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ABSTRACT
This paper explores a method for analyzing the expressive range of 
a procedural level generator, and applies this method to Launchpad, 
a level generator for 2D platformers. Instead of focusing on the 
number of levels that can be created or the amount of time it takes 
to create them, we instead examine the variety of generated levels 
and the impact of changing input parameters. With the rise in the 
popularity of PCG, it is important to be able to fairly evaluate and 
compare different generation techniques within similar domains. 
We have found that such analysis can also expose unexpected bi-
ases in the generation algorithm and holes in the expressive range 
that drive future work.

Categories and Subject Descriptors
I.2.1 [Artificial Intelligence]: Applications and Expert Systems – 
Games. 

General Terms
Measurement, Experimentation.

Keywords
Procedural level generation, expressive range, evaluation methods.

1. INTRODUCTION
Procedural level generators typically excel at creating a large num-
ber of levels in a short period of time. However, it is impossible to 
judge the quality of a level generator based only on these statistics: 
a generator that can create tens of thousands of levels in a matter of 
minutes is useless if many of those levels are effectively identical 
to each other. It is instead better to judge the worth of a generator 
by the style and range of levels that it can create. The most common 
strategy for evaluating procedural content generators is to show ex-
amples of the kinds of content that can be produced. For example, 
showing different racetracks generated according to personalized 
fitness functions [5] or weapons that support different play styles 
[1]. This qualitative data may also be accompanied by statistics on 
the speed of the generator or the quantity of content that can be pro-
duced [2][4]. While this approach provides useful and interesting 
information about the generator, it does not fully capture the range 
of content that can be created and does not easily support analysis 
of how this range changes for different fitness functions or gen-
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eration parameters. This paper presents a more rigorous approach 
to analyzing procedural content generators by classifying the style 
and variety of levels that can be generated: we call this quality of a 
generator its expressive range.

We envision a future in which game designers, or even the players 
themselves, will want to choose different off-the-shelf level gen-
erators to include in their games. In this scenario, it is important to 
be able to satisfactorily describe each generator’s expressive range, 
both to set expectations for the user and to make it easier to com-
pare different generators. For example, one designer may wish to 
use a level generator that creates long, linear levels designed for 
speed runs, whereas another may want a generator that can create 
intricate levels for the player to explore.

Understanding the expressive range of a level generator is also use-
ful in driving future work in level generation. It can uncover unex-
pected biases and dependencies in the generator, and show weak-
nesses in the variety of levels that can be produced.

We consider the following questions when judging the expressive 
range of a level generator:

1. What are appropriate ways to measure and compare produced 
levels?

2. How does the design of the generation algorithm itself affect 
the kinds of levels that can be produced?

3. What parameters should the designer expect to have control 
over, and how does altering these parameters impact the pro-
duced levels?

4. What are the extremes of the output of the system, and how can 
levels produced by it be compared?

This paper presents a framework for analyzing the expressive 
range of procedural content generators, and applies this approach 
to Launchpad, our level generator for 2D platformer games.

2. ANALYTICAL APPROACH
Our approach to analyzing the expressive range of a procedural 
level generator takes the following steps.

•	 Determine	appropriate	metrics. In order to evaluate the range 
of content that can be created, we must be able to measure and 
compare the results. To do this, we determine a set of metrics 
for describing levels. These metrics should be based on global 
properties of the levels, and ideally should be emergent quali-
ties from the point of the view of the generator. This is because 
we would like to later view how the space changes by altering 
parameters to the generator.

•	 Generate	content. Run the generator a large number of times to 
collect a representative sample of the generator’s capabilities, 
scoring the content according to previously defined metrics.



•	 Visualize	generative	space. The expressive range of the genera-
tor can be defined by the range of metrics scores. We suggest 
that one effective way to view this range is by creating a num-
ber of 2D histograms, where the axes are defined by the range 
of metrics scores. This allows us to view peaks of commonly 
created content and holes in the generative space.

