
Analyzing the Expressive Range of a Level Generator
Gillian Smith Jim Whitehead

Expressive Intelligence Studio
University of California, Santa Cruz

Santa Cruz, CA 95064
{gsmith, ejw}@soe.ucsc.edu

ABSTRACT
This paper explores a method for analyzing the expressive range of
a procedural level generator, and applies this method to Launchpad,
a level generator for 2D platformers. Instead of focusing on the
number of levels that can be created or the amount of time it takes
to create them, we instead examine the variety of generated levels
and the impact of changing input parameters. With the rise in the
popularity of PCG, it is important to be able to fairly evaluate and
compare different generation techniques within similar domains.
We have found that such analysis can also expose unexpected bi-
ases in the generation algorithm and holes in the expressive range
that drive future work.

Categories and Subject Descriptors
I.2.1 [Artificial Intelligence]: Applications and Expert Systems –
Games.

General Terms
Measurement, Experimentation.

Keywords
Procedural level generation, expressive range, evaluation methods.

1. INTRODUCTION
Procedural level generators typically excel at creating a large num-
ber of levels in a short period of time. However, it is impossible to
judge the quality of a level generator based only on these statistics:
a generator that can create tens of thousands of levels in a matter of
minutes is useless if many of those levels are effectively identical
to each other. It is instead better to judge the worth of a generator
by the style and range of levels that it can create. The most common
strategy for evaluating procedural content generators is to show ex-
amples of the kinds of content that can be produced. For example,
showing different racetracks generated according to personalized
fitness functions [5] or weapons that support different play styles
[1]. This qualitative data may also be accompanied by statistics on
the speed of the generator or the quantity of content that can be pro-
duced [2][4]. While this approach provides useful and interesting
information about the generator, it does not fully capture the range
of content that can be created and does not easily support analysis
of how this range changes for different fitness functions or gen-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

PCGames 2010, June 18, Monterey, CA, USA
Copyright 2010 ACM 978-1-4503-0023-0/10/06... $10.00

eration parameters. This paper presents a more rigorous approach
to analyzing procedural content generators by classifying the style
and variety of levels that can be generated: we call this quality of a
generator its expressive range.

We envision a future in which game designers, or even the players
themselves, will want to choose different off-the-shelf level gen-
erators to include in their games. In this scenario, it is important to
be able to satisfactorily describe each generator’s expressive range,
both to set expectations for the user and to make it easier to com-
pare different generators. For example, one designer may wish to
use a level generator that creates long, linear levels designed for
speed runs, whereas another may want a generator that can create
intricate levels for the player to explore.

Understanding the expressive range of a level generator is also use-
ful in driving future work in level generation. It can uncover unex-
pected biases and dependencies in the generator, and show weak-
nesses in the variety of levels that can be produced.

We consider the following questions when judging the expressive
range of a level generator:

1. What are appropriate ways to measure and compare produced
levels?

2. How does the design of the generation algorithm itself affect
the kinds of levels that can be produced?

3. What parameters should the designer expect to have control
over, and how does altering these parameters impact the pro-
duced levels?

4. What are the extremes of the output of the system, and how can
levels produced by it be compared?

This paper presents a framework for analyzing the expressive
range of procedural content generators, and applies this approach
to Launchpad, our level generator for 2D platformer games.

2. ANALYTICAL APPROACH
Our approach to analyzing the expressive range of a procedural
level generator takes the following steps.

•	 Determine	appropriate	metrics. In order to evaluate the range
of content that can be created, we must be able to measure and
compare the results. To do this, we determine a set of metrics
for describing levels. These metrics should be based on global
properties of the levels, and ideally should be emergent quali-
ties from the point of the view of the generator. This is because
we would like to later view how the space changes by altering
parameters to the generator.

•	 Generate	content. Run the generator a large number of times to
collect a representative sample of the generator’s capabilities,
scoring the content according to previously defined metrics.

•	 Visualize	generative	space. The expressive range of the genera-
tor can be defined by the range of metrics scores. We suggest
that one effective way to view this range is by creating a num-
ber of 2D histograms, where the axes are defined by the range
of metrics scores. This allows us to view peaks of commonly
created content and holes in the generative space.

•	 Analyze	 impact	 of	 parameters. We can now easily visualize
how the expressive range of the generator is influenced by
changing parameters and fitness functions applied to the gen-
erator, by comparing the difference between graphs of the gen-
erated space.

