Vectorization of Gridded Urban Land Use Data

Chris Sexton
Johns Hopkins University Applied Physics Lab

cgsexton@gmail.com

ABSTRACT

In the digital entertainment industry, cities are one of the
largest artifacts modeled by artists. One alternative to mod-
eling an entire city by hand is to use an urban simulation.
Often, those simulations use a gridded terrain representa-
tion. Translating gridded simulation results into a more
continuous, realistic representation useful in games and film
can often be difficult. Our vectorization process transforms
gridded urban land use data into a representation useful in
entertainment pipelines and many GIS or online mapping
tools. The process has three major phases. In the first
phase, the raster data is analyzed and the transportation
layer is abstracted and filtered. Next, the city blocks are
constructed from the raster data. Third, the blocks are sub-
divided and land use and density are assigned to each con-
structed parcel. The results are much smoother than the
gridded input, but maintain the land use patterns of that
input. We output these results in a GIS format readable by
a wide range of modeling tools.

Categories and Subject Descriptors
1.3 [Computer Graphics]: Miscellaneous

1. INTRODUCTION

As gaming platform capabilities increase, generating com-
pelling 3D content is becoming one of the most challeng-
ing problems facing the digital entertainment industry. The
foremost example of this is the city, which is both extremely
large and highly detailed. Urban synthesis addresses this
problem with automation, creating and placing buildings,
tracing roads, carving out urban zones and determining land
use. Our existing urban synthesis tool [7] uses a gridded sim-
ulation to produce its output. This grid is quite adequate
for simulation, but far too coarse for entertainment applica-
tions. In this paper, we describe a method for automatically
vectorizing gridded urban simulation data.

Our gridded synthesis tool uses agent-based simulation to
create land use patterns, distributing commercial, residen-

Permission to make digital or hard copies of all or part of this work for

Benjamin Watson
North Carolina State University

bwatson@ncsu.edu

tial, industrial, road and other land uses across the cityscape.
Agents act as builders, determining property lines and as-
signing each resulting parcel’s use according to a value model.
The output matches modern development patterns well, both
statistically and visually [7]. But as a modeling environ-
ment, realism cannot be our tool’s only goal: it must allow
artists to shape the city to meet their applied needs, which
are often unrealistic by design. Thus users can input partial
cities and let the tool fill in the blanks, or give direction to
the simulation by manipulating local and global parameters.

The vectorization process we describe here moves through
three stages: building a topologically connected transporta-
tion network, extracting and identifying city blocks, and
subdivision of blocks into parcels. Vectorization requires at
least three gridded layers as input: one describing land use,
one describing usage density, and another describing own-
ership including property lines. Roads are disjoint if they
are not four-connected (a grid element at location (z,y) is
only four-connected to the elements at locations (z + 1,y),
(x—1,y), (z,y+1) and (z,y—1)). We output our vectorized
results in ESRI format, a widely used GIS format that can
be read by many modeling tools.

To understand why we are interested in this sort of data
filtering and enhancement, it is important to have an overview
of procedural modeling on the whole. We review procedu-
ral modeling, with a special focus on urban synthesis and
image vectorization. We then describe our algorithms and
show results, which compare well to real-life GIS data.

2. RELATED WORK

Procedural modeling is a term that refers to many differ-
ent techniques in computer graphics used to automate the
creation of models and textures. Today’s hardware is in-
creasingly powerful, allowing the use of more detailed models
in rendering. Unfortunately, as model complexity increases,
so does the amount of storage needed to store models and
the amount of time needed to model complex objects. For
example, for the movie King Kong, over 90,000 3D buildings
were created, from over 22 million components [19]. Most
of New York City was modeled procedurally, while artists
focused on the landmark buildings. This allowed them to
concentrate on the artistically important aspects of the city

personal or classroom use is granted without fee provided that copies aremodel, without having to be worried about the other 90,000
not made or distributed for profit or commercial advantage and that copies buildings that needed to be recreated for the film. In our
bear this notice and the full citation on the first page. To copy otherwise, 10 areg, of research, procedural modeling is used for urban syn-

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
PCGame£010, June 18, Monterey, CA, USA
Copyright 2010 ACM 978-1-4503-0023-0/10/06 ...$10.00.

thesis. For a good survey of urban procedural modeling, see
[17] and [15]. We will only review the most directly related
work.