•	 Analyze	 impact	 of	 parameters. We can now easily visualize 
how the expressive range of the generator is influenced by 
changing parameters and fitness functions applied to the gen-
erator, by comparing the difference between graphs of the gen-
erated space.

The remainder of this paper discusses how we apply this approach 

to Launchpad, an author-guided procedural level generator for 2D 
platformers.

3. SYSTEM OVERVIEW
Launchpad is a rhythm-based level generator for 2D platformer 
games [3], such as Super Mario World or Sonic the Hedgehog. The 
rhythm is that which players feel in their hands: for example, three 
short hops with minimal running in between, or three long jumps 
at a more leisurely pace. Levels are made up of a series of rhythm 
groups, which are short, non-overlapping sections of a level made 
up of a rhythm and geometry. Rhythm groups are constructed using 
a two-tiered, grammar-based approach. The first stage creates a set 
of player actions and assigns these actions to a specific time in a 
rhythm. The second stage uses a grammar to consume each action 
and replace it with geometry corresponding to that action, laid out 
according to a model of player movement, thus ensuring that all 
levels are playable. Launchpad creates a number of candidate lev-
els which are then tested against designer-specified critics to deter-
mine the best level. A diagram describing Launchpad’s generation 
algorithm is shown in Figure 1.

The designer has input to Launchpad in the form of manipulating 
“style” parameters: the line that the level should fit to, the frequen-
cy of certain geometry components being used, and the types of 
rhythms it can use to create levels. A table of these parameters is 
shown in Table 1.

3.1 Critics
To form a complete level, rhythm groups are fit together side by 
side, bridging them with a small platform that acts as a rest area 
for the player. Many different levels are generated, forming a pool 
of candidate levels which are then tested against a set of critics 
to determine the best level. These critics allow a designer to ex-
ert control over global properties of the level, and address a com-
mon problem with using design grammars: over-generation. De-
sign grammars are good at capturing local constraints, but some 
design constraints are global. Given a generated level, a critic can 
perform tests over the entire level to determine how well a given 
global constraint is met. Our level generator has two critics: fitting 
to a designer-specified line (line distance), and ensuring the correct 
distribution of level components according to the designer’s style 

Figure 1. Level generation algorithm. Green squares indicate 
generated entities, while blue circles indicate constraints. Style 
parameters influence many aspects of level generation.

Rhythm Type A rhythm can be “regular”, “swing”, or “random”. Regular rhythms have evenly spaced beats, swing 
rhythms have a short followed by long beat, like a heartbeat. Random  rhythms have randomly 
spaced beats.

Density Rhythm density describes how closely beats are spaced. Density can be “low”, “medium”, or “high”.

Length Rhythms can be 5, 10, 15, or 20 seconds long.

Action Probabilities The probability of a jump action occurring vs. a wait.

Component Jump Geometry The probability of specific geometry being chosen for a jump action. Geometry available: jumping 
up or down, with or without gaps; enemy, spring, fall.

Wait Geometry The probability of specific geometry being chosen for a wait action. Geometry available: stomper, 
moving platform.

Line Equation The path that the user would like the final level to follow, defined as a set of non-overlapping line 
segments.

Critic Weighting The importance that Launchpad should place on the line distance critic vs. the component distance 
critic.

Table 1. Parameters for Launchpad that a user can manipulate.



specification (component distance). The importance of each critic 
can be adjusted to alter the kinds of levels produced.

Two examples of levels created by Launchpad are shown in Figure 
2. Further details of the generator and a discussion of the role of 
critics can be found in our previous work [3].  This paper focuses 
instead on exploring Launchpad’s expressivity and how designer 
control influences the space of levels it can create.

4. EXPRESSIVITY
This paper explores two ways to evaluate the expressive range of a 
level generator: by considering design implications inherent to the 
generation algorithm and by analyzing the space of levels that can 
be created. In this section, we present our approach by applying it 
to Launchpad, a system for creating 2D platformer levels. 

