
Sequential Segment-based Level Generation and Blending using
Variational Autoencoders

Anurag Sarkar
Northeastern University

sarkar.an@northeastern.edu

Seth Cooper
Northeastern University

se.cooper@northeastern.edu

ABSTRACT
Existing methods of level generation using latent variable models
such as VAEs and GANs do so in segments and produce the final
level by stitching these separately generated segments together. In
this paper, we build on these methods by training VAEs to learn a
sequential model of segment generation such that generated seg-
ments logically follow from prior segments. By further combining
the VAE with a classifier that determines whether to place the gen-
erated segment to the top, bottom, left or right of the previous
segment, we obtain a pipeline that enables the generation of ar-
bitrarily long levels that progress in any of these four directions
and are composed of segments that logically follow one another.
In addition to generating more coherent levels of non-fixed length,
this method also enables implicit blending of levels from separate
games that do not have similar orientation. We demonstrate our
approach using levels from Super Mario Bros., Kid Icarus and Mega
Man, showing that our method produces levels that are more coher-
ent than previous latent variable-based approaches and are capable
of blending levels across games.

CCS CONCEPTS
• Applied computing→ Computer games.

KEYWORDS
procedural content generation, variational autoencoder, level gen-
eration, level blending, game blending, PCGML

ACM Reference Format:
Anurag Sarkar and Seth Cooper. 2020. Sequential Segment-based Level
Generation and Blending using Variational Autoencoders. In International
Conference on the Foundations of Digital Games (FDG ’20), September 15–18,
2020, Bugibba, Malta. ACM, New York, NY, USA, 9 pages. https://doi.org/10.
1145/3402942.3409604

1 INTRODUCTION
Procedural content generation via machine learning (PCGML) [30]
refers to a subset of PCG techniques that use ML models for produc-
ing content. Several recent works [16, 23, 32, 33] in this field have
made use of latent variable models such as Generative Adversarial
Networks (GANs) [7] and Variational Autoencoders (VAEs) [13]

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FDG ’20, September 15–18, 2020, Bugibba, Malta
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8807-8/20/09. . . $15.00
https://doi.org/10.1145/3402942.3409604

for generating levels for platformers as well as dungeon crawlers.
These models learn a continuous, latent representation of input
game levels that can then be used to generate new levels via sam-
pling, interpolating between points in this latent space, as well
as by evolving latent vectors based on a given objective in order
to generate levels with desired properties. While effective, these
models work with fixed-size inputs and outputs, which limits the
scope and coherence of levels that can be generated. Prior works
produce levels by generating segments of levels independently and
then stitching them together one after another. Though this can be
satisfactory for platformers that proceed along a single direction
or dungeon crawlers where gameplay can take place in discrete
rooms, this approach would fail to generate playable, coherent lev-
els for games where levels can proceed along multiple directions,
both horizontally and vertically. Moreover, even for unidirectional
platformers like Super Mario Bros., such methods are not ideal since
randomly sampling successive level segments does not ensure that
the current segment logically follows from previous ones.

In this work, we address these issues via a simple modification
to the training procedure for such models, combined with the use
of a classifier for segment placement. More specifically, we train
VAEs on game level segments, but rather than training the model
to reconstruct the current input segment, as is the norm, we train
it to reconstruct the segment that follows it in the input game level.
That is, decoding a segment’s encoded latent representation yields
not the segment itself but the segment immediately after it in the
level’s progression. Thus, starting from an initial segment, this ap-
proach enables the generation of arbitrarily long levels composed of
segments that logically follow from one to the next, via an iterative
loop of encoding and decoding. In addition to this modification, we
also train a random forest classifier to determine whether the next
segment should be placed above, below, to the left or to the right of
the current segment. This VAE-classifier combination thus enables
us to generate continuous, coherent platformer levels of desired
length, progressing in multiple directions, while still working with
fixed-sized segments. Moreover, such a model also enables the gen-
eration of not just segments that blend together multiple games
as in prior work [23], but entire blended levels without having to
perform turn-based generation using multiple models as in [22].