The remainder of this paper discusses how we apply this approach

to Launchpad, an author-guided procedural level generator for 2D
platformers.

3. SYSTEM OVERVIEW
Launchpad is a rhythm-based level generator for 2D platformer
games [3], such as Super Mario World or Sonic the Hedgehog. The
rhythm is that which players feel in their hands: for example, three
short hops with minimal running in between, or three long jumps
at a more leisurely pace. Levels are made up of a series of rhythm
groups, which are short, non-overlapping sections of a level made
up of a rhythm and geometry. Rhythm groups are constructed using
a two-tiered, grammar-based approach. The first stage creates a set
of player actions and assigns these actions to a specific time in a
rhythm. The second stage uses a grammar to consume each action
and replace it with geometry corresponding to that action, laid out
according to a model of player movement, thus ensuring that all
levels are playable. Launchpad creates a number of candidate lev-
els which are then tested against designer-specified critics to deter-
mine the best level. A diagram describing Launchpad’s generation
algorithm is shown in Figure 1.

The designer has input to Launchpad in the form of manipulating
“style” parameters: the line that the level should fit to, the frequen-
cy of certain geometry components being used, and the types of
rhythms it can use to create levels. A table of these parameters is
shown in Table 1.

3.1 Critics
To form a complete level, rhythm groups are fit together side by
side, bridging them with a small platform that acts as a rest area
for the player. Many different levels are generated, forming a pool
of candidate levels which are then tested against a set of critics
to determine the best level. These critics allow a designer to ex-
ert control over global properties of the level, and address a com-
mon problem with using design grammars: over-generation. De-
sign grammars are good at capturing local constraints, but some
design constraints are global. Given a generated level, a critic can
perform tests over the entire level to determine how well a given
global constraint is met. Our level generator has two critics: fitting
to a designer-specified line (line distance), and ensuring the correct
distribution of level components according to the designer’s style

Figure 1. Level generation algorithm. Green squares indicate
generated entities, while blue circles indicate constraints. Style
parameters influence many aspects of level generation.

Rhythm Type A rhythm can be “regular”, “swing”, or “random”. Regular rhythms have evenly spaced beats, swing
rhythms have a short followed by long beat, like a heartbeat. Random rhythms have randomly
spaced beats.

Density Rhythm density describes how closely beats are spaced. Density can be “low”, “medium”, or “high”.

Length Rhythms can be 5, 10, 15, or 20 seconds long.

Action Probabilities The probability of a jump action occurring vs. a wait.

Component Jump Geometry The probability of specific geometry being chosen for a jump action. Geometry available: jumping
up or down, with or without gaps; enemy, spring, fall.

Wait Geometry The probability of specific geometry being chosen for a wait action. Geometry available: stomper,
moving platform.

Line Equation The path that the user would like the final level to follow, defined as a set of non-overlapping line
segments.

Critic Weighting The importance that Launchpad should place on the line distance critic vs. the component distance
critic.

Table 1. Parameters for Launchpad that a user can manipulate.

specification (component distance). The importance of each critic
can be adjusted to alter the kinds of levels produced.

Two examples of levels created by Launchpad are shown in Figure
2. Further details of the generator and a discussion of the role of
critics can be found in our previous work [3]. This paper focuses
instead on exploring Launchpad’s expressivity and how designer
control influences the space of levels it can create.

4. EXPRESSIVITY
This paper explores two ways to evaluate the expressive range of a
level generator: by considering design implications inherent to the
generation algorithm and by analyzing the space of levels that can
be created. In this section, we present our approach by applying it
to Launchpad, a system for creating 2D platformer levels.

4.1 Algorithm Implications
Certain kinds of platformer levels are excluded from Launchpad’s
expressive range due to our algorithm for level generation. In par-
ticular, we create levels that are dexterity-based rather than explo-
ration-based. The challenge derived from these levels is more about
perfectly timing movement through a series of obstacles, rather
than seeking out hidden areas. Furthermore, we do not support the
player choosing a path to take through the level, which is common
in games likes Sonic the Hedgehog, and do not support the player
turning around. Because of this, Launchpad’s levels tend to favor a
“speed run” play style.