2.1 Urban Synthesis

Perhaps the first example of urban synthesis came from
Stiny [13], who published an article in Environment & Plan-
ning (B) that analyzed Palladio’s system of architecture
and derived a set of rules describing it. They organized
these rules into a parametric shape grammar that generates
ground plans, and used it to generate Palladio’s Villa Mal-
contenta. Many architectural synthesis techniques make use
of grammars derived from Stiny’s.

In 2001, Parish and Miiller [11] presented research us-
ing L-systems to model cities. Their system takes as input
images representing elevation, population density and road
constraints, and generates highways and streets, subdivides
land, then creates some simple building geometry. Later,
Wonka et al. [20] improved on this work with split gram-
mars, which are capable of generating buildings facades with
a wide range of styles and designs. Miiller et al. [10] then de-
rived CGA Shape, a grammar that permits creation of entire
building exteriors in very high detail.

More recently, Chen et al. [3] use tensor fields to represent
prevailing urban orientations, allowing users both local and
global interactions with the field to modify street networks.
Unlike Parish and Miiller [11], these interactions provide ex-
tensive user control. Aliaga et al. [1] described methods
for generating urban layouts from street network data and
snippets of aerial-view imagery. In 2009, Vanegas et al. [14]
extended prior work to infer urban layouts by using Urban-
Sim [16], one of the leading urban simulations developed by
geographers.

Simulations developed to meet the urban synthesis needs
of the entertainment and related industries differ from geo-
graphic simulations in three primary respects. First, while
geographic simulations emphasize accuracy and prediction,
synthesizing simulations are essentially modeling tools. As
such, they are interactive, steerable, and often used to pro-
duce completely fictional (if convincing) environments. Sec-
ond, as tools for understanding and anticipating urban pro-
cesses, geographic simulations need not simulate cities in
any great spatial detail. In contrast, synthesizing simula-
tions are used to produce rich visuals, and therefore simu-
late at a much finer spatial scale. Finally, real-world accu-
racy and understanding in geographic simulation typically
require extensive and highly detailed input. Synthesizing
simulations may be modeling completely fictional environ-
ments, and are meant to amplify human input, not simply
transform it. They therefore require much less from the user,
if indeed they require anything at all. Our own synthesizing
simulation [7] is an excellent example of these differences: it
is highly steerable, simulates down to a 12 meter scale, and
can produce results without any input whatsoever. Weber
et al.’s [18] simulation has many similarities to our own, but
works on a vector rather than a gridded substrate. It does
not require vectorization, but like vector displays, slows as
output complexity grows.

2.2 \Vectorization

The subfield of computer graphics that may be most closely
related to our research is image vectorization, which trans-
forms image rasters into sets of continuous edges and curves.
Our vectorization process differs from image vectorization by
exploiting its noiseless input and knowledge of urban con-
tent. For a good summary of research on vectorization of
rasterized line drawings, see [§].

The skeletonization of binary images by image thinning
is a fundamental image processing technique, one we use to
assist in subdivision of city blocks into parcels. Zhang and
Suen [21] described a simple, efficient method that produces
fairly low quality skeletons. Improving this quality requires
significant additional computation. Fan et al. [6] traverse a
sparsely sampled version of the input image, creating an or-
thogonally zigzagging set of connected bars, which are used
to generate a skeleton. Dori and Liu [5] extended this idea to
use medial axis points, improving quality further. Zou and
Yan [22] instead used constrained Delaunay triangulation,
raising quality at skeletal joints.

These vectorization techniques have found wide use in ur-
ban applications. Chiang et al. [4] matched rasterized to
vectorized maps by comparing intersection “fingerprints” ex-
tracted from the maps. Carrozzino et al. [2] and Mena [9]
both vectorize road imagery. They use the high resolution
of their input to compensate for noise. Because our input is
noise-free, we can work effectively with much lower resolu-
tion input.

3. OUR URBAN GRID VECTORIZATION
3.1 Input Blocks and Parcels

We have two basic forms of input data from the city sim-
ulation: gridded layers and a per-parcel list. The three lay-
ers describe land use, usage density and ownership. Each
patch (grid cell) in the land use layer indicates one of the
following types: unused; water; secondary or primary road;
residential, commercial, industrial, park or reserved uses. In
the density layer, patches contain a population level. Each
patch in the ownership layer contains a parcel ID. Each en-
try in the per-parcel list describes usage density, land use
type, and member patches. The land use data can be seen
in Figure 1.

Figure 1: View of land use data from simulation

After loading the land use data into a simple 2D array,
we create blocks. There are two different types of blocks:
internal blocks are completely surrounded by existing roads,
while external blocks are not. External blocks are typically
found on the edge of the city, where development continues
(or has been constrained by the end of the simulated grid).



