PCG-Based Game Design: Enabling New Play Experiences

through Procedural Content Generation

Gillian Smith*, Elaine Gan', Alexei Othenin-Girard', Jim Whitehead*
Center for Games and Playable Media
University of California, Santa Cruz
Santa Cruz, CA, USA

*{gsmith, ejw}@soe.ucsc.edu

ABSTRACT

This paper discusses the concept of procedural content
generation-based (PCG-based) game design as a way to create
new kinds of playable experiences. We examine the different ways
that PCG is currently used in games, and how that use impacts the
meaning of the game and the player’s experience. Finally, we
discuss the design and implementation of an experimental PCG-
based 2D platformer called Rathenn, which provides the player
with control over the level they are playing while they explore
both the physical and generative spaces of the game.

Categories and Subject Descriptors
K.8.0 [Personal Computing]| General — Games.

General Terms
Design.

Keywords

Procedural level generation, game design, game design theory.

1. INTRODUCTION

Procedural content generation (PCG) has many purposes in game
design. Perhaps its most common use is to promote replayability,
since varied content can lead to drastically different play
experiences. It has also been used to bypass technical limitations,
as in the game FElite [2], in cases where there is not enough disk
space or memory to store a game world. More recent efforts in
both the industry and academia [1, 8, 16] have used PCG
techniques to build games that adapt to a player’s skill level or
preferences, either at runtime or offline.

But while there are many games that use procedural content
generation, most of them have the same or similar trappings of
their genre as a game without PCG. For example, Rogue [17]
would undoubtedly be a different game without the use of PCG,
but the core difference between Rogue and a version Rogue
without PCG would be that the game could not entirely surprise
the player more than on the initial playthrough. Rogue uses
similar mechanics and aesthetics as other dungeon crawling

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

PCGames 2011, June 28, Bordeaux, France.

Copyright 2011 ACM 978-1-4503-0872-4/11/06 ...$10.00.

{egan, aothenin}@ucsc.edu

games: exploring new spaces, killing enemies, and picking up
loot.

However, there are other games, which we call PCG-based
games, that create a playable experience inherently structured by
PCG and are therefore able to expand or subvert the conventions
of their genre or even create an entirely new genre of game. We
do not imagine that there is a clear dividing line between a PCG-
based game and a non-PCG-based game; rather, this is a spectrum
along which games can be measured according to three different
measures: replayability and adaptability, its relationship to game
mechanics and dynamics (as defined by Hunicke, LeBlanc, and
Zubek [6]), and the player’s control over content.

This paper presents our initial work towards creating a heavily
PCG-based experimental game: Rathenn, a 2D platformer that
provides the player control over the level they play and subverts
some of the traditional tropes of a 2D platformer. The concept of
space in the game has a dual meaning: it refers to both the
physical space that the player is exploring through traditional
platforming mechanics, and the generative space of the underlying
system that is automatically generating new content in response to
player decisions. Differently colored ladders lead to newly
generated thythm groups, and the player can decide to take a
different path at any time and see untaken paths laid out before
him. The game is currently open-ended.

2. PCG-BASED GAME DESIGN

In this section, we analyze the different ways that procedural
content generation is used in games and how that impacts the
player’s experience. Our analysis often examines particular
aspects or sub-systems of a game, and games can be considered
PCG-based with regard to one of these measures but not the
others.

2.1 Replayability and Adaptability

One of the earliest examples of PCG is in the game Rogue, made
in 1980. Rogue uses PCG to improve the replayability of the
game: on each playthrough, the player encounters a new level. A
concept related to replayability is adaptability: the use of
procedural content generation to adjust content in reaction to
player actions or skill levels. Adaptability is a way to improve the
replayability of a game, and also potentially a way to diversify the
player base by encouraging players who have different play styles
or skills. Replayability is the primary purpose of PCG in a number
of games, such as Civilization IV [3] and Canabalt [14].

Map generation serves two purposes in Civilization: to provide a
novel area to explore at the beginning of the game, and to frame
resource trading and combat later in the game. But these two
purposes are also fulfilled by other aspects of the game design,
most notably decisions made by other players in the game (either

human or Al-controlled). Indeed, the Civilization games provide a
number of hand-authored maps and scenarios for players that are
extremely popular and replayed to attempt different strategies.
Thus, while an important aspect of the game, we judge that
Civilization is not a PCG-based game. On the other end of the
spectrum, Canabalt is a side-scrolling 2D platformer with
procedurally generated level segments. The goal of the game is to
play for as long as possible before crashing into a building or
obstacle. PCG is also used for replayability in this game: it is
impossible to memorize the timing of jumps to play the game, and
players must instead hone their skills at reacting rapidly to a
obstacles. Canabalt’s design is inextricably tied to its use of PCG,
thus we label it a PCG-based game.

2.2 Game Mechanics and Dynamics

We can draw a distinction between PCG systems that augment
traditional mechanics and those which enable new mechanics
entirely. Consider the first-person shooter Borderlands [5], which
uses PCG to automatically generate a staggering number of
weapons (approximately 17,750,000 unique combinations [12])
by combining different weapon properties. In this game the
procedural weapon generation takes place within the context of
familiar first-person shooter mechanics: Borderlands is not a
PCG-based game in this regard. However, if we more closely
examine the impact of PCG on the play experience, we can see
that the vast amount of procedural content available creates a new
play dynamic where players are constantly adjusting their game-
play to take advantage of new weapons in a way that wouldn’t be
possible without the PCG system. Thus we judge Borderlands to
be non-PCG-based with regard to its mechanics, but PCG-based
with regard to its dynamics.