We demonstrate our approach for three different platformer
games—Super Mario Bros., Kid Icarus, and Mega Man—as well as for
the blended Super Mario Bros.–Kid Icarus domain. The contribution
of this work is a new generative approach that enables:
(1) generation of more coherent platformer levels than possible

using existing approaches;
(2) generation of levels for platformers likeMega Man that progress

in multiple directions; and
(3) generation of blended levels combining platformers progressing

in different directions.

https://doi.org/10.1145/3402942.3409604
https://doi.org/10.1145/3402942.3409604
https://doi.org/10.1145/3402942.3409604

2 RELATEDWORK
Methods for PCGML [30] attempt to generate new content by sam-
pling models that have been trained on game data with the hope
of producing content that is novel but also captures the patterns
and properties of the games used for training. While numerous
ML techniques (including autoencoders [12], LSTMs [28], Markov
models [4, 25] and Bayes Nets [9, 27]) have been used for gen-
erating levels, more recent ML advances such as latent variable
models like Generative Adversarial Networks (GANs) and Varia-
tional Autoencoders (VAEs) are also being increasingly used for
generating game content. Volz et al. [33] used a GAN to generate
Mario levels and demonstrated the feasibility of using the learned
latent space for evolving levels with desired properties. In a similar
vein, Sarkar et al. [23] used VAEs to generate level segments that
blended the properties of Super Mario Bros. and Kid Icarus and ex-
hibited the utility of the VAE’s latent space for evolving blended
content with desired characteristics. In addition to Mario, GANs
have also been used to generate Doom levels [6] and Legend of
Zelda dungeons [8] while VAEs have been used to generate Lode
Runner levels [32]. However, due to the nature of GANs and VAEs,
all such approaches are required to work with fixed-size inputs and
outputs and are thus forced in many cases to train on and gener-
ate segments of levels rather than levels themselves, since using
entire levels as the fixed-size inputs would normally lead to an in-
sufficient amount of training data. In GAN-based Mario generation
[33], authors prescribe generating whole levels by simply stitching
together generated segments. While this works due to the simple
nature of Mario only progressing along one direction, it is not ideal
since segments are generated from latent space vectors, each of
which independently encodes a single segment, and thus there is no
guarantee that successively generated segments follow each other
optimally. Additionally, such an approach would not work for more
complex platformers which can progress in multiple directions or
to blend together segments from different games as in prior work
[23] which ignores generating whole levels and restricts generation
to segments alone. Thus, in this paper, we attempt to address the
problem of generating continuous, whole levels for a variety of
platformers while contending with the fixed-sized limitations of
latent variable models. Recently, Gutierrez et al. [8] also addressed
this issue of generating entire levels using fixed-sized inputs and
outputs. In their work, they use GANs to generate fixed-size rooms
and connect them using a graph grammar to form a dungeon. Our
approach differs in that it uses VAEs, works with platformers and
conditions the generation of a segment on the previous segment.

Another recent trend in PCGML research has been to focus on
more creative uses of ML [11] for generating game content. Such
works try to move beyond generating levels for an existing game or
domain in order to enable PCG techniques such as game blending,
domain transfer and automated game generation. These methods
fall under combinational creativity [1], the branch of creativity in
which existing concepts and domains are combined to generate
novel ones. Previous such methods include Snodgrass and On-
tañón’s domain transfer work [24], Guzdial and Riedl’s conceptual
expansion technique [10] that generates new games by combining
levels and rules of existing games using Bayes nets and game graphs,
Snodgrass and Sarkar’s [26] hybrid model combining binary space

partitioning and VAEs to generate blended levels across multiple
platformer games using a sketch representation and Sarkar et al.’s
[23] use of VAEs for blending level segments of Super Mario Bros.
and Kid Icarus. Our work builds directly on the latter by enabling
generation of entire blended levels rather than just segments and
additionally generating blended levels that are mostly traversable
unlike the blended segments in the previous work.

3 METHOD
We describe the game level data used in this work as well as the
two main parts to the generative pipeline—the VAE for segment
generation and the random forest classifier for segment placement
classification.

