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ABSTRACT

Grammar-based procedural level generation raises the productivity

of level designers for games such as dungeon crawl and platform

games. However, the improved productivity comes at cost of level

quality assurance. Authoring, improving and maintaining gram-

mars is di�cult because it is hard to predict how each grammar

rule impacts the overall level quality, and tool support is lacking.

We propose a novel metric called Metric of Added Detail (MAD)

that indicates if a rule adds or removes detail with respect to its

phase in the transformation pipeline, and Speci�cation Analysis

Reporting (SAnR) for expressing level properties and analyzing

how qualities evolve in level generation histories. We demonstrate

MAD and SAnR using a prototype of a level generator called Lu-

doscope Lite. Our preliminary results show that problematic rules

tend to break SAnR properties and that MAD intuitively raises �ags.

MAD and SAnR augment existing approaches, and can ultimately

help designers make be�er levels and level generators.
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1 INTRODUCTION

Grammar-based level generation is a form of Procedural Content

Generation (PCG) that raises the productivity of game level design-

ers. Instead of hand-cra�ing levels, designers create a level transfor-

mation pipeline that generates levels for them by authoring mod-

ules, grammars and rewrite rules. �e grammar rules work on data
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structures such as strings, tile maps and graphs, which can be used

for generating names, level layouts and missions. �ese artifacts

are step-by-step transformed and combined until a �nal detailed

and fully populated level is generated, with missions, power-ups,

challenges, enemies, hidden treasures, secret pathways, encounters,

etc. Ideally, each generated level has the intended qualities.

Unfortunately, improving the productivity of level designers

comes at the cost of quality assurance. In practice, many small

problems arise, such as levers in walls, blocked pathways, missing

encounters and lava adjacent to water. A lack of direct manipulation

compromises the ability of designers to isolate and improve level

qualities, e.g., when authoring bridges, forests or paths. As a result,

some generated levels may lack intended goals, challenges and

missions.

�e qualities of generated levels depend on the composition of

grammar rules and how they are combined in sequence. �erefore,

potential bugs o�en remain unknown until they are observed dur-

ing playtesting. Additionally, the combinatorial explosion resulting

from recursive rule expansions complicates forming mental models

required for reasoning about intended qualities, and how they are

represented in the grammar or intermediate data. Moreover, it is

hard to predict how individual rules a�ect the overall level quality.

Grammars are bri�le, i.e. code that is liable to break easily. De-

signers require special measures to ensure that qualities once intro-

duced, remain intact, preventing successive rewrites from breaking

levels. Fixing one level with a rule that prevents an occurrence may

introduce new problems in others. In general, there is a lack of tools

and techniques for authoring, debugging, testing and improving

rules that introduce and preserve design intent. As a result, the full

potential of these techniques has not yet been realized.

We aim to improve the quality of grammar-based procedural

level generation in general, and focus on grammars that work on

tile maps in particular. We motivate our research by studying and

improving Ludoscope, a state-of-the-art development environment

for generating very diverse game levels. Since its inception, Ludo-

scope was developed by Ludomotion for indie game development,

and successfully applied to a rogue-like dungeon crawler called

Unexplored. We address the need of developers for be�er tools.

�is paper proposes and contributes two enabling techniques:

(1) Metric of Added Detail (MAD), a novel metric that indicates

if a grammar rule adds or removes detail to a tile map. We

hypothesize that grammars gradually add detail. MAD

leverages a detail hierarchy, a binary relation on alphabet

symbols indicating which symbol is more detailed, which

can easily be derived from transformation pipelines.

(2) Speci�cation Analysis Reporting (SAnR), a technique that

o�ers a level property language for expressing level qual-

ities. SAnR analyzes and reports how these properties

evolve over time in level generation histories.
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Module m1: add walls

r1: (R,U)

(a) Adding walls on the room borders

⇒ Module m2: add doors

r2: (1x)

r3: (1x)

(b) Adding north (r2) and east (r3) doors

⇒ Module m3: add fire pillars and water

r4: (3x)

r5: (1x)

(c) Adding three �re trap obstacles (r4) and a pond (r5)

Figure 1: Level transformation pipeline consisting of three modules

=o� map =empty =wall
=door =pillar =water

We demonstrate the feasibility of MAD and SAnR by implementing

Ludoscope Lite (LL), a light-weight version of Ludoscope intended

to study level quality. LL is implemented using Rascal, a meta-

programming language and language workbench. Our preliminary

evaluation shows that SAnR can express and analyze simple level

properties, and that MAD raises �ags for rules that remove detail.

MAD and SAnR augment existing approaches by supporting grad-

ually adding detail and analyzing level generation histories, which

ultimately helps designers make be�er levels and level generators.

2 RELATED WORK

Evaluating content generators and their output is a key open re-

search problem [12, 15, 19]. Generators can be analyzed in terms

of generated content, e.g., Summerville et al. evaluate metrics for

di�culty, visual aesthetics and enjoyment of platform games [15].

We take an authoring perspective on level grammars. Our ap-

proach stands apart by also taking into account how generated

levels are generated. �is enables level designers to relate quali-

ties of generated levels back to the source code of the generator

(grammar rules) and make targeted improvements.

Level grammars are under-speci�ed, since they also generate

many levels that are bad with respect to design constraints. �e

challenge is authoring a set of rules that e�ciently generates varied

and well-structured results capturing design intent while limiting

the recursion. Smith and Mateas propose explicitly describing

design spaces as an answer set programs, and show generators can

be sculpted for a variety of content domains [13]. Van der Linden et
al. focus on improving authoring and controlling level generators

by expressing gameplay-related design constraints. �ey use graph

grammars to encode these constraints, and generate action graphs

that associate player actions and content for generating complete

layouts of game levels [16]. We refer to a survey of van der Linden

et al. for a wider discussion on techniques for procedural dungeon

generation [17].

We relate our work to other content generators that use gram-

mars. Tracery is a grammar-based tool for authoring stories and

art as structured strings that has been used for generating names,

descriptions, stories in poetry, Twi�er bots and games [1, 2]. Puzzle-

Script is a language and authoring environment which uses rewrite

rules to express puzzle mechanics [10]. Ludoscope is a visual envi-

ronment for authoring level transformation pipelines as grammars

that builds upon the mission and spaces framework [3, 4]. Pipelines

consist of modules that contain grammars, alphabets and recipes

that transform level artifacts such as strings, tile maps, graphs

and Voronoi diagrams. In particular, recipes are crucial to con-

trol the generation and focus the application of rules for obtaining

(a) Empty room with walls (b) Example room with content

Figure 2: Tilemaps that are input and output of the pipeline

aesthetically pleasing levels. Recipes parameterize modules with in-

structions, that determine the ordering of rules and limit how o�en

rules work. Member values annotate tiles with extra information.

Both help reducing the generation space, but neither are well-suited

to check qualities o�-line and independently. Ludoscope is neither

extensively documented, nor currently available as open source

so�ware. Karavolos et al. report experiences on applying Ludo-

scope to a platformer and a dungeon crawl game, which require

very di�erent transformation pipelines [7]. Our approach closely

follows the pipeline structure of Ludoscope, but it improves upon

its capabilities for analyzing grammar and level quality.

3 GRAMMARS FOR LEVEL GENERATION

Here, we introduce quality issues in grammar-based level design

using a simple example that generates a room for a dungeon crawler,

which illustrates some of the challenges that arise during authoring

grammars. It isolates problems that have larger more complex forms

in practice, e.g., in Unexplored. We relate questions designers might

have in Section 3.2 to technical challenges in Section 3.3.

3.1 Introductory Example

In dungeon crawlers, tile maps o�en represent rooms connected by

pathways. Our level generation pipeline, shown in Fig. 1, generates

rooms with two doors connecting to a larger dungeon. It consists

of three modules of grammar rules that represent sequential level

transformation phases. �e grammar rules rewrite pieces of the tile

map matched by their pa�ern on their le� hand side to the pa�ern

on their right hand side. �e pipeline takes an empty tile map as

input, e.g., of 6x6 tiles. Each phase randomly selects and applies

rules, gradually adding detail. Many levels can result, and as we

will see, not all of these are what a designer might deem desirable.