On the other hand, Jason Rohrer’s latest release, Inside a Star-
Filled Sky [13] is a good example of a game whose mechanics are
PCG-based. Players navigate a space in which they can zoom into
or out of recursively nested levels, each one generated from a seed
passed from an object in a higher or lower level. Play events that
take place on one level of play affect levels above and below
themselves, which in turn reinforce or reseed the procedurally
generated levels that the game is building. It would be impossible
to hand-author this game, as the mechanic of the game is
integrally tied to the PCG system.

2.3 Player Control over Content

Many games that incorporate PCG tend to have the generator
behind the scenes, out of reach of players. Rogue and Civilization
are both examples of this: while the player interacts with the
generated content itself, there is no mechanism within the game
for interacting with the generator itself. This property is also true
of some games with runtime PCG: Minecraft [11] players have
control over how quickly they can explore the procedurally
generated space, but no control over what they find there.

For those games that do provide the player with access to the
generator, there are two forms of access offered: indirect and
direct. Indirect control is often used in games that adapt in
realtime to the player’s skill level, as in the Polymorph project
[8]. A skilled player could choose to take certain actions, such as
falling down gaps or being killed by enemies, which would result
in the level adapting to become easier, thus reducing the
appearance of certain difficult combinations of level components.
Warning Forever [10] provides another interesting example of

Figure 1. A screenshot of the current version of Rathenn
during play.

indirect player control: each new boss is generated in a way that
adapts to the previous means of destruction. While players cannot
directly control the shape of the enemies they fights, they can
adopt different strategies that result in drastically different enemy

types.

3. RATHENN: AN EXPERIMENT IN PCG-
BASED DESIGN

Rathenn is an experimental PCG-based game that expresses the
idea of creation through exploration. The primary motivation
throughout our design process has been to build a game that
highlights procedural content generation and provides a new kind
of playable experience. The purpose of the current iteration of the
game is to answer questions about the kind of control that the
player has over the generator and what further control the player
may wish to have, and to determine methods for the player to
explore the generative space of the system. We also aim to explore
the idea that the player can see the paths he chose not to take and
the play opportunities that he could have had by making different
decisions. The current version of the game is available to play
online.'

3.1 Game Description

A key aesthetic in Rathenn is a sense of exploration, both in terms
of physical exploration and exploration of the generative space of
the game. The game uses a variant of the Launchpad level
generator [15] to create new level segments during play.
Parameters for Launchpad control probabilities for the appearance
of geometry, the length of level segments and distribution of
player actions, and physics properties for the player. As players
move laterally through a level, they must overcome a series of
challenges in a procedurally generated level segment. At the end
of each segment, the player encounters a set of ladders that she
can choose to climb. These ladders cause a new segment to be
generated, with updated properties from the prior segment as
determined by the color of the ladder. When the player reaches the
end of a ladder, a new segment is available for further exploration.
Figure 1 shows a screenshot of Rathenn during play.

There are six colors of ladder corresponding to three sets of
parameters that can be altered. The two colors belonging to each
set are complementary colors, denoting opposite changes. The
color of the ladders at the end of each segment is determined by
how many coins of each color the player has collected. For
example, if the player has more red coins than green coins, a red
ladder will appear instead of a green ladder. There is always one

! http://users.soe.ucsc.edu/~gsmith/rathenn/prototypes/pcgl 1/

ladder per decision type available to the player. Activating a
ladder causes a shift in the color of the background towards the
chosen color. Players are thus visually cued as to the impact of
their decisions on system parameters.

Red More enemies, fewer gaps

Green More gaps, fewer enemies

Orange More wait actions, fewer jump actions

Blue More jump actions, fewer wait actions

e Purple Avatar can run faster and jump higher; springs are
more likely to appear

e Yellow Avatar can run slower and not jump as high; springs

are less likely to appear

To help give the player a sense of the generative space they are
exploring, it is possible for them to backtrack during the game and
choose a different ladder at each decision point. The paths that
they could have taken appear as a faded image displayed in the
background of the player’s current field of play.

3.2 A PCG-Based Game
In Section 2 we discussed three ways in which a game can be
PCG-based. Rathenn was designed as a PCG-based game
according to all of these measures.

It is a PCG-based game with regard to replayability and
adaptability for two reasons. Firstly, through its mechanics for
creating content according to player decisions and providing
support for the player to change that decision and take a different
path. Secondly, the same decisions on different playthroughs will
still lead to different levels, as the players’ decisions alter
probabilities for generated level segments rather than the level
segments themselves.

Mechanics-wise, Rathenn is consciously positioned within the
tradition of the platformer. The basic actions available to the
player are those typical of existing platformers, including jumping
over gaps, killing enemies, avoiding stompers, and climbing
ladders. Ladder climbing serves a dual purpose in the game,
however; it allows the player to explore both the physical level
and the space of potential levels that can be created by the
generator. This PCG-based mechanic leads to player strategies, or
dynamics, that are shaped by the design of the PCG system. By
choosing different ladders at particular times, the player can
carefully shape the qualities of the level.

Like Inside a Star Filled Sky, Rathenn builