Petalz. Examples of flowers
clustered into three different species are depicted to the right. The main result is that the phenotypic clustering of flowers is
meaningful and thus demonstrates the feasibility of augmenting PCG games with a collection game mechanic. Note that the
SOM is toroidal, which means that the flower prototypes to the far right of the flower chart (left panel) are also bordering
the prototype vectors to the far left. The same holds true for the flowers at the bottom and the top of the flower chart.

Every time the player discovers a new species, a flower
chart is displayed (Figure 5, left) and the newly bred flower
is highlighted. In addition to the discovered flowers, the pro-
totype vectors of the remaining flower species are also shown.
That way, the flower chart gives the player direct feedback
about his progress in the game and about flower categories
that are still undiscovered. Note that the 80 displayed flower
categories reflect the topology of the SOM (16×5 neurons).

Additionally, because the SOM produces a topographic
map of the training data, flowers that are phenotypically
more similar than other flowers are also grouped closer to-
gether in space. As Figure 5 (left) shows, the result is a
visually appealing smooth gradient of different flower proto-
type weights.

The genotypic clustering (based on the genotypic distances
between the flowers) is shown in Figure 6. While some clas-
sifications are satisfying (e.g. Species 1), some flowers that
do not show a clear phenotypic resemblance also group to-
gether (e.g. Species 25, Species 69). These inconsistencies in
the clustering happen because small changes in the flower’s
genotype can sometimes produce more significant changes
in the decoded phenotypes.

The main result is that procedurally generated content
can automatically be clustered into different categories (like
flower species), thereby adding more meaning and structure
to player experience. Additionally, this paper showed that
– at least in Petalz – a clustering based on phenotypic char-
acteristics produces more intuitive classifications than one
solely based on genotypic distances.

6. DISCUSSION AND FUTURE WORK
The results represent a proof of concept for a general

method to augment PCG games with a collection game me-
chanic. Importantly, such a game mechanic can add mean-
ing and structure to a game player’s experience, which oth-
erwise might be missing when PCG is the game’s central
focus. That is, while user exploration of PCG can provide
the potential for unlimited novelty in game content, it still
may not inherently provide explicit purpose to motivate a
user’s search. For example, without the objective of collect-

Figure 6: Genotypic Flower Clustering. This figure
shows a SOM clustering of the flowers based on their pair-
wise genotypic distances. While such genotypic clustering
sometimes produces meaningful clusters (e.g. Species 1), of-
ten flowers are grouped together that look significantly dif-
ferent (e.g. Species 25, Species 69).

ing a flower from all 80 SOM-determined species in Petalz, a
user has little purpose beyond indulging their own aesthetic
preferences when breeding flowers. Although the success of
open world games demonstrates that not all players require
explicit goals, many players do enjoy the concrete purpose
they provide. Thus the clear benefit for extending PCG
games with a collection game mechanic is the potential for
broader appeal, by providing enjoyable opportunities both
for self-directed and goal-directed players.

An interesting side-effect of the collection game dynamic
is that it grants inherent value to evolved artifacts in species
that are hard to discover. Players may not only feel a sense
of accomplishment in discovering a new species, but may
assign greater personal value to such flowers themselves be-
cause they were hard to find. If players feel proud or con-
nected to the content they create, an interesting possibility
is that they may desire for such evolved content to be vis-
ible outside the context of a computer game. For example,
three-dimensional printouts of a player’s collected content

Figure 7: Printed Artificially-Evolved Flower. This
example is a flower that was evolved by users in Petalz,
manually converted into a three-dimensional representation,
and then printed in three dimensions.

can potentially bring evolved game content to the real world
(figure 7 shows an example printed from Petalz).

Finally, automatically clustering procedurally generated
content may open up applications beyond the singular col-
lection game mechanic presented in this paper. For example,
many video games segment levels into higher-level groups
that are often called worlds.

Typically, the levels in each world share a common theme,
thereby providing a coherent experience for users as they
progress through the game. For instance, in Super Mario
Brothers 37, world four (“Big Island”) features levels with
oversize enemies and terrain elements, while levels in world
seven (”Pipe Maze”) are largely composed of networks of
pipes. However, a game based on procedurally-generated
levels may lack this sense of coherence unless such levels
are organized in a noticeably structured way. Clustering
procedurally-generated levels may provide a means for such
organization, and may facilitate automatically generating
worlds with a coherent theme. More broadly, clustering con-
tent provides a mechanism for automatic categorization of
evolved artifacts, which can potentially be exploited in other
ways beyond theming or collection.

An interesting direction for future work is to explore the
generality of the automatic collection game mechanic by ap-
plying it to other games centered on PCG like Galactic Arms
Race video game [5].

7. CONCLUSION
This paper proposed an approach to incorporating PCG

effectively into collecting games. While procedurally gen-
erated content on its own does not automatically fit into
predefined categories, the proposed approach is to feed the
content into a SOM that is trained to classify it into as many

7Copyright Nintendo, http://www.nintendo.com

categories as there are nodes in the SOM. That way, even if
the space of content is effectively unlimited, players can still
experience a sense of quantifiable progress as they discover
an increasing proportion of the SOM-based category space.
This approach was tested in the Petalz video game, where a
SOM computed 80 categories (called ”species” in Petalz) for
players to discover. The main conclusion is that PCG can
be adapted to support collecting games when complemented
with an effective method for content categorization.