First, modulem1 adds walls on the borders of the tile map (Fig. 1a).

It contains one rule called r1, whose le� hand pa�ern matches on an

empty tile on the north edge of the map. Grammar rule r1 replaces



Measuring�ality of Grammars for Procedural Level Generation FDG ’18, August 7–10, 2018, Malmö, Sweden

module 4a: remove obstacles

r6: (R,U)

(a) Module removing pillars

MAD score heat map

-1 (+0-1)

−

(b) MAD score and heat map

Figure 3: Module for removing pillars that block doors

an empty tile on the north edge of the map with a wall. Rules can

have modi�er symbols to its right. �e (U) symbol to the right

indicates that rule r1 is applied as many times as possible. �e (R)
symbol indicates that rule r1 is also applied to the east, south and

west borders of the map. �e result of modulem1 is always a tile

map with walls on its borders, e.g., Fig. 2a is the output at 6x6.

Next, module m2 adds doors in the north and east walls that

connect the room to other parts of the dungeon (Fig. 1b). �e rules

r2 and r3 respectively add a door in the north and east walls. �ese

rules are applied exactly once (1x). Finally, module m3 introduces

challenge (Fig. 1c). Rule r4 places three �re pillars, traps that set

players on �re if they remain close too long. In addition, rule r5

adds a pool of water the player can use to extinguish the �ames.

3.2 Level designer questions

�e pipeline of Fig. 1 can also generate problematic levels. For

instance, in Fig. 2b, a �re pillar in front of the north door prevents

players from passing. One way to �x this is to patch the level by

removing obstacles, as shown in Fig. 3a results in Fig. 5a. However,

fewer pillars than intended may reduce the di�culty. Another way

is moving obstacles away from doors, as shown in Fig. 4a, which

results in Fig. 5b. Unfortunately, other problematic output still

exists, e.g., Fig. 6. Authoring level grammars is hard, even for this

tiny example. �estions about quality a designer might have are:

(1) E�ciency. Do the grammar rules e�ciently generate lev-

els, or is time wasted on overwri�en dead content?

(2) E�ectiveness. Do the grammar rules e�ectively generate

levels that contain all the intended objects, composite struc-

tures, problems and solutions, or are some parts missing?

(3) Root-cause analysis. Given a level with a problem, by

which rules were the a�ected tiles generated?

(4) Bug-�xing. Does changing a rule improve levels, or does

it also introduce new problems?

(5) Bug-free. How can unwanted situations be prevented and

removed from the level generation space?

Other relevant questions not further discussed here are, e.g.,

• Playability. Are the challenges of all generated levels

solvable, or are there ways in which players can get stuck?

• Challenge. Are the levels challenging to play?

3.3 Challenges

Here, we identify technical challenges that need to be addressed

for answering questions of level designers described in Section 3.2.

(1) Static analysis and metrics. Pro�ling the applications

of rules helps to asses e�ciency measuring (relative) times

and amounts. However, static analysis may also help pre-

dict rule e�ciency. Upper bounds on rule applications

module 4b: move obstacles

r7: (R,U)

r8: (R,U)

(a) Moving pillars le� (r7) or right (r8)

MAD score heat map

0 (+1-1)

− +

0 (+1-1)

− +

(b) MAD score and heat map

Figure 4: Module for moving pillars that block doors

R

(a) Module 4 removed a pillar at R

→ M

(b) Module 4b moved pillar M

Figure 5: Repairing the example level of Fig. 2b in two ways

A

1 2 3

B

(a) No space to move pillar 2 away from

door A

A

1

2 3 B

(b) Moving pillar 3 can block door A

Water remains unreachable

Figure 6: Levels that cannot be repaired by Module 4b

enable reasoning about worst-case scenarios. Le� hand pat-

terns that can never match indicate dead code. In addition,

metrics can help assess to which extent rules contribute to

generating an intended result, to �nd bad rules.

(2) Analyzing the level generation space. Viewed as a

state-space exploration problem, rules might rewrite levels

to prior states. For a given level, the shorter its trace of

rewrites, the more e�cient its generation.