4.1 Algorithm Implications
Certain kinds of platformer levels are excluded from Launchpad’s 
expressive range due to our algorithm for level generation. In par-
ticular, we create levels that are dexterity-based rather than explo-
ration-based. The challenge derived from these levels is more about 
perfectly timing movement through a series of obstacles, rather 
than seeking out hidden areas. Furthermore, we do not support the 
player choosing a path to take through the level, which is common 
in games likes Sonic the Hedgehog, and do not support the player 
turning around. Because of this, Launchpad’s levels tend to favor a 
“speed run” play style.

4.2 Comparison Metrics
In order to describe the expressive range of a level generator, we 
must first be able to compare the levels that it produces. It is im-
portant that the metrics used for comparing levels are measuring 
emergent properties of levels, rather than simply using the same 
parameters that were used to guide the generator, so that we can 
see how input parameters impact the resulting levels. We define 
two different metrics for generated levels: linearity and leniency. 
We chose these metrics as they describe global qualities of levels, 
in terms of both their aesthetics and the gameplay. These qualities 
are useful for building an understanding of the generator’s expres-
sive range, but are not the only metrics that could be used. A simi-
lar analysis could be performed with more sophisticated measures 
such as the estimated time to completion or difficulty.

Linearity measures the “profile” of produced levels. We do this by 
fitting a line to the level and determining how well the geometry 
fits that line. The goal here is not to determine exactly what the line 
is, but rather to understand Launchpad’s ability to produce levels 
that range between highly linear and highly non-linear. Examples 
of levels that fall at the extremes of this scale are shown in Figure 
3. The linearity of a level is measured by performing linear regres-
sion, taking the center-points of each platform as a data point. We 
then score each level by taking the sum of the absolute values of the 
distance from each platform midpoint to its expected value on the 
line, and divide by the total number of points. Results are normal-
ized to [0,1], where 0 is highly linear and 1 is highly non-linear. 
However, in our experiments, levels rarely had a linearity score 
higher than 0.7.

It is important to note that linearity and the line distance critic mea-
sure two different things, and that it is possible for a level to be 
judged “highly linear” for linearity but have a poor line distance 
score (Figure 4). The line distance critic is a measure for how well 
the level fits a designer-specified control line, whereas linearity 
measures the overall linearity of the produced level. Linearity is an 
aesthetic measure; line distance is a design heuristic.

Leniency describes how forgiving the level is likely to be to a 
player. We hesitate to quantify the difficulty of generated levels, 
as this is a subjective score and dependent on the specific ordering 
of component. However, it seems reasonable to describe levels that 
provide fewer ways for the player to come to harm as being more 
lenient than other levels. To measure this, we assign scores to each 
type of geometry that can be associated with a beat:

• +1.0: gaps, enemies, falls

• +0.5: springs, stompers

Figure 2. Two levels produced by Launchpad. Gray boxes are platforms, green boxes are platform joiners between rhythm groups 
Large red boxes are stompers, small red boxes are enemies, and small green boxes are springs.

Figure 3. Three levels with different linearity scores. (A) Lin-
earity = 0.05. (B) Linearity = 0.31 (C) Linearity = 0.67.

Figure 4. A level with that is highly linear (linearity = 0.1) but 
has a poor line distance critic value (line distance = 39.42). The 
pink line in the background is the control line that the level is 
supposed to follow.



• -0.5: moving platforms

• -1.0: jumps with no gap associated

These scores are based on an intuitive sense of how “lenient” com-
ponents are towards a player, with higher scores indicating less le-
nience. Example levels with different lenience scores are shown in 
Figure 5.

4.3 Expressive Range
With metrics allowing us to compare produced levels, we can de-
scribe the expressive range of the level generator by generating a 
number of levels and ranking them by their linearity and leniency 
scores. Figure 6 shows the expressive range for the generator when 
all components are weighted equally and all rhythms are being 
used. Each hexagon is colored to indicate the number of generated 
levels that have the corresponding linearity and leniency scores. 
All graphs used in this paper are based on 10,000 generated levels, 
unless stated otherwise.