Internal blocks are made up of patches that are not part of
roads or bodies of water. We construct them using a “flood
fill”: beginning with a seed patch, we visit all patches adja-
cent to the partially completed block and add them to the
block if their type is appropriate. (Note that two or more
blocks may be surrounded by the same roads when water
or reserved land is also surrounded by these roads). We
compute external blocks similarly, but also exclude undevel-
oped land. We associate simulated parcels with blocks by
traversing the parcel list, and for each parcel, locating the
block that contains the first patch in each parcel.

3.2 Vectorizing Roads

Having identified the grid cells that make up blocks, we
begin building vectorized roads and blocks. We first create
an undirected graph that represents the road network. We
link graph nodes if the corresponding road grid cells are four-
connected, then smooth the resulting network by averaging
connected graph neighbors. We next connect primary and
secondary road segments and eliminate overly short graph
cycles. After additional smoothing, we define road curbs
and intersections, and place circles on culs-de-sac.

3.2.1 Defining Road and External Block Topology

The simulated input may have directional ambiguity at
primary-secondary road intersections. We eliminate redun-
dant connections between secondary and primary roads to
fix these ambiguities. From each secondary road patch adja-
cent to a primary road, we visit all four-connected secondary
patches, halting at any primary-disconnected patches. In
this case a patch is primary-disconnected if it is neither
four- nor eight-connected to a primary road patch (a grid
element (z,y) is eight-connected to all of its four-connected
neighbors, as well as the elements at locations (z +1,y+1),
(z+1,y—1), (x—1,y+1) and (z—1,y—1)). If we do not reach
any primary-disconnected patches, then all visited patches
are directly adjacent to primary road and may be deleted
because they go only where the primary road already goes.
If we do reach primary-disconnected patches, then for each
disconnect we save only one path back to the primary road.
The patches in this path are in the shortest path between
the disconnected patch and the closest patch that is four-
connected to primary road. We remove all visited patches
not in one of these shortest paths and give them a type that
indicates they were once road but are no longer. This can
be seen in the green squares in the bottom of Figure 2.

We next build an undirected graph from the road patches
found in the input data. We begin by locating the graph
nodes. We iterate over all patches in the data set, treat-
ing primary and secondary road patches differently, because
primary and secondary roads have different widths (sec-
ondary roads are one patch wide, primary width are two
patches wide). We locate the graph node for secondary road
patches at the patch center. Primary road patches receive a
graph node only if their east, southeast, and south neighbor
patches are also primary roads, effectively creating primary
road graph nodes only when the corresponding patch is at
the center of the wider primary road. Primary graph nodes
are located at the patch’s southeast corner.

We now revisit the patches in the simulation data to con-
nect the graph nodes. A road patch’s node is linked to the
node corresponding to any four-connected road patch. Note
that many primary road patches will not have a correspond-

Figure 2: Elimination of unclear road patches

ing graph node, and will therefore not become part of the
road graph. At this stage in the process, because graph
nodes are located on a grid and are four-connected, links
are oriented in one of the four cardinal directions. The up-
per left of Figure 2 shows an example.

To eliminate very short graph cycles in the secondary
roads and reclaim single patches of land, we iterate through
all secondary graph nodes, attempting to follow links in the
south, east, north and west directions. If we are able to
follow all of these links, we know there is a short cycle in
the graph, representing four patches organized into a 2x2
square. To eliminate it, we find the patch four-connected to
two patches that aren’t road, remove it from the graph, and
mark the patch as removed road. This stage can be seen in
the upper right of Figure 2. Cycles in primary roads and
other larger clusters of connections are handled in a later
stage by condensing clusters through determining input and
output nodes and centroiding the loops. These larger clus-
ters of loops do not lend themselves well to returning land
for development.

We now examine all graph nodes to identify intersections,
which are defined as nodes having more than two links,
or linked only to other intersections. Having found these
points, we then replace clusters of adjacent intersections
with one simplified intersection, unless the intersection node
would only be connected to two other nodes (See Figure 3).
We find the location for simplified intersections by averaging
the location of the unsimplified adjacent intersections.

Figure 3: Cluster of loops that don’t represent an
intersection

We now enter a logistical and organizational phase. Un-
til this point, the graph was represented using a (partially



filled) four-connected lattice corresponding to the simulation
grid, enabling us to use techniques dependent on cardinal
direction or grid adjacency. We now discard this represen-
tation in favor of the more traditional, unconstrained and
efficient representation that contains only those links a node
actually possesses. We also look for linked graph nodes that
are more than two patch widths away from each other, elim-
inating such long links by inserting nodes until all resulting
links are shorter than two patch widths. These distant nodes
can occur when intersections are condensed and other cycles
are removed from the network. This ensures that all nodes
have roughly the same weight in the filtering process de-
scribed below. Finally, we place every node’s links into a
clockwise ordering from due north. This step supports in-
ferences about turning direction.

While roads form the perimeters for most blocks, they do
not for external blocks. We now construct external perime-
ters for any external blocks found earlier. Such perimeters
will have undeveloped land on one side, and developed land
on the other. We therefore gather a connected list of all
patch vertices that bound an undeveloped patch. Two ver-
tices in this list are connected only if the edge between them
is undeveloped on one side and undeveloped on the other.
To build perimeters, we first search for a vertex in our list
that only has one point connected to it (such points are lo-
cated where the perimeter meets the road). Starting from
this point, we walk the connectivity in our list, inserting vis-
ited vertices into our perimeter list and removing them from
our bounding list. When connectivity ceases and the other
side of the perimeter is reached, we check the bounding list,
and if it is not empty, begin working on the next perimeter.
We convert the resulting perimeter lines to a series of nodes
and links connected to our road network. Finally, we are
left with a network ready for manipulation.

We now begin a number of steps designed to reposition
roads to improve appearance. We start by straightening
intersections, which due to the input simulation grid have
connecting roads that meander heavily. At each intersec-
tion, for each pair of incoming roads, we evaluate their fit
to a line. If that fit is reasonably good, we snap road nodes
near the intersection to the fitted line. We use a linear re-
gression on nodes in the pair that are at most five patch
widths from the intersection. We define “reasonably good”
to be a residual norm of 1.2 or less (an experimentally de-
termined value that is slightly over one patch width). For
an example of intersection straightening, see Figure 4.

Figure 4: Intersection straightening (Left: before,
Right: after)

3.2.2 Merging and Smoothing Road Graphs

To smooth roads, we average the locations of connected
road nodes. We do not initially smooth nodes at dead ends,
intersections or primary/secondary road connections. Aver-
aging only includes nodes of the same road type, and only
occurs when there are at least two linked nodes. Having
repositioned roads outside of intersections, we straighten in-
tersections again. We calculate the dot product between all
pairs of incoming roads, and when the angle between the pair
approaches 180 degrees, we simply place the intersection on
the line between the two closest nodes on the incoming road
pair. An example of how smoothing operates on the network
can be seen in Figure 5.

Figure 5: Road smoothing and intersection straight-
ening

Until this point, primary and secondary road graphs have
been completely disjoint. This is a natural consequence of
their separate land use types in simulation output. Having
connected, cleaned and smoothed both graphs separately, we
merge them into one graph. Nodes that must be merged cor-
respond to secondary road patches that are four-connected
to a primary patch. We merge these nodes by linking them
with the closest node in the primary network. After all such
merges, we simplify any resulting intersection clusters, as
described above. The end result of this pass can be seen in
Figure 6.

We use a similar process to connect external block perime-
ters to the road graph, producing a complete partitioning of
the map into blocks. In this case, perimeter ends are con-
nected to any road node not already connected to a perime-
ter.

Figure 6: After connecting secondary and primary

Simulation, cleaning and smoothing sometimes produce
short road segments between intersections that enclose un-
developed land that is awkward to develop. We eliminate
these by locating cycles in the road graph less than 15 nodes
or less, and removing one segment.



We now simplify overly complex intersections to avoid
problems when we eventually add road geometry such as
curbs. We remove any dead ends connected directly to the
intersection and angled within 90 degrees of another road.
We also remove any nodes that are extremely close to the
intersection. Primary nodes are removed if they are within
one patch width of one another, secondary nodes if they are
within 1/2 patch width.

We now smooth the road graph further (eight smooth-
ing passes seems to work well for most simulation output).
To avoid over-smoothing of high frequency features, we add
nodes where curvature is high. If the angle defined by three
consecutive nodes outside an intersection is less than 90 de-
grees, we add three nodes on each side of the central node.
If the angle is less than 135 degrees, we add two nodes per
side, and if it is less than 160 degrees, we add one per side.

3.2.3 Defining Curbs

We now add curbs, pavement and culs-de-sac to the road
graph. (We leave external block perimeters unchanged).
Primary curbs are one patch width away from the graph
nodes, while secondary curbs are half a patch width away.
Curbs are oriented parallel to the graph links in their seg-
ments, and pavement is a triangle strip using curb vertices
as its vertices. At dead ends on secondary road segments,
we add octagonal culs-de-sac.

Road segments that terminate at intersections require more
complex processing that ensures that their pavement does
not overlap. Processing proceeds by considering curbs at-
tached to each adjacent pair of road segments, when an in-
tersection’s road segments are ordered using a consistent
clockwise winding. The result of processing each pair is a
curb corner. Each road segment in the current pair has two
parallel curbs. Each such curb intersects both of the parallel
curbs from the other road segment, forming four candidate
corners. We find the correct corner by inserting all can-
didates into the intersection’s winding order, and choosing
the corner between the current road segment pair. Note
that when the segments in a pair are parallel or nearly so,
no corner is actually required, and in fact the floating-point
calculation of any curb intersection is unreliable. In such
cases we simply add an edge between the ending vertices of
two of the road segment curbs. We identify the two curbs to
connect in this way by inserting all four curbs for the pair
into the intersection’s winding order. The two curbs to con-
nect will both be located between the current road segment
pair.

With these corners we can trim our road segment tri-
angle strips, and construct a convex intersection polygon.
Road segment pavement terminates with an edge between
the corners of each of its curbs. Intersection pavement is
represented by a convex polygon constructed from the cor-
ner vertices, in clockwise intersection order. Figure 7 shows
road geometry.

3.3 Vectorizing Blocks

We find block boundaries by tracking surrounding curb
loops or external boundaries. At some locations, boundaries
will include parcel or water edges. We then identify oblong
or “pierced” blocks that would benefit from internal spines
used during subdivision into parcels. Oblong blocks have
oriented bounding boxes with aspect ratios less than 1:2.
“Pierced” blocks have a cul-de-sac in their boundary, and

Figure 7: Road geometry with road edges high-
lighted

should have parcel boundaries radiating from the cul-de-sac
circle into a spine.

3.3.1 Outlining Blocks

Vectorized blocks match the gridded blocks we extracted
from the input simulation results. To find all of our internal
blocks, we follow road edges or links in a consistent direc-
tion (e.g. turning right for a clockwise order). Each time we
reach our starting point, we enclose a new block. One result-
ing “block” is in fact the entire outer boundary of our road
network. We save this perimeter for later use, but discard
it from our current list of vectorized blocks.

Blocks containing water should not include that water.
We therefore split these blocks using water boundaries. We
identify simulation blocks containing water, identify the cor-
responding vectorized block, and insert a smoothed version
of the water boundary in the simulated block into the vec-
torized block.

We vectorize external blocks using the external block bou-
ndaries generated earlier, and the external road perimeter
that we saved during the creation of internal city blocks.
We begin by reconnecting the two endpoints of each exter-
nal block boundary back to the external road perimeter. We
then transform each such boundary into a completely closed
block boundary by exploiting the perimeter’s clockwise or-
dering (recall that like internal blocks, the perimeter lists
road nodes in clockwise order). Vectorized external block
boundaries begin at the lower-numbered (in the clockwise
perimeter order) end of the saved portion of the external
block boundary, connect back to the road perimeter, and are
then closed by following the perimeter in counter-clockwise
order. If an external block has two or more saved exter-
nal boundary lengths (meaning there is undeveloped land
bounded by the road perimeter and the external block), then
it is followed rather than the road perimeter. The exter-
nal block is completely enclosed when we reach the starting
point of our traversal.

Road smoothing at particularly sharp turns can leave some
external blocks inside the smoothed road perimeter. We
identify such blocks by finding those with boundary lines
with both end points inside the road perimeter and with
more than 50% of nodes inside perimeter, and effectively
delete the corresponding blocks by removing these boundary
lines before the corresponding external blocks are vectorized.

To associate all newly generated vectorized blocks with
the simulation blocks, we calculate the center of each simu-
lation block. If the center is inside the simulation block, we
look for the vectorized block that contains the center and



associate it with the simuGlation block. If the center isn’t
actually in the block (e.g. the block is highly concave), we
instead use the parcel center that is closest to the block cen-
ter, ensuring that that the center is actually inside the block.
If there are any simulation blocks that aren’t associated with
generated vectorized block, we assign them to the vectorized
block that has the center closest to the center of the simula-
tion block. We do not often make use of this failsafe. Note
that blocks containing water boundaries will already have
simulation-vector pairings, making the matching operations
here unnecessary.

3.3.2 Finding Block Spines

When city blocks are more rectangular than square, parcel
boundaries often form a “spine” aligned with the long axis
of the block. These spines ensure efficient and profitable
allocation of property. We define such “oblong” blocks as
those having an aspect ratio less than 1:2. We compute the
aspect ratio using a bounding box oriented to fit the block
tightly using principal component analysis. In addition, any
block containing a cul-de-sac receives a spine: such dead
ends are only inserted into blocks when interior parcels need
access to the road network, and a spine ensures that these
interior parcels will be created. We do not create spines on
any exterior block, because they would make the parcels on
the exterior side of the parcel inaccessible.

We build spines by making a binary image approxima-
tion of the block, performing constrained Zhang/Suen image
thinning [21], and then converting the image back into a vec-
torized representation. (Other thinning methods would gen-
erate slightly improved spines, but they are much more com-
plex and less efficient). To convert the block into a binary
image, we rasterize the block’s axis-aligned bounding box
using eight pixels per patch. If a pixel is inside our block’s
polygon, it is set to black, otherwise it is set to white. After
thinning, we re-vectorize the result by adding edges between
all four-connected spine pixels. In any remaining points that
have one or fewer edges, we add edges between any eight-
connected neighbors. We then smooth the resulting vector-
ized spine by averaging vertices with their neighbors, prune
any short branches off the primary spine that are less than
two edges in length, and trim any spine ends that are within
one patch width of a block edge. Finally, we make the spine
look more like a manmade, piecewise-linear polyline using
simplification. This process traverses the spine, summing
edge-to-edge turning angles at each vertex. When this sum
exceeds 20 degrees (an empirically determined threshold),
we use an edge to replace all the vertices between the ver-
tex at which summing began, and the vertex at which the
threshold was exceeded. To make parcel simplification easier
(see below), we ensure that spine vertices containing more
than two edges are not directly connected by a single edge.

3.4 Describing Parcels

To create parcels of ownership and assign use and density,
we first match each vectorized block to a simulated block.
We then subdivide each block to produce the same number
of parcels as the simulated block, using a constrained and
randomized binary space partitioning. We assign parcel use
and density with a similarly randomized and constrained
process that references the matching simulation block. We
generate 50 such parcelings, and retain only the parceling
that matches the simulation most closely from the simula-

tion. We then export the data to an ESRI shapefile that can
be read by various GIS and modeling tools.

3.4.1 Generating Parcels

Urban blocks are divided into separate parcels. Accord-
ingly, we must divide the vectorized blocks into parcels. If
a vectorized block has a spine, we start by comparing the
number of spine ends to the number of simulated parcels. If
there are more parcels than ends, spine-based parceling will
create too many parcels, and we discard the spine. Other-
wise, we add parcel boundaries between each end and the
closest point on the vectorized block. Figure 11 shows the re-
sults. If the number of vectorized parcels is still less than the
number of parcels in the corresponding simulated block, we
subdivide further. To match the vectorized subdivision as
closely as possible to the simulation’s subdivision, we gener-
ate many (currently 50) randomized subdivisions, and pick
the subdi- vision that matches the simulation subdivision
most closely. The simulation grid’s resolution makes its par-
cel boundaries extremely coarse, and only loosely defines the
target subdivision.

Figure 8: Example of generated spines for blocks

Further subdivision begins by making a copy of the block.
We repeatedly split the largest remaining parcel in a con-
strained, random fashion, continuing until we produce the
number of parcels in the simulated block. Each split creates
two new parcels with a new parcel edge that splits and is per-
pendicular to a road-facing edge. We choose the road-facing
edge randomly and place the new parcel edge at a random
location biased toward the center of the road-facing edge
using a normal distribution. To avoid inappropriate splits
caused by local perturbations in the block boundary (which
contains edges with length of roughly one patch width or
less), we simplify the boundary of the block’s copy, and per-
form subdivision on that simplified block. We then transfer
each split to the original vectorized block, where it may not
be perpendicular to the road-facing edge it intersects. We
evaluate this split against the following constraints:

1. Minimum parcel size: each new parcel must have at
least 75% of the area of the minimum parcel size in
the simulated block.

2. Road access: each parcel must have a road facing edge
that is at least 0.5 patch widths in length.

3. Limited rectangularity: if the original parcel had an
aspect ratio greater than 0.25 (not too rectangular),
the two generated parcels must have an aspect ratio
that is at least as large (not more rectangular). If the
original parcel has an aspect ratio less than 0.25 (too
rectangular), both of the two generated parcels must
increase the aspect ratio (be less rectangular).