4.2 Comparison Metrics
In order to describe the expressive range of a level generator, we
must first be able to compare the levels that it produces. It is im-
portant that the metrics used for comparing levels are measuring
emergent properties of levels, rather than simply using the same
parameters that were used to guide the generator, so that we can
see how input parameters impact the resulting levels. We define
two different metrics for generated levels: linearity and leniency.
We chose these metrics as they describe global qualities of levels,
in terms of both their aesthetics and the gameplay. These qualities
are useful for building an understanding of the generator’s expres-
sive range, but are not the only metrics that could be used. A simi-
lar analysis could be performed with more sophisticated measures
such as the estimated time to completion or difficulty.

Linearity measures the “profile” of produced levels. We do this by
fitting a line to the level and determining how well the geometry
fits that line. The goal here is not to determine exactly what the line
is, but rather to understand Launchpad’s ability to produce levels
that range between highly linear and highly non-linear. Examples
of levels that fall at the extremes of this scale are shown in Figure
3. The linearity of a level is measured by performing linear regres-
sion, taking the center-points of each platform as a data point. We
then score each level by taking the sum of the absolute values of the
distance from each platform midpoint to its expected value on the
line, and divide by the total number of points. Results are normal-
ized to [0,1], where 0 is highly linear and 1 is highly non-linear.
However, in our experiments, levels rarely had a linearity score
higher than 0.7.

It is important to note that linearity and the line distance critic mea-
sure two different things, and that it is possible for a level to be
judged “highly linear” for linearity but have a poor line distance
score (Figure 4). The line distance critic is a measure for how well
the level fits a designer-specified control line, whereas linearity
measures the overall linearity of the produced level. Linearity is an
aesthetic measure; line distance is a design heuristic.

Leniency describes how forgiving the level is likely to be to a
player. We hesitate to quantify the difficulty of generated levels,
as this is a subjective score and dependent on the specific ordering
of component. However, it seems reasonable to describe levels that
provide fewer ways for the player to come to harm as being more
lenient than other levels. To measure this, we assign scores to each
type of geometry that can be associated with a beat:

• +1.0: gaps, enemies, falls

• +0.5: springs, stompers

Figure 2. Two levels produced by Launchpad. Gray boxes are platforms, green boxes are platform joiners between rhythm groups
Large red boxes are stompers, small red boxes are enemies, and small green boxes are springs.

Figure 3. Three levels with different linearity scores. (A) Lin-
earity = 0.05. (B) Linearity = 0.31 (C) Linearity = 0.67.

Figure 4. A level with that is highly linear (linearity = 0.1) but
has a poor line distance critic value (line distance = 39.42). The
pink line in the background is the control line that the level is
supposed to follow.

• -0.5: moving platforms

• -1.0: jumps with no gap associated

These scores are based on an intuitive sense of how “lenient” com-
ponents are towards a player, with higher scores indicating less le-
nience. Example levels with different lenience scores are shown in
Figure 5.

4.3 Expressive Range
With metrics allowing us to compare produced levels, we can de-
scribe the expressive range of the level generator by generating a
number of levels and ranking them by their linearity and leniency
scores. Figure 6 shows the expressive range for the generator when
all components are weighted equally and all rhythms are being
used. Each hexagon is colored to indicate the number of generated
levels that have the corresponding linearity and leniency scores.
All graphs used in this paper are based on 10,000 generated levels,
unless stated otherwise.

The expressive range is clearly biased towards more linear levels,
and slightly biased towards less lenient levels. The leniency bias is
likely due to the greater number of non-lenient components. The
linearity bias is a more interesting result, as we believe it is due to
what was originally intended to be a small implementation detail in
the level generator. When a component is chosen for inclusion in a
rhythm group, the probability of that component appearing again is
slightly increased. This detail was added late in the development of
Launchpad, to fix a problem we perceived in our early levels: they
did not have any discernable patterns, as we tend to see in games
like Super Mario World where there tends to be locally repeated
geometry. However, this approach means components that incur a
height difference (e.g. jumping up to a new platform) are likely to
stack up to create linear segments of the level. The linearity bias is
an unintended side effect of this design decision. This issue high-
lights the importance of performing analysis as presented in this
paper: we never would have realized such a minor change had such
far-reaching effects without it.