(3) Expressing and analyzing level qualities. Grammar

rules lack ways to specify properties at speci�c points in

the pipeline, e.g., if objects are (not) adjacent, contained,

intact or missing. Designers need an additional formalism

for e�ectively specifying properties that intuitively capture

design intent. To see how qualities evolve, levels can be

checked against these properties a�er each transformation.

(4) History analysis. Generators produce tile maps by apply-

ing grammar rules in sequence, e.g. Fig. 7. However, these

generation histories are usually not stored. For identifying

rules that impact tiles, or groups of tiles, designers require

an analysis of the level transformation history.
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Application of Module m1: add walls

a01 r1: @(0,-1)

...
...

a20 r1: @(-1,1)

(a) Adding walls on the room borders

Application of Module m2: add doors

a21 r2: @(2,0)

a22 r3: @(4,2)

(b) Adding north (a21) and east (a22) doors

Application of Module m3: add fire/water

a23 r5: @(1,3)

a24 r4: @(3,1)

a25 r4: @(3,2)

a26 r4: @(4,2)

(c) Adding three pillars (a24,a25,a26) and a pond (a23)

Figure 7: Level generation history showing how rules generated the example level shown in Fig. 2b

Level
Design

Rules
Detail

hierarchy

MAD
Analysis

Rules +
Metrics

derive

(a) MAD Level Design

Level
Design

Select
a level

Rules
Level

Properties
Level +
History

SAnR
AnalysisGenerator

Level +
Report

Levels +
Histories

(b) SAnR Level Design

Figure 8: Producing MAD and SAnR level design artifacts

(5) Impact analysis. Assessing the impact of rules on many

generated results requires isolating rule e�ects. �e po-

sition in the pipeline scopes the locality of impact, and a

dependency analysis can exclude side-e�ects, but an ex-

haustive impact analysis requires generating examples.

(6) Test Automation. Testing the impact of changes on all

possible levels is not feasible. As a result, levels may exist

that contain bugs. �e challenge is devising a test harness

that generates representative levels for �nding bugs.

(7) Debugging. Identifying and �xing bugs requires appro-

priate views and tools for se�ing break points and making

modi�cations, e.g., selecting one or more adjacent tiles to

�lter and analyze selected properties.

4 GRAMMAR ANALYSIS AND DEBUGGING

We approach the challenges of Section 3.3 from a so�ware evo-

lution perspective. We propose two solutions, Metric of Added

Detail (MAD) and Speci�cation Analysis Reporting (SAnR). Fig. 8

schematically shows how designer activities and algorithmic pro-

cesses (respectively shown as pink and blue rounded rectangles)

produce (outgoing arrows) and consume (incoming arrows) artifacts

(rectangles). �e �eld of so�ware evolution studies how so�ware

evolves over time [11]. As so�ware ages, it conforms less and less

to the changing expectations of its users. In addition, for developers

it also becomes harder over time to adjust so�ware and maintain

its quality. Research includes methods and techniques for analyz-

ing source code and for making changes to improve the so�ware

1 module util::mad::Metric
2 alias Detail = rel[str greaterSymbol, str lesserSymbol];
3 alias Rule = lrel[str lhs, str rhs];
4 alias RuleScore = lrel[str lhs, str rhs, int score];
5

6 RuleScore getRuleScore(Rule r, Detail d)
7 = [<lhs, rhs, getTileScore(lhs, rhs, d)> | <lhs, rhs>←r];
8

9 int getTileScore(str lhs, str rhs, Detail d){ //rewriting a tile

10 if(<lhs,rhs> in d) return −1; //removes detail

11 else if(<rhs,lhs> in d) return 1; //adds detail

12 else return 0; //retains detail

13 }

Figure 9: Metric of Added Detail as a Rascal program

quality. Since game requirements are mainly non-functional and

evolve rapidly, these techniques are also vital for game quality.

4.1 Metric of Added Detail

Metrics have been proposed to analyze how changes to source

code impact so�ware quality. Volume (or size) can be measured by

counting Lines Of Code (LOC), and branch points in the control �ow

of methods can be measured using Cyclometric Complexity (CC).

At any moment, metrics are just abstract values, but when studied

over time they can provide insight into phenomena and quality,

in particular when developers have questions regarding the e�ect

of maintenance and new requirements that require programming.

Heitlager et al. describe a so�ware maintainability model [6], which

requires that measures are 1) technology independent; 2) simply

de�ned; 3) easy to understand and explain; and 4) enablers of root

cause-analysis, relating source code properties to system qualities.

Here we introduce the Metric of Added Detail (MAD), a sim-

ple metric for grammars operating on tile maps, which is easy to

explain and understand. MAD does not directly predict level qual-

ity, but instead measures the e�ect on detail of individual rules by

leveraging the assumption that details are gradually added (Fig. 8a).

We de�ne MAD in Fig. 9, using the concise functional notation

of Rascal. MAD requires a detail hierarchy, represented as a binary

relation on grammar symbols (line 2). Rules are represented as lists

of tuples of source and target symbols that abstract from tile map

dimensions (line 3). �e result of the metric adds a score element

to each tuple that records if detail is added (score +1), removed
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2x door in walls //m1: add walls

1x water
3x pillar
no pillar adjacent to door
no water adjacent to pillar

(a) Level Property Language speci�cation

encoding level qualities

a01 . . . a21 a22 a23 a24 a25 a26

3

3

3

3 7

3

(b) Level generation report showing how

a level (Fig. 2b) evolved over time (Fig. 7)

a27 (alternative)

7

3

(c) Certain result of

Module 4a

a27 (alternative)

3

7

(d) Possible result of

Module 4b

Figure 10: Level properties and a level generation report

(score -1) or persisted (score 0) (line 4). �e function getRuleScore
speci�es the rule metric as a list comprehension (lines 6–7). Given

a rule and a detail hierarchy, it calculates for each symbol on the

le� hand side if the right hand side adds or removes detail using

the function getTileScore (lines 9–13). Displayed as a heat map, the

result is aggregated as a sum of tile detail scores.

4.2 Deriving Detail Hierarchies

MAD is tool independent and rule parametric, but it requires a detail

hierarchy, which needs to be derived. Modules imply a natural hier-

archy for tools that use level transformation pipelines, each phase

introducing symbols that are more detailed than the last. Using this

approach, we derive the following detail hierarchy for the exam-

ple of Section 3.1 Fig. 1 {water, pillar} > door > wall > empty, or

visually { , } > > > .

Competing non-deterministic rules do not sequentially add detail,

e.g., r4 or r5 adds or �rst. �erefore, deriving a symbol

hierarchy for exposing data generated and overwri�en within a

module is less straightforward. We see the following alternatives:

(1) Allow an explicit user-de�ned detail hierarchy, or derive it

from an explicit rule ordering such as a Ludoscope recipe.

(2) Assume detail is sequential to the rules in the module.

(3) Add the inverse to the relation for symbols with the same

rank in the hierarchy, e.g., > and > . However,

this is not very intuitive.

4.3 Analyzing Rules with MAD

Using the detail hierarchy derived in Section 4.2 we calculate MAD

scores for rules of modules m4a and m4b intended to �x broken

levels, shown in Fig. 3a and Fig. 4a. Rule r6, which removes �re

pillars, has a negative e�ect on detail, as shown in Fig. 3b. �e

e�ect of rules r7 and r8 that instead move them, shown in Fig. 4b,

is neutral. MAD helps designers assess if rules contribute to gener-

ating intended results, and augments intuitions with facts. Rules

that remove details may be �xes, but may also cause dead content

or regressions in the level generation space that waste time.

4.4 Expressing and Analyzing Level Properties

Here we address the challenges of expressing and analyzing level

qualities from a So�ware Language Engineering perspective [9].