4. Limited variation in residential parcel size: If residen-
tial land use fills 70% of the block, parcels must be
roughly equal in size. Neither parcel may have less
than 30% of the original parcel’s area.

If the new parcels meet these constraints, we allow the
split and attempt the next. If we cannot generate an ac-
ceptable split of the largest parcel after multiple attempts,
we attempt to split a random parcel.

Because the simulation does not explicitly output unde-
veloped block parcels, we will have to subdivide some vec-
torized blocks into more parcels than the simulation explic-
itly indicates, in order to create these undeveloped “nega-
tive” parcels. We define these undeveloped parcels as being
parcels that have no land use and are available for develop-
ment. If the proportion of undeveloped land in a block is
more than 25%, we mark it for additional subdivision and
parceling. We could determine the number of additional
parcels to create by counting the number of disjoint regions
of undeveloped land in the simulated block, however many
of these regions are too small to bother recreating. Our
current heuristic is to double the number of undeveloped
parcels already created in the vectorized block, after the
initial round of land use assignments. The added parcels
provide enough additional granularity for our vectorizer to
maintain the overall proportion of developed to undeveloped
land (see land use assignment below).

3.4.2 Filling Parcels

We assign uses to newly subdivided blocks by attempting
to reproduce the distribution of uses in the corresponding
simulated block. In a common trivial case, all parcels in the
simulated block have the same land use. If such blocks are
also at least 75% developed, we simply assign all parcels in
the vectorized block the same use. Otherwise, we assign land
use stochastically, using a distribution based on differences
between the vectorized block and the corresponding simu-
lation block. In particular, the distribution is shaped by
distance between parcel centers, proportions of use in each
block and differences between parcel sizes. More detail can
be found in [12]. We show examples of land use assignment
in Figures 9, 10, and 11.

4. DISCUSSION AND CONCLUSION

The computer graphics industry is facing a daunting con-
tent challenge, especially in urban content. This paper de-
scribed a method for transforming gridded urban simulation
output into a vectorized format. We believe this translation
is successful, as we hope Figures 1, 9, 10, and 11 demon-
strate. Compare especially Figures 1 and 9, which show in-
put and result. The vectorization smooths while preserving
the essence of the urban distribution.

We demonstrated our vectorizer with a specific simula-
tion, but designed it to be easily generalized to other sim-
ulations, assuming only that there are several types of land
use, that road connectivity is indicated by grid adjacency,
and that grid cells are grouped into parcels. To date, there
are few gridded simulations beside our own with the fine spa-
tial detail needed by urban synthesis applications and our
vectorizer. One such may be UrbanSim [16], which others
have used for urban synthesis [14]. As computation becomes
cheaper and more powerful, we expect many other gridded
urban geographic simulations to gain the resolution required

HE=
EREN_H |
=5 [

D]HL

Figure 9: Example of land use and density assign-
ment (yellow = residential, blue = industrial, red
= commercial, green = park, white = undeveloped,
dark is higher density). Output corresponds to Fig-
ure 1. Upper half is land use, lower half is density.

by urban synthesis.

Weber et al.’s [18] simulation is most similar to our own,
and because it combines simulation and vectorizer into one
application, it runs more quickly than our own separate ap-
plications. We believe that interactivity in the two systems
is comparable, though fundamentally different, with our sys-
tem offering interaction both on the simulation grid itself,
and on the vectorized result; while Weber et al. have no grid.
As both a computational and interactive substrate, the grid
may offer advantages over vectors in the long run, with the
potential of GPU acceleration and an intuitive painting in-
teraction. Our decoupling of vectorizer and simulation also
allows the use of different simulators.

Future work should explore these possibilities, and address
the limitations of our vectorizer. Each of its stages may be
reparameterized and repeated as needed; but interactivity
could be improved with undo, and with stage reordering
(when algorithmic constraints allow). Especially in older
urban neighborhoods, real-world parcel size can vary widely.
It may be necessary to adjust the parceling algorithm in our
vectorizer to reflect this.

5. ACKNOWLEDGMENTS
This research was supported by NSF grant 0326542.

6. REFERENCES

[1] D. G. Aliaga, C. A. Vanegas, and B. Benes.
Interactive example-based urban layout synthesis. In
SIGGRAPH Asia '08: ACM SIGGRAPH Asia 2008
papers, pages 1-10, New York, NY, USA, 2008. ACM.

[2] M. Carrozzino, F. Tecchia, and M. Bergamasco.
Urban procedural modeling for real-time rendering. In
8D-ARCH 2009: 73D Virtual Reconstruction and
Visualization of Complex Architectures”. ISPRS, 2009.



Figure 10: A second example of vectorized land use

Figure 11: A third example of vectorized land use

8]

[4]

[5]

(6]

[7]

G. Chen, G. Esch, P. Wonka, P. Miiller, and E. Zhang.
Interactive procedural street modeling. In SIGGRAPH
’08: ACM SIGGRAPH 2008 papers, pages 1-10, New
York, NY, USA, 2008. ACM.

Y.-Y. Chiang, C. A. Knoblock, and C.-C. Chen.
Automatic extraction of road intersections from raster
maps. In GIS ’05: Proceedings of the 13th annual
ACM international workshop on Geographic
information systems, pages 267-276, New York, NY,
USA, 2005. ACM Press.

D. Dori and W. Liu. Sparse pixel vectorization: An
algorithm and its performance evaluation. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 21(3):202-215, 1999.

K.-C. Fan, D.-F. Chen, and M.-G. Wen. A new
vectorization-based approach to the skeletonization of
binary images. ICDAR, 02:627, 1995.

T. Lechner, B. Watson, U. Wilensky, S. Tisue,

(8]

(11]

(12]

(16]

(17]

(21]

(22]

M. Felsen, A. Moddrell, P. Ren, and C. Brozefsky.
Procedural modeling of urban land use. Technical
Report TR-2007-33, North Carolina State University
Department of Computer Science, Raleigh, NC,
October 2007.

W. Lieu and D. Dori. From rasters to vectors:
Extracting visual information from line drawings.
PAA, 2(1):10-21, 1999.

J. B. Mena. Automatic vectorization of segmented
road networks by geometrical and topological analysis
of high resolution binary images. Know.-Based Syst.,
19(8):704-718, 2006.

P. Miiller, P. Wonka, S. Haegler, A. Ulmer, and L. V.
Gool. Procedural modeling of buildings. In Proceedings
of ACM SIGGRAPH 2006 / ACM Transactions on
Graphics, volume 25, pages 614-623, New York, NY,
USA, 2006. ACM Press.

Y. I. H. Parish and P. Miiller. Procedural modeling of
cities. In E. Fiume, editor, Proceedings of ACM
SIGGRAPH 2001, pages 301-308, New York, NY,
USA, 2001. ACM Press.

C. G. Sexton. Vectorization of Gridded Urban Land
Use Data. Master’s thesis, North Carolina State
University, November 2007.

G. Stiny and W. J. Mitchell. The palladian grammar.
Environment and Planning B, 5(1):5-18, 1978.

C. A. Vanegas, D. G. Aliaga, B. Benes, and

P. Waddell. Visualization of simulated urban spaces:
Inferring parameterized generation of streets, parcels,
and aerial imagery. IEEE Transactions on Vis and
Computer Graphics, 15(3):424-435, 2009.

C. A. Vanegas, D. G. Aliaga, P. Wonka, P. Miiller,

P. Waddell, and B. Watson. Modeling the appearance
and behavior of urban spaces. In State of the Art
Reports, EUROGRAPHICS 2009, pages 1-16.
EUROGRAPHICS, 2009.

P. Waddell. Urbansim: Modeling urban development
for land use, transportation, and environment
planning. Journal of the American Planning
Association, 68(3):297-314, 2002.

B. Watson, P. Miiller, O. Veryovka, A. Fuller,

P. Wonka, and C. Sexton. Procedural urban modeling
in practice. IEEE Computer Graphics and
Applications, 28(3):18-26, 2008.

B. Weber, P. Miiller, P. Wonka, and M. Gross.
Interactive geometric simulation of 4d cities.
Computer Graphics Forum, April 2009.

C. White. King kong: the building of 1933 nyc. In
SIGGRAPH ’06: ACM SIGGRAPH 2006 Sketches,
page 96, New York, NY, USA, 2006. ACM Press.

P. Wonka, M. Wimmer, F. Sillion, and W. Ribarsky.
Instant architecture. In SIGGRAPH ’03: ACM
SIGGRAPH 2003 Papers, pages 669-677, New York,
NY, USA, 2003. ACM Press.

T. Y. Zhang and C. Y. Suen. A fast parallel algorithm
for thinning digital patterns. Commun. ACM,
27(3):236-239, 1984.

J. J. Zou and H. Yan. Cartoon image vectorization
based on shape subdivision. In CGI ’01: Proceedings
of the International Conference on Computer
Graphics, page 225, Washington, DC, USA, 2001.
IEEE Computer Society.