4.4 Influence of Generation Parameters
As noted in Table 1, there are a number of different parameters that
can be varied to change the kinds of levels that Launchpad produc-
es. In this section, we examine the impact on linearity and leniency
when changing the rhythm and component parameters. Critics are
not taken into account in this section: we look at all levels that are
created, rather than only ones that surpass the critic threshold.

Rhythm	type. We begin by varying the different kinds of rhythms
used to generate levels and holding component probabilities con-
stant and evenly weighted. Figure 7 shows the results of varying the
rhythm type. The regular rhythm type offers the most variation of
all the rhythm types, with no sharp peak in the graph. This distribu-
tion is what we had initially expected to see for all rhythm; howev-
er, it seems that swing and random rhythms are more constraining,
contributing heavily to the bias in all rhythms. We hypothesize that
these constraints are due to the potentially shorter amounts of time
given to jumps in swing and random rhythms. This leads to fewer
available actions, as a jump onto a spring requires much more time
in the air than a jump across a short gap. For swing rhythms, this
means that there will be fewer falls, springs, and moving platforms,
contributing to a higher average leniency score.

Figure 5. Three levels with different leniency scores. (A) Leni-
ency = -0.75. (B) Leniency = 0.0 (C) Leniency = 0.95.

Figure 6. Launchpad’s expressive range when all geometry
types are weighted equally. Linearity is measured on the x axis,
from 0.0 to 0.65. Leniency is measured on the y-axis, from -1.0
to 1.0. The color of each hexagon corresponds to the number
of levels that have the associated linearity and leniency scores.
The lighter the color, the more levels there are in that bin.

Figure 7. Varying rhythm type: (A) All rhythms, (B) only regular rhythms, (C) only swing rhythms, (D) only random rhythms.

Figure 8. Varying rhythm density: (A) All rhythms, (B) low density, (C) medium density, (D) high density rhythms.

Figure 9. Varying rhythm length: (A) All rhythms, (B) 5 second, (C) 10 second, (D) 15 second, (E) 20 second rhythms.

Figure 10. Varying chosen components. From top left to bottom right: (A) all components are weighted equally, (B) enemies are fa-
vored, (C) flat gaps are favored, (D) no gaps, (E) spring and fall are favored, (F) up and down jumps over gaps are favored. Colors
scale from 0 levels to 200 levels.

Rhythm	density. Figure 8 shows the results of varying rhythm den-
sity. Varying this parameter does not have a noticeable impact on
leniency, but higher densities do lead to more linear levels. This is
for the same reason that the generator is biased towards creating
linear levels; higher density rhythms have more actions in them,
and each action has a higher probability of the same component
being chosen as before.

Rhythm	 length. Figure 9 shows the results of varying rhythm
length. Again, there is a heavier bias towards creating more linear
levels in longer rhythms, as longer rhythms tend to have more ac-
tions in them. Longer rhythms also seem to produce slightly more
lenient levels; we hypothesize that this occurs for the same reason
as the linearity bias: if the generator chooses a highly lenient com-
ponent early in the rhythm group, the overall lenience of a rhythm
group is likely to be higher. Since levels composed entirely of long
rhythms have fewer total rhythm groups (since all levels that get
generated are approximately the same length), this biases the gen-
erator towards creating more lenient levels.

Geometry	Types. By varying the geometry types, we can see a dras-
tic shift in the leniency of levels and a slight shift in linearity. Fig-
ure 10 shows the results of favoring a specific kind of component
on the expressive range; other level components are allowed to be
chosen, but with a very low probability. Leniency differences are
easy to account for, as leniency is strongly correlated to the chosen
components. There are also some interesting shifts in linearity of
levels. Enemies and flat gaps tend to have mostly linear levels, due
to the profiles of these components: there is little height difference
at all. Similarly, gaps with a height difference tend towards have
more non-linear levels, especially springs and falls, which have the
largest height difference of all. The expressive range for favoring
springs and falls also has the largest leniency difference: this is
because springs and falls both take a large amount of time in the
air, and so can be chosen less often as fewer rhythms support them.
This means that other components appear more frequently in these
levels than in other levels favoring different components.

4.5 Incorporating Critics
Until now, we have ignored the role of critics in analyzing Launch-
pad’s expressive range. However, critics play an important role in
allowing a designer to refine the space of levels that can be created.
In this section, we examine the role of critics in evaluating expres-
sivity.