We propose Speci�cation Analysis Reporting (SAnR), a technique

for analyzing level grammars against level properties. In the mixed-

initiative design process shown in Fig. 8b, designers author a gram-

mar (rules and modules) and SAnR level properties, a generator

1 start syntax LevelSpec = spec: Property∗;
2 syntax Property = property: Condition TileSet;
3 syntax Condition //required condition

4 = none: ”no” //tile set is empty

5 | count: INT size ”x”; //tile set size is

6 syntax TileSet //de�nes a set of tiles (now visible)

7 = tileSet: ID tileName FilterNow FilterWhere;
8 syntax FilterNow //�lters the tile set (now visible)

9 = nowAny: //empty alternative, no �lter

10 | nowAdjacent: ”adjacent to” ID tileName;
11 syntax FilterWhere //�lters a tile set (historically)

12 = everAny: //empty alternative, no �lter

13 | everRule: ”in” ID ruleName; //topological locations

Figure 11: Syntax of Level Property Language in Rascal

generates levels, and the designers selects one level to analyze, for

which SAnR generates a report.

SAnR provides a property notation. �is is a so-called Domain-

Speci�c Language (DSL), a language that o�ers appropriate nota-

tions and abstractions with expressive power and a�ordances over

a particular problem domain [18], in this case specifying properties

of tile maps as correct outcomes of tile map transformations.

We show its syntax in Fig. 11, and give an informal description

of its language semantics. Instead of writing new grammar rules,

a SAnR level speci�cation is a set of declarative properties, which

refer to names used in the grammar (line 1). Given a level history

as a sequence of rule-based model transformations, e.g., Fig. 7,

properties can be evaluated at each point in time, yielding either

true or false. Properties work on tile locations, places on tile maps

speci�ed by x and y coordinates denoted as @(x,y), the top le� tile

being @(0,0). A property is a condition on a set of tile locations

visible on a tile map (line 2), which must either be empty (line 4) or

of a speci�c size (line 5). �e set is built by collecting tile locations

using names from the grammar alphabet, e.g., “door” retrieves a

set containing each location of a door. On the example of Fig. 2b

this yields {@(2,0), @(4,2)}, which means “2x door” is true and

“1x door” is false. Locations can be �ltered in two optional ways.

(1) Adjacency. �e adjacent to keyword (lines 8-10), �lters

locations that do not share at least one side with tiles of

another kind, e.g.,“door adjacent to pillar”, denotes a set

of locations of door tiles next to at least one pillar.

(2) Topography. �e in keyword (lines 11-13), �lters out

locations that were never a�ected by a rule rewrite. In other
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words, we use rule names to collect sets of tile locations

from the level generation history as “topographical regions”.
�e resulting set is the intersection between the le� and

right hand operands. For example “door in walls” gives

the set of door locations in the region a�ected by rule walls.

4.5 Analyzing Level Generation Histories

�e SAnR analysis uses properties for generating level genera-

tion reports that show when properties were valid, and when

they became invalid. For example, given the level generation his-

tory of Fig. 7, and the properties of Fig. 10a, SAnR evaluates the

properties a�er each transformation step, yielding the report of

Fig. 10b. From the report we read that at step a24 transformation

r4: → @(3,1) places a pillar in front of the north door,

which invalidates the property “no pillar adjacent to door”.

4.6 Analyzing Rule Impact

SAnR can also be used to analyze the impact of new rules

on existing levels with respect to level properties. For in-

stance, we can spot problems at alternative steps a27 in

the report of Fig. 10 caused by modules m4a and m4b in-

tended as �xes, shown in Fig. 3a and Fig. 4a. On the one

hand, Fig. 10c shows that when module m4a removes the

pillar with transformation r6: → @(3,0) this breaks the

property “3x pillar”. On the other hand, Fig. 10d shows that

when module m4b moves the pillar to the east with trans-

formation r7: → @(3,0) this breaks the property

“no pillar adjacent to water”.

5 PRELIMINARY EVALUATION

Here, we report on a preliminary evaluation of the use of

MAD and SAnR in the implementation of a prototype level

generator called Ludoscope Lite.

5.1 Implementation of LudoScope Lite

Ludoscope Lite (LL) is a light weight version of Ludoscope in-

tended for rapid prototyping, research and experimentation

with analysis and generation techniques for making be�er

grammar-based game levels and generators. Its focus is ini-

tially on designing and validating approaches for tile maps,

which are later implemented and applied in Ludoscope. We

use language work bench [5] and meta-programming lan-

guage Rascal
1

[8] to implement MAD and SAnR as separate

reusable modules and integrate both in LL
2
.