3.1 Level Data
We demonstrate our approach using levels from 3 classic NES
platformers—Super Mario Bros. [18], Kid Icarus [19] and Mega Man
[3], henceforth referred to as SMB, KI and MM respectively. Addi-
tionally, to test blending, we also used a combined SMB-KI domain.
All levels were taken from the Video Game Level Corpus (VGLC)
[31]. These levels use a tile-based text representation and are an-
notated with the path of an A∗ agent tuned using the jump arcs of
the game [29]. This allows a trained model to produce such paths
in the generated levels and thus help make them playable. While
SMB and KI levels progress exclusively left-to-right and bottom-to-
top respectively, MM levels progress left-to-right as well as both
bottom-to-top and top-to-bottom. Thus, past approaches for VAE
and GAN-based level generation would not be able to reliably gen-
erate MM levels since consecutive randomly generated segments
could be oriented incompatibly, which we address by conditioning
on the previous segment in our approach. Similarly, levels in a
blended SMB-KI domain would be expected to progress both to the
right and to the top and would necessitate a similar modification
in order to be amenable for generation. For all games, we train our
models on 16x16 segments produced by sliding a window of that
size horizontally and vertically across levels as appropriate given
the orientation of the game. Horizontal segments of SMB and MM
are originally 14 and 15 rows high respectively so we pad them with
additional row(s) of all background tiles to have a uniform height of
16. This gave us 2458 segments for SMB, 1046 segments for KI and
1572 segments for MM. For the blended SMB-KI domain, to better
balance the number of segments, we doubled the KI segments to
end up with 2092. Additionally, for levels in the blended domain,
we used the original tiles from each game’s VGLC representation
except for using a common tile for background and path. For all
domains, paths are represented using a Mario character sprite.

3.2 Sequential Segment Generation using VAEs
To build our models, we trained a VAE on each of SMB, KI and MM
as well as on the blended SMB-KI domain. VAEs [13] learn con-
tinuous, latent representations of data, and consist of an encoder
network which learns to map data to a lower-dimensional vector in
the latent space and a decoder network which learns to reconstruct
the original data from this latent vector. This is achieved by training
via minimizing a loss function that consists of two terms: 1) the
reconstruction error and 2) the Kullback-Leibler (KL) divergence—a

Figure 1: Comparison of reconstruction error computation
between the standard approach and our modified approach.

statistical measure of the similarity between two probability distri-
butions. Minimizing the former reduces the error between inputs
and reconstructed outputs produced by the decoder while minimiz-
ing the KL divergence between the latent distribution and a known
prior (typically a Gaussian) enforces the latent space to model a
continuous, informative distribution. We modify the computing of
the reconstruction error to enable our approach.

Our input consists of 16x16 segments. Typically, the reconstruc-
tion error would be computed between the segment output by the
decoder and the corresponding segment that was passed through
the encoder. Instead, in our approach, we compute this error be-
tween the decoder output and the segment that follows the cor-
responding segment that was encoded. This simple modification
enables the VAE to learn a sequential model of segment generation
where the encoder maps a given segment into a latent vector but
the decoder maps that latent vector into the segment that would
sequentially follow the original segment in a level. This is depicted
in Figure 1. The algorithm shown below thus enables generation of
a sequence of segments that follow a logical gameplay progression
and hence can be combined into a coherent level.

Algorithm 1 GenerateLevel(init_segment, n)
Initialize level to init_seдment
num_seдments = 1
seдment = init_seдment
while num_seдments ≤ n do
z ← Encoder (seдment)
seдment ← Decoder (z)
Add seдment to level
num_seдments += 1

end while
return level

All models were trained using PyTorch [20] and used the same
architecture. Encoders and decoders each consisted of 4 linear lay-
ers with ReLU activation. The decoder output was further passed
through a sigmoid layer. All models used a 128-dimensional latent
space and were trained for 10000 epochs with the Adam optimizer
and a learning rate of 0.001 decayed by 0.1 every 2500 epochs. Ad-
ditionally, to aid in training, the weight of the KL-divergence term
in the variational loss was annealed linearly from 0.0 to 1.0 over
the first 2500 epochs.