The expressive range is clearly biased towards more linear levels, 
and slightly biased towards less lenient levels. The leniency bias is 
likely due to the greater number of non-lenient components. The 
linearity bias is a more interesting result, as we believe it is due to 
what was originally intended to be a small implementation detail in 
the level generator. When a component is chosen for inclusion in a 
rhythm group, the probability of that component appearing again is 
slightly increased. This detail was added late in the development of 
Launchpad, to fix a problem we perceived in our early levels: they 
did not have any discernable patterns, as we tend to see in games 
like Super Mario World where there tends to be locally repeated 
geometry. However, this approach means components that incur a 
height difference (e.g. jumping up to a new platform) are likely to 
stack up to create linear segments of the level. The linearity bias is 
an unintended side effect of this design decision. This issue high-
lights the importance of performing analysis as presented in this 
paper: we never would have realized such a minor change had such 
far-reaching effects without it. 

4.4 Influence of Generation Parameters
As noted in Table 1, there are a number of different parameters that 
can be varied to change the kinds of levels that Launchpad produc-
es. In this section, we examine the impact on linearity and leniency 
when changing the rhythm and component parameters. Critics are 
not taken into account in this section: we look at all levels that are 
created, rather than only ones that surpass the critic threshold.

Rhythm	type. We begin by varying the different kinds of rhythms 
used to generate levels and holding component probabilities con-
stant and evenly weighted. Figure 7 shows the results of varying the 
rhythm type. The regular rhythm type offers the most variation of 
all the rhythm types, with no sharp peak in the graph. This distribu-
tion is what we had initially expected to see for all rhythm; howev-
er, it seems that swing and random rhythms are more constraining, 
contributing heavily to the bias in all rhythms. We hypothesize that 
these constraints are due to the potentially shorter amounts of time 
given to jumps in swing and random rhythms. This leads to fewer 
available actions, as a jump onto a spring requires much more time 
in the air than a jump across a short gap. For swing rhythms, this 
means that there will be fewer falls, springs, and moving platforms, 
contributing to a higher average leniency score.

Figure 5. Three levels with different leniency scores. (A) Leni-
ency = -0.75. (B) Leniency = 0.0 (C) Leniency = 0.95.

Figure 6. Launchpad’s expressive range when all geometry 
types are weighted equally. Linearity is measured on the x axis, 
from 0.0 to 0.65. Leniency is measured on the y-axis, from -1.0 
to 1.0. The color of each hexagon corresponds to the number 
of levels that have the associated linearity and leniency scores. 
The lighter the color, the more levels there are in that bin.

Figure 7. Varying rhythm type: (A) All rhythms, (B) only regular rhythms, (C) only swing rhythms, (D) only random rhythms.



Figure 8. Varying rhythm density: (A) All rhythms, (B) low density, (C) medium density, (D) high density rhythms.

Figure 9. Varying rhythm length: (A) All rhythms, (B) 5 second, (C) 10 second, (D) 15 second, (E) 20 second rhythms.

Figure 10. Varying chosen components. From top left to bottom right: (A) all components are weighted equally, (B) enemies are fa-
vored, (C) flat gaps are favored, (D) no gaps, (E) spring and fall are favored, (F) up and down jumps over gaps are favored. Colors 
scale from 0 levels to 200 levels.



Rhythm	density. Figure 8 shows the results of varying rhythm den-
sity. Varying this parameter does not have a noticeable impact on  
leniency, but higher densities do lead to more linear levels. This is 
for the same reason that the generator is biased towards creating 
linear levels; higher density rhythms have more actions in them, 
and each action has a higher probability of the same component 
being chosen as before.

Rhythm	 length. Figure 9 shows the results of varying rhythm 
length. Again, there is a heavier bias towards creating more linear 
levels in longer rhythms, as longer rhythms tend to have more ac-
tions in them. Longer rhythms also seem to produce slightly more 
lenient levels; we hypothesize that this occurs for the same reason 
as the linearity bias: if the generator chooses a highly lenient com-
ponent early in the rhythm group, the overall lenience of a rhythm 
group is likely to be higher. Since levels composed entirely of long 
rhythms have fewer total rhythm groups (since all levels that get 
generated are approximately the same length), this biases the gen-
erator towards creating more lenient levels.