Table. 1 gives an overview of the components of LL and

their size in Lines of Code (LOC) relative to Ludoscope. Of

course, the user-friendly IDE of Ludoscope has many fea-

tures LL lacks, explaining the size di�erence. LL integrates a

grammar-based parser that reads the storage format of Lu-

doscope. �e ultimate goal is compatibility, sharing syntax

1
h�ps://www.rascal-mpl.org

2
h�ps://github.com/visknut/LudoscopeLite

Component Ludoscope (KLOC) LL (KLOC)

IDE (features di�er) 10.5 0.3

Parser + execution 10 1.7 + 0.4

Test + test data ? 1.5 + 0.7

Metric of Added Detail not yet 0.1

Level Property Language not yet 0.3

Extension wrappers - 0.4

Total 20.5 5.5

Table 1: Source code size of Ludoscope and Ludoscope Lite

Data Example +m4a +m4b

Unique histories 9846 9858 9844

Unique tile maps 9171 9014 8775

Broken tile maps 6254 6132 4613

Bugs found 2 2 4

Table 2: SAnR data on the example the pipeline of Fig. 1

and its two extensions modulesm4a andm4b

Property Example +m4a +m4b

2x door in walls - - -

1x water - -

3x pillar - r6 (3226x) r7 (111x)

r8 (112x)

no pillar adjacent to door r5 (3164x) - r5 (438x)

no water adjacent to pillar r5 (5686x) r5 (5209x) r5 (5482x)

Table 3: SAnR level generation reports for 10K random

executions. �e rules rn refer to Fig. 1, Fig. 3a and Fig. 4a

and semantics for generating and analyzing rules. We apply

test-driven development, encoding expected behaviors for

most of its features in a combination of unit and integration

tests for regression testing. �e histories and reports shown

in this paper are generated by LL, which currently still gen-

erates them as strings. A more user friendly visualization is

work in progress.

5.2 Test Automation

We use LL to evaluate SAnR on the running example of Sec-

tion 3.1
3

We wish to learn if LL and SAnR can help automate

tests, and run 10K random executions (or simulations) on

the pipeline Fig. 1, and its extensions, shown in Fig. 3a and

Fig. 4a, which makes 30K executions total. For each execu-

tion, we record the model transformation history and use

SAnR and the properties of Fig. 10a to obtain a report.

3
�ere is one di�erence, LL implements Ludoscope recipes for limiting the amount

of times that rules are applied. As a side-e�ect, this limits sequences and reduces the

level generation space.

https://www.rascal-mpl.org
https://github.com/visknut/LudoscopeLite
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Table. 2 displays an overview of the results, which were

obtained in about 10 minutes of run time. �e unique num-

ber of histories is lower than 10K because some executions

yielded the same transformations. In addition, di�erent trans-

formation sequences can produce the same tile map, which

explains why there are fewer unique tile maps. We consider

a tile map broken when not all SAnR property are satis�ed.

In addition, Table. 3 shows which rules break properties (in

how many histories) for each pipeline version, which helps

designers compare and analyze causes.

We gain the following insights. �e test automation ap-

proach is feasible, and issues can be found in seconds. In

addition, by relating the number of unique outputs to the

number of broken outputs we can get an idea how serious

issues are. Naturally, 10K random executions says nothing

about test coverage, but it improves upon random manual

testing. We con�rm that modulem4a is a bad �x. We note

that although extensionm4b increases the number bugs, it

also generates fewer broken tile maps. Clearly, the pipeline

still requires �xes. Of course, the example is small and not

representative of the size and complexity of transformation

pipelines of games such as Unexplored. However, our test

automation setup is reusable, and enables testing other gram-

mars with larger pipelines too.

6 DISCUSSION

MAD and SAnR provide a means for answering designer

questions of Section 3.2. Here we discuss the be�ts and

limitations of the approaches and threats to validity.