3.3 Placement Classification
While the above modification gives us a sequential segment-based
level generation model, it still only improves upon existing gener-
ation approaches along one direction. To generate levels that can
dynamically progress along any direction, we need to determine
where to place a generated segment in relation to the previous seg-
ment. For this purpose, for each domain, we train a random forest
classifier on its segments. Here the inputs are the 16x16 segments
and each label is the direction where the next segment appears in
the original level. Thus, given a generated segment, the classifier
determines in which direction (up, down, left or right) it should be
placed with respect to the previous segment. We trained the clas-
sifiers using a 70%-30% train-test split for each domain, obtaining
accuracies of 100% on each of SMB, KI and SMB-KI and 98.73% for
MM. For the MM training set, we oversampled the vertically pro-
gressing segments till we had an equal number of segments in all
directions to account for class imbalance. Combining the classifier
with the VAE, gives us the following generative pipeline.

Algorithm 2 GenerateLevelWithDirs(init_segment, n)
level ← GenerateLevel(init_segment, n)
level_with_dirs ← ∅
for seдment in level do
dir ← Classi f ier (seдment)
Add (seдment ,dir) to level_with_dirs

end for
return level_with_dirs

Note that for the domains we used, only MM and the SMB-KI
blend require a classifier. All levels in SMB and KI progress in one
direction (right and up respectively) so in these cases, it is sufficient
to simply place the generated segments one after another to get a
coherent level. However for generality, we still used the classifier for
every domain in all of our evaluations. A potential pitfall of using
the classifier is dealing with segments that are incorrectly classified.
The most common form of mis-classification that could disrupt
the progression of a level is along an individual axis (i.e. segments
that should be followed in the downward direction misclassified
as upward and vice-versa; segments that should be followed to the
right being misclassified as left and vice-versa). These are common
because often times such segments taken individually could make
sense in either direction. Segments that proceed upward and down-
ward in MM for example, often share similar structures. Similarly,
an individual segment in SMB taken in a vacuum could equally
progress to the left or to the right. In such cases, it is the progression
of the level generated up to that segment that determines the cor-
rect direction for the next segment rather than the segment itself.
To account for this potential issue, we prevent the classifier from
predicting the next direction to be the direction that connects the
newly generated segment to the previous one i.e. the direction that
if the newly generated segment were to be placed using it, would
overwrite the previous segment. This is done by using the classifier
prediction with the second highest likelihood if the prediction with
the highest is the direction to avoid.

4 RESULTS
We tested our approach using a three-part evaluation, focusing
on 1) the continuous nature of generated levels compared to past
methods, 2) properties of generated blended levels and 3) the quality
of generated levels that are arbitrarily long. We describe each part
in the following sections.

4.1 Discontinuity
To test if levels generated using our methods have a better sense
of progression than past methods, we introduced a Discontinuity
metric. We define this as the absolute distance between path tiles
along the adjoining edge of two successive segments. That is, if two
segments are connected horizontally, we compute the displacement
between the path tiles on the columns at the edge connecting the
two segments. If either column does not have a path tile, the metric
returns 16 by default since the maximum height of a column is
16 and thus the path tiles can be at most 15 tiles from each other.
For segments connected vertically, this is similarly computed using
the rows at the edge of the two segments. Thus, lower the value,
the more continuous the path is from one segment to the next.
The reasoning for this metric is that levels with a better sense
of progression would have a more continuous path through its
segments rather than a path with a lot of displacement between
where it ends for one segment and where it begins for the next.
While by no means a perfect measure of progression through a
level, it nevertheless gives a sense of the nature of the path through
a level and is thus suitable for comparison with past generative
methods. For our computations, we ignored the fact that KI levels
wrap around horizontally.

For evaluation, we generated 100 levels each for SMB, KI, MM
and SMB-KI using two methods: 1) using the generative loop de-
scribed in Algorithm 2, where segments are generated conditioned
on the previous, and 2) stitching together segments generated in-
dependently of each other from randomly sampled latent vectors,
which is how whole levels are generated using past methods. For
the rest of the paper, we refer to these methods as sequential and
independent respectively. Each generated level consisted of 12 seg-
ments for SMB and KI and 16 for MM since those were respectively
the average number of 16x16 segments in levels from the origi-
nal games. For combined SMB-KI, generated levels consisted of 12
segments. Results are shown in Table 1.