Geometry	Types. By varying the geometry types, we can see a dras-
tic shift in the leniency of levels and a slight shift in linearity. Fig-
ure 10 shows the results of favoring a specific kind of component 
on the expressive range; other level components are allowed to be 
chosen, but with a very low probability. Leniency differences are 
easy to account for, as leniency is strongly correlated to the chosen 
components. There are also some interesting shifts in linearity of 
levels. Enemies and flat gaps tend to have mostly linear levels, due 
to the profiles of these components: there is little height difference 
at all. Similarly, gaps with a height difference tend towards have 
more non-linear levels, especially springs and falls, which have the 
largest height difference of all. The expressive range for favoring 
springs and falls also has the largest leniency difference: this is 
because springs and falls both take a large amount of time in the 
air, and so can be chosen less often as fewer rhythms support them. 
This means that other components appear more frequently in these 
levels than in other levels favoring different components.

4.5 Incorporating Critics
Until now, we have ignored the role of critics in analyzing Launch-
pad’s expressive range. However, critics play an important role in 
allowing a designer to refine the space of levels that can be created. 
In this section, we examine the role of critics in evaluating expres-
sivity.

Figure 11 shows the effect of filtering the linearity vs. leniency 
graphs we have been using by the line distance and component dis-
tance critics. Of the 10,000 levels that are generated, approximately 
100 have a good critic measure: for line distance, this is a value less 
than 5, and for component distance, a value less than 40. Unsurpris-
ingly, when filtering for levels that fit a straight line, the best levels 
are highly linear. However, it is important to note that filtering for 
component distance maintains a good range of both linearity and 
leniency. There is no noticeable difference in these graphs when 
changing the component frequency or control line parameters.

5. DISCUSSION AND FUTURE WORK
Expressivity is a complex concept, especially with regards to com-
puter-created content. We argue that expressivity emerges from 
both the generation algorithms and the input to a system, and that 
such expressivity can be unintentional. Humans assign meaning to 

the content that the system creates, without the system itself need-
ing to understand this meaning. In other words, it is possible for 
a system to be expressive without necessarily being creative. For 
example, we do not argue that Launchpad is a creative system: al-
though it can generate many unique levels, there is no meaning 
behind these levels beyond what we initially provide, i.e. rhythm. 
Launchpad is not capable of evaluating the quality of its output by 
any method other than pre-defined fitness functions. However, as 
we have shown in this paper, Launchpad is capable of creating a 
wide variety of levels, according to human-defined metrics, from 
relatively small building blocks.

As preliminary work in this area, there is clearly a great deal of 
potential future work. The first area is in determining better metrics 
for comparing levels. This is especially important when considering 
that a motivating factor for this work is being able to quantitatively 
compare two different level generators. While we feel that linearity 

Figure 11. The effect on linearity vs. leniency when filtering for 
critic values. Colors describe the number of levels, where black 
is 0 levels and white is 10 levels. Top: only using levels that have 
a line distance score of less than 5. Bottom: only using levels 
that have a component distance score of less than 40.



and leniency are important metrics for comparing platformer lev-
els, they are not sufficient on their own and there is plenty of room 
for new and improved metrics. Solely aesthetic measures do not 
seem sufficient; a model of player behavior, perhaps encompassing 
different play styles, would be an interesting way of attacking this 
problem. Difficulty is an obvious measure, but other measures may 
include the perceived challenge due to pacing variation across the 
level, or different camera positions.

We have also focused exclusively on a search-based, offline level 
generator with minimal designer input. In online systems, it is less 
clear what should be compared for expressive range, as content 
changes over time in response to player actions. And in the pres-
ence of more sophisticated designer input, it becomes both more 
important to measure generator expressivity and less clear how it 
should be done. To accommodate a wide range of designers, the 
generator should be able to generate a wide range of content that 
fits a particular designer’s style.

It is our hope that this paper will spur discussion on appropriate 
techniques for evaluating level generators, not just for the quality 
of individual levels, but for the entire range of levels that they can 
create.
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