6.1 MAD Level Design

MAD gives a partial answer to the question if rules generate

levels e�ciently. �e metric helps designers identify rules

that remove detail, and possibly waste time on generating

cause dead content. It supports the single responsibility prin-

ciple, exposing modules add many details at once. However,

MAD does not address the challenge of analyzing the state

space. At best, it can help identify rules that may lead to

longer level generation traces. In addition, we do not know

if MAD can be used for data structures other than tile maps,

e.g., for grammars that work on graphs. Finally, MAD is not

yet empirically validated.

6.2 SAnR Level Design

SAnR properties enable analyzing how e�ectively rules gen-

erate intended levels, e.g. for simple tile adjacency, counting,

missing tiles, and topographical inclusion. Properties de-

pend only on the names of rules and tiles, which separates

concerns but complicates refactoring grammar rules. SAnR

analyzes levels by checking properties against generation

histories, and assumes these are correctly generated. �ere-

fore, SAnR reports are only as good as the grammar engine,

which may also contain bugs. Of course, our approach is not

the �rst that checks simple invariant conditions. However,

to the best of our knowledge, checking properties that use

level generation histories and grammar rule names to collect

topographical regions of tile locations is new.

SAnR can help designers analyze quality and remove un-

wanted situations from the level generation space by identi-

fying transformations and rules that break properties. How-

ever, those rules may not be the root cause of the problem,

which can originate earlier in the pipeline. In addition, it

is hard for developers to analyze the history, since it is not

clear where the branch points in the generation process are,

and how alternatives would have played out. Finally, the

expressive range of properties is currently still rather limited,

and a formal semantics relating properties and histories is

not yet de�ned.

7 CONCLUSION

�is paper proposes two novel techniques that aim to im-

prove the quality of grammar-based procedural level genera-

tion for grammars that work on tile maps. �e �rst, is the

Metric of Added Detail (MAD), a novel metric that indicates

if a grammar rule adds or removes detail to a tile map. �e

second, is Speci�cation Analysis Reporting (SAnR), a tech-

nique that o�ers level property language for expressing level

qualities. SAnR analyzes and reports how these properties

evolve over time in level generation histories. We demon-

strated the feasibility of MAD and SAnR with LudoScope

Lite, a light-weight version of Ludoscope intended to study

level quality. Our preliminary evaluation shows that SAnR

can express and analyze simple level properties, and that

MAD is intuitive and raises �ags for rules that remove detail.

In addition, SAnR can be used in test automation. MAD and

SAnR augment existing approaches by supporting gradually

adding detail and analyzing level generation histories, which

ultimately helps designers make be�er levels and level gen-

erators. Of course, LL is an academic research prototype that

is not yet extensively validated in practice.

7.1 Future Work

Future work includes the following.

• Validation. A case study on Boulder Dash is current

work. We also plan to study Unexplored to identify

which additional SAnR property features are needed

to express design intent more fully, e.g., be�er �lters,

validity ranges, and for shapes, paths and relative

positions. We hope to identify bugs that would oth-

erwise be hard or impossible to �nd.

• Analyses. Additional analyses on rule dependencies,

and partial orderings may be identi�ed of di�erent

rule orders generating the same levels, e.g., for in-

creasing test coverage and level generation variety.
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For assessing the variety of generated content, exist-

ing metrics can be reused. For instance, Smith and

Whitehead assess the expressive range of a generator

by comparing metrics for linearity and leniency of

platform levels [14].

• Generation. Here we use SAnR for analyzing level

generation histories a�er they are generated. How-

ever, by integrating SAnR into a level generator we

could also prune the search space and �lter out poten-

tial unwanted levels before they are ever produced.

A feasibility study can assess the impact on e�ciency

and scalability of this approach.

• Formal semantics. Reproducible dynamic analy-

ses require a formal semantics for the execution of

generative grammars, separate from tools and games

that interpret them.

• Parsing. We observe that ambiguous grammars for

parsing and level grammars generating the same tile

map with di�erent rule orderings are related. Given a

bugged tile map, how many di�erent rule orderings

can reproduce it? When changing the rules, can

the new rules produce the tile map with a di�erent

generation history?

• Debugging. Debugging level grammars requires an

interactive debugger, in particular for back in time

debugging, exploring what-if scenarios and saving

and replaying generated levels while testing new

rules. Additional visualizations are needed to see

how the generation space unfolds.
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