For all games, the sequential method led to significantly lower
Discontinuity values than the independent method, thus suggesting
that levels generated using the former have more continuous paths
through their segments. Note that the differences are greater for
MM and SMB-KI since as we have discussed, segments generated
using the independent method for these two often leads to levels
that are not traversable where as for SMB and KI, the independently
generated levels are often playable even if not as continuous as
sequentially generated ones.

Examples of sequential and independently generated levels for
SMB are in Figures 4 and 5, for KI in Figure 6, for MM in Figures 8
and 9, and for SMB-KI in Figure 7. Based on visual inspection, the
sequential method generates levels with a more continuous flow
from segment to segment than the independent method. While ex-
pected, it is worth noting that using the sequential method, starting

Game Sequential Independent
SMB 3.86 ± 2.28 5.91 ± 2.04
KI 3.99 ± 2.59 7.37 ± 1.99
MM 6.54 ± 2.63 11.18 ± 1.69

SMB-KI 5.4 ± 2.42 9.84 ± 1.76
Table 1: Average per-segment Discontinuity values along
with standard deviation. AWilcoxonRank SumTest showed
differences to be significant with p < .001 in all cases.

generation with the initial segment of an original level produces
a level very similar to the original, as seen in Figures 5, 6(b) and
9, while the independent method of course does not do so since
segments are generated independently. A byproduct of independent
segment generation is that independently generated levels seem
to be more diverse, less predictable and result in more directional
changes for games that progress in multiple directions. In the right
context, these are desirable features and thus it would be interesting
in the future to look at methods capable of trading off between the
better playability and continuity of the sequential method with the
increased variety of the independent approach.

4.2 Blending
The ability to generate levels progressing in multiple directions also
enables us to move beyond generating segments that blend games
progressing in different directions to entire levels that do so. To
test blending, we generated 100 12-segment blended SMB-KI levels
using a VAE trained on segments from both games as described
previously. We generated 6 sets of 100 such levels with each set
differing in the choice of initial segment. The first set used initial
segments sampled randomly from the SMB-KI latent space. The
remaining five used initial segments obtained by interpolating be-
tween latent vectors corresponding to actual SMB and KI segments
at intervals of 25%. Thus we obtained 5 such sets labeled as SMB-0,
SMB-25, SMB-50, SMB-75 and SMB-100, indicating the distance in-
terpolated from the KI segment to the SMB segment. We compared
the blended levels with the original SMB and KI levels using the
following tile-based segment-level metrics:
• Density: the proportion of a segment occupied by tiles that the
player can stand on such as blocks, ground and platforms
• Non-Linearity: a measure of how a segment’s topology fits to a
line, calculated by computing the mean square error of running
linear regression on the topmost point of columns in a segment.
Zero value indicates perfect linearity

Blend SMB KI
SMB-0 0.5 99.5
SMB-25 4 96
SMB-50 86.1 13.9
SMB-75 85 15
SMB-100 94.3 5.7

Random Blend 43.4 56.6
Table 2: Percentage of segments (out of 100x12 = 1200) classi-
fied as SMB-like and KI-like using the directional classifier.

(a) Density (b) Non-Linearity (c) Leniency

(d) Interestingness (e) Path-Prop

Figure 2: Per-segment tile metrics for original SMB and KI levels along with different types of blends.

(a) Density (b) Non-Linearity (c) Leniency

(d) Interestingness (e) Path-Prop (f) Discontinuity

Figure 3: Per-segment metric values plotted for each grouping of 16 segments for MM and each grouping of 12 segments for
the other games. x-axis values indicate 1st such grouping, 2nd such grouping etc. y-axis indicates average metric value for the
corresponding group of segments.

• Leniency: the proportion of a segment that is not occupied by
any enemy or hazard tiles
• Interestingness: the proportion of a segment occupied by inter-
actable items such as collectables and powerups
• Path-Prop: the proportion of a segment occupied by path tiles

Results are given in Figure 2 and show that the values for blended
levels fall mostly between those for SMB and KI, suggesting that the
properties of the generated levels do blend those of the two original
games, especially in terms of Density, Path-Prop and Nonlinearity.