Figure 11 shows the effect of filtering the linearity vs. leniency
graphs we have been using by the line distance and component dis-
tance critics. Of the 10,000 levels that are generated, approximately
100 have a good critic measure: for line distance, this is a value less
than 5, and for component distance, a value less than 40. Unsurpris-
ingly, when filtering for levels that fit a straight line, the best levels
are highly linear. However, it is important to note that filtering for
component distance maintains a good range of both linearity and
leniency. There is no noticeable difference in these graphs when
changing the component frequency or control line parameters.

5. DISCUSSION AND FUTURE WORK
Expressivity is a complex concept, especially with regards to com-
puter-created content. We argue that expressivity emerges from
both the generation algorithms and the input to a system, and that
such expressivity can be unintentional. Humans assign meaning to

the content that the system creates, without the system itself need-
ing to understand this meaning. In other words, it is possible for
a system to be expressive without necessarily being creative. For
example, we do not argue that Launchpad is a creative system: al-
though it can generate many unique levels, there is no meaning
behind these levels beyond what we initially provide, i.e. rhythm.
Launchpad is not capable of evaluating the quality of its output by
any method other than pre-defined fitness functions. However, as
we have shown in this paper, Launchpad is capable of creating a
wide variety of levels, according to human-defined metrics, from
relatively small building blocks.

As preliminary work in this area, there is clearly a great deal of
potential future work. The first area is in determining better metrics
for comparing levels. This is especially important when considering
that a motivating factor for this work is being able to quantitatively
compare two different level generators. While we feel that linearity

Figure 11. The effect on linearity vs. leniency when filtering for
critic values. Colors describe the number of levels, where black
is 0 levels and white is 10 levels. Top: only using levels that have
a line distance score of less than 5. Bottom: only using levels
that have a component distance score of less than 40.

and leniency are important metrics for comparing platformer lev-
els, they are not sufficient on their own and there is plenty of room
for new and improved metrics. Solely aesthetic measures do not
seem sufficient; a model of player behavior, perhaps encompassing
different play styles, would be an interesting way of attacking this
problem. Difficulty is an obvious measure, but other measures may
include the perceived challenge due to pacing variation across the
level, or different camera positions.

We have also focused exclusively on a search-based, offline level
generator with minimal designer input. In online systems, it is less
clear what should be compared for expressive range, as content
changes over time in response to player actions. And in the pres-
ence of more sophisticated designer input, it becomes both more
important to measure generator expressivity and less clear how it
should be done. To accommodate a wide range of designers, the
generator should be able to generate a wide range of content that
fits a particular designer’s style.

It is our hope that this paper will spur discussion on appropriate
techniques for evaluating level generators, not just for the quality
of individual levels, but for the entire range of levels that they can
create.

6. ACKNOWLEDGMENTS
Our thanks to JD Stockford for his assistance in gathering data.

REFERENCES
[1] Hastings, E., Guha, R., and Stanley, K.O. 2009. Evolving Content in
the Galactic Arms Race Video Game. In Proceedings of the IEEE Sympo-
sium on Computational Intelligence and Games (CIG ’09). Milano, Italy.
September 7 – 10, 2009.
[2] Hullett, K. and Mateas, M. 2009. Scenario Generation for Emergency
Rescue Training Games. In Proceedings of the 4th International Confer-
ence on Foundations of Digital Games. Orlando, FL. April 26 – 30, 2009.
[3] Smith, G., Treanor, M., Whitehead, J., and Mateas, M. 2009. Rhythm-
based Level Generation for 2D Platformers. In Proceedings of the 4th Inter-
national Conference on Foundations of Digital Games. Orlando, FL. April
26 – 30, 2009.
[4] Tutenel, T., Smelik, R., Bidarra, R., and Jan De Kraker, K. 2009. Us-
ing Semantics to Improve the Design of Game Worlds. In Proceedings of
the Fifth Artificial Intelligence and Interactive Digital Entertainment Con-
ference (AIIDE ’09). Stanford, CA. October 14 – 16, 2009.
[5] Togelius, J., De Nardi, R., and Lucas, S. 2007. Towards Automatic
Personalised Content Creation for Racing Games. In Proceedings of the
IEEE Symposium on Computational Intelligence and Games (CIG ’09).
Honolulu, HI. 2007.