References
[1] P. Avery, J. Togelius, E. Alistar, and R. van Leeuwen.

Computational intelligence and tower defence games.
In Evolutionary Computation (CEC), 2011 IEEE
Congress on, pages 1084–1091. IEEE, 2011.

[2] N. Cheney, R. MacCurdy, J. Clune, and H. Lipson. Un-
shackling evolution: evolving soft robots with multi-
ple materials and a powerful generative encoding. In
Proceedings of the Genetic and Evolutionary Computa-
tion Conference (GECCO-2013), New York, NY, 2013.
ACM Press.

[3] J. Clune and H. Lipson. Evolving 3d objects with a
generative encoding inspired by developmental biology.
In Proceedings of the European Conference on Artificial
Life (Alife-2011), volume 5, pages 2–12, New York, NY,
USA, Nov. 2011. ACM.

[4] E. Hastings, R. Guha, and K. O. Stanley. Evolving
content in the galactic arms race video game. In Pro-
ceedings of the IEEE Symposium on Computational In-
telligence and Games (CIG-09), Piscataway, NJ, 2009.
IEEE Press.

[5] E. J. Hastings, R. K. Guha, and K. O. Stanley. Au-
tomatic content generation in the galactic arms race
video game. IEEE Transactions on Computational In-
telligence and AI in Games, 1(4):245–263, 2009.

[6] M. Hendrikx, S. Meijer, J. Van Der Velden, and A. Io-
sup. Procedural content generation for games: A
survey. ACM Transactions on Multimedia Comput-
ing, Communications, and Applications (TOMCCAP),
9(1):1, 2013.

[7] A. K. Hoover, P. A. Szerlip, and K. O. Stanley. Gen-
erating a complete multipart musical composition from
a single monophonic melody with functional scaffold-
ing. In M. L. Maher, K. Hammond, A. Pease, R. P. Y.
Perez, D. Ventura, and G. Wiggins, editors, Proceedings
of the 3rd International Conference on Computational
Creativity (ICCC-2012), 2012.

[8] T. Kohonen. Self-organizing maps, volume 30. Springer,
2001.

[9] W. D. McIntosh and B. Schmeichel. Collectors and
collecting: a social psychological perspective. Leisure
Sciences, 26(1):85–97, 2004.

[10] S. Risi, J. Lehman, D. B. D’Ambrosio, R. Hall, and
K. O. Stanley. Combining search-based procedural con-
tent generation and social gaming in the petalz video
game. In Proceedings of the Artificial Intelligence and
Interactive Digital Entertainment Conference (AIIDE
2012), Menlo Park, CA, 2012. AAAI Press.

[11] S. Risi, D. Cellucci, and H. Lipson. Ribosomal robots:
Evolved designs inspired by protein folding. In Pro-
ceedings of the Genetic and Evolutionary Computa-
tion Conference (GECCO-2013), New York, NY, 2013.
ACM.

[12] J. Secretan, N. Beato, D. D’Ambrosio, A. Rodriguez,
A. Campbell, J. Folsom-Kovarik, and K. Stanley.
Picbreeder: A case study in collaborative evolutionary
exploration of design space. Evolutionary Computation,
19(3):373–403, 2011.

[13] N. Shaker, G. N. Yannakakis, J. Togelius, M. Nicolau,
and M. O’Neill. Evolving personalized content for su-
per mario bros using grammatical evolution. In Proceed-
ings of the Artificial Intelligence and Interactive Digital
Entertainment Conference (AIIDE 2012), Menlo Park,
CA, 2012. AAAI Press.

[14] K. O. Stanley. Compositional pattern producing net-
works: A novel abstraction of development. Genetic
Programming and Evolvable Machines Special Issue on
Developmental Systems, 8(2):131–162, 2007.

[15] K. O. Stanley and R. Miikkulainen. Evolving neural
networks through augmenting topologies. Evolutionary
Computation, 10:99–127, 2002.

[16] K. O. Stanley, B. D. Bryant, and R. Miikkulainen. Real-
time neuroevolution in the NERO video game. IEEE
Transactions on Evolutionary Computation, 9(6):653–
668, December 2005.

[17] H. Takagi. Interactive evolutionary computation: Fu-
sion of the capacities of EC optimization and human
evaluation. Proceedings of the IEEE, 89(9):1275–1296,
2001.

[18] J. Togelius and J. Schmidhuber. An experiment in au-
tomatic game design. In Computational Intelligence
and Games, 2008. CIG’08. IEEE Symposium On, pages
111–118. IEEE, 2008.

[19] J. Togelius, G. N. Yannakakis, K. O. Stanley, and
C. Browne. Search-based procedural content genera-
tion: A taxonomy and survey. IEEE Transactions on
Computational Intelligence and AI in Games, 3(3):172–
186, 2011.

[20] A. Ultsch. Self-organizing neural networks for visuali-
sation and classification. In Information and classifica-
tion, pages 307–313. Springer, 1993.