Values for Leniency and Interestingness for blended levels are be-
tween those for SMB and KI as well but not in the expected pattern
and speaks to generated levels having fewer enemies, hazards and
collectible items than the originals.

Additionally, we also looked at the proportion of SMB-like and
KI-like segments that were generated for the different sets of blends.
Since we know that SMB and KI levels progress exclusively to the
right and upward respectively, we can use our directional classifier
as a proxy for this purpose. That is, blended segments classified
to have the next segment to the right can be deemed to be more

se
qu

en
tia

l
in
de
pe
nd

en
t

Figure 4: Example SMB levels generated using sequential (above) and independent (below) methods starting with the same
randomly generated initial segment.

or
ig
in
al

se
qu

en
tia

l
in
de
pe
nd

en
t

Figure 5: Original SMB level from the VGLC [31] (top) and example levels generated with the initial segment of the original
using the sequential (middle) and independent (below) methods.

SMB-like while those classified to have the next segment be to the
top can be deemed KI-like. Results for this are shown in Table 2. We
see that levels generated from random latent vectors perform the
most amount of blending while those generated from interpolated
vectors heavily favor the game with the higher proportion in the
interpolation, mostly ignoring the actual proportion itself. Thus,
while this approach is successful in generating blended levels, in
the future, we would like to augment it such that the nature and
amount of blending is more controllable.

4.3 Progression
For our final evaluation, we wanted to demonstrate the ability of
our approach to generate arbitrarily long levels without the quality
or characteristics of later segments deteriorating. We generated 100
levels of 120 segments for each of SMB, KI and SMB-KI and 100
levels of 160 segments for MM (i.e. levels approximately 10 times
the size of an average level) and computed the averageDiscontinuity
and tile-based metrics defined above per segment for each of the
10 sub-levels (i.e. each set of 16 segments in MM and each set of
12 segments in the others). Results for this are shown in Figure
3. Ideally, we would like to see little variation in terms of metric
values for all 10 sets of segments and this indeed bears out in the
results for all metrics and games except for Discontinuity for MM
which actually seems to get lower as more segments are generated.
A possibility for this is that the MM model might be falling into a
pattern of generating similar (or the same) segments over and over
again causing little variation in path and hence low Discontinuity.
This ties into the broader problem of VAEs suffering from posterior

collapse [14, 15, 21] where the decoder learns to reconstruct data
while ignoring a subset (or in the worst case, all) of the latent
dimensions, resulting in an uninformative latent space. Though we
trained our models using KL-annealing [2, 5] to specifically account
for this, and we do not encounter it for regular-sized levels, it is
possible that the problem manifests itself when trying to generate
larger levels and needs to be studied more thoroughly in the future.

5 CONCLUSION AND FUTUREWORK
In this work, we presented a novel PCGML approach that combines
the use of a variational autoencoder and a random forest classifier
to produce a model for sequential platformer level generation. Our
results demonstrate that this enables generation of more coherent
platformer levels than past approaches, generation of platformer
levels that progress in multiple directions, blending of levels from
games that progress differently and generation of levels that are
arbitrarily long without suffering from a loss of quality. There are
several considerations for future work.

While we evaluated our model in terms of continuity of gener-
ation and blending, we did not specifically evaluate the classifier
on generated segments, mainly in part due to generated segments
not having a ground truth to test against. In the future, we could
compare classifier-based segment placement with other placement
strategies, optimizing for metrics such as continuity and playability.

Our approach demonstrated the feasibility of generating levels
for multi-directional platformers such as Mega Man but there is
massive room for improvement in terms of quality of models and
generated levels, reliability of generation and controllability, all of

sequential independent original sequential independent

(a) (b)

Figure 6: (a) Example KI levels generated using sequential
(left) and independent (right) methods starting with same
randomly generated initial segment. (b) Original KI level
from the VGLC [31] (left) and example levels generatedwith
initial segment of original using the sequential (middle) and
independent (right) methods.

which should be investigated in future work. Moreover, none of
the games we used had levels progressing from right-to-left. While
our classifier was trained to work with all four directions in mind
and should work as is for right-to-left progression, this needs to be
empirically validated in the future.

se
qu

en
tia

l
in
de
pe
nd

en
t

Figure 7: Example blended SMB-KI levels generated using
the sequential (above) and independent (below) methods
starting with the same randomly generated initial segment.

se
qu

en
tia

l
in
de
pe
nd

en
t

Figure 8: Example MM levels generated using the sequen-
tial (top) and independent (bottom) methods with the same
randomly generated initial segment.

Additionally, while our method demonstrably allows for gen-
eration of traversable, blended levels, the current approach does
not have any direct means of controlling the blend proportions.
It is possible to use some of the related latent variable evolution
strategies from [23] but this needs to be empirically tested in future
work. To this end, we could use conditional variants of the VAE [17].
Such models can explicitly condition the generation of segments
on properties such as direction and game type and thereby allow
designers to generate segments with greater control.

or
ig
in
al

se
qu

en
tia

l

in
de
pe
nd

en
t

Figure 9: Original MM level from the VGLC [31] (top) and example levels generated with the initial segment of the original
using the sequential (middle) and independent (bottom) methods.

Finally, we intend to test this approach with more games and
more diverse blends composed of more than two games. The abil-
ity to generate traversable blended levels opens up the possibility
of generating new mechanics which combined with these newly
blended levels could form the foundation for generating entire
blended games in the future.

REFERENCES
[1] Margaret A. Boden. 2004. The Creative Mind: Myths and Mechanisms. Psychology

Press.
[2] Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew M. Dai, Rafal Jozefowicz,

and Samy Bengio. 2016. Generating sentences from a continuous space. arXiv
preprint arXiv:1511.06349v4 (2016).

[3] Capcom. 1987. Mega Man. Game [NES].
[4] Steve Dahlskog, Julian Togelius, and Mark J Nelson. 2014. Linear levels through

n-grams. Proceedings of the 18th International Academic MindTrek (2014).
[5] Hao Fu, Li Chunyuan, Liu Xiaodong, Jianfeng Gao, Asli Celikyilmaz, and

Lawrence Carin. 2019. Cyclical annealing schedule: a simple approach to miti-
gating KL vanishing. arXiv preprint arXiv:1903.10145 (2019).

[6] Edoardo Giacomello, Pier Luca Lanzi, and Daniele Loiacono. 2018. Doom Level
Generation using Generative Adversarial Networks. In IEEE Games, Entertain-
ment, Media Conference (GEM).

[7] Ian Goodfellow, Jean Abadie-Pouget, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative Adversarial
Nets. In Advances in Neural Information Processing Systems.

[8] Jake Gutierrez and Jacob Schrum. 2020. Generative Adversarial Network rooms
in generative graph grammar dungeons for The Legend of Zelda. arXiv preprint
arXiv:2001.05065v1 (2020).

[9] Matthew Guzdial and Mark Riedl. 2016. Learning to blend computer game levels.
arXiv preprint arXiv:1603.02738 (2016).

[10] Matthew Guzdial and Mark Riedl. 2018. Automated game design via conceptual
expansion. In Fourteenth Artificial Intelligence and Interactive Digital Entertain-
ment Conference.

[11] Matthew Guzdial and Mark Riedl. 2018. Combinatorial creativity for procedural
content generation via machine learning. InWorkshops at the Thirty-Second AAAI
Conference on Artificial Intelligence.

[12] Rishabh Jain, Aaron Isaksen, Christoffer Holmgård, and Julian Togelius. 2016.
Autoencoders for level generation, repair and recognition. In Proceedings of the
ICCC Workshop on Computational Creativity and Games.

[13] D.P. Kingma and M. Welling. 2013. Auto-encoding Variational Bayes. In The 2nd
International Conference on Learning Representations (ICLR).

[14] James Lucas, George Tucker, Roger Grosse, and Mohammad Norouzi. 2019. Don’t
blame the ELBO! A linear VAE perspective on posterior collapse. In 33rd Confer-
ence on Neural Information Processing Systems (NeurIPS).

[15] James Lucas, George Tucker, Roger Grosse, andMohammadNorouzi. 2019. Under-
standing posterior collapse in generative latent variable models. In International
Conference on Learning Representations (ICLR).

[16] Simon M. Lucas and Vanessa Volz. 2019. Tile pattern KL-divergence for analysing
and evolving game levels. In Proceedings of the Genetic and Evolutionary Compu-
tation Conference. 170–178.

[17] Mehdi Mirza and Simon Osindero. 2014. Conditional Generative Adversarial
Networks. arXiv preprint arXiv:1411.1784 (2014).

[18] Nintendo. 1985. Super Mario Bros. Game [NES].
[19] Nintendo. 1986. Kid Icarus. Game [NES].
[20] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,

Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in PyTorch. In NIPS Autodiff Workshop.

[21] Ali Razavi, Aaron van den Oord, Ben Poole, and Oriol Vinyals. 2019. Prevent-
ing posterior collapse with Delta-VAEs. In International Conference on Learning
Representations (ICLR).

[22] Anurag Sarkar and Seth Cooper. 2018. Blending levels from different games
using LSTMs. In 2018 Experimental AI in Games Workshop.

[23] Anurag Sarkar, Zhihan Yang, and Seth Cooper. 2019. Controllable level blending
between games using Variational Autoencoders. In 2019 Experimental AI in Games
Workshop.

[24] Sam Snodgrass and Santiago Ontañón. 2016. An approach to domain transfer in
procedural content generation of two-dimensional videogame levels. In Twelfth
Artificial Intelligence and Interactive Digital Entertainment Conference.

[25] Sam Snodgrass and Santiago Ontañón. 2017. Learning to generate video game
maps using Markov Models. IEEE Transactions on Computational Intelligence and
AI in Games (2017).

[26] Sam Snodgrass and Anurag Sarkar. 2020. Multi-domain level generation and
blending with sketches via example-driven BSP and Variational Autoencoders.
In Proceedings of the 15th Conference on the Foundations of Digital Games.

[27] Adam Summerville, Matthew Guzdial, Michael Mateas, and Mark O Riedl. 2016.
Learning player tailored content from observation: platformer level generation
from video traces using LSTMs. In Twelfth Artificial Intelligence and Interactive
Digital Entertainment Conference.

[28] Adam Summerville andMichael Mateas. 2016. SuperMario as a String: Platformer
Level Generation Via LSTMs. Proceedings of 1st International Joint Conference of
DiGRA and FDG (2016).

[29] Adam Summerville, Joe Osborn, Christoffer Holmgard, and Daniel W. Zhang.
2017. Mechanics automatically recognized via interactive observation: jumping.
In Proceedings of the Twelfth International Conference on Foundations of Digital

Games.
[30] Adam Summerville, Sam Snodgrass, Matthew Guzdial, Christoffer Holmgård,

Amy K. Hoover, Aaron Isaksen, Andy Nealen, and Julian Togelius. 2018. Proce-
dural Content Generation via Machine Learning (PCGML). IEEE Transactions on
Games (2018).

[31] Adam James Summerville, Sam Snodgrass, Michael Mateas, and Santiago On-
tañón. 2016. The VGLC: The video game Level Corpus. In Seventh Workshop on
Procedural Content Generation at First Joint International Conference of DiGRA
and FDG.

[32] Sarjak Thakkar, Changxing Cao, Lifan Wang, Tae Jong Choi, and Julian Togelius.
2019. Autoencoder and evolutionary algorithm for level generation in Lode
Runner. In IEEE Conference on Games.

[33] Vanessa Volz, Jacob Schrum, Jialin Liu, Simon M. Lucas, Adam Smith, and Sebas-
tian Risi. 2018. Evolving Mario levels in the latent space of a deep convolutional
Generative Adversarial Network. In Proceedings of the Genetic and Evolutionary
Computation Conference. 221–228.

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Level Data
	3.2 Sequential Segment Generation using VAEs
	3.3 Placement Classification

	4 Results
	4.1 Discontinuity
	4.2 Blending
	4.3 Progression

	5 Conclusion and Future Work
	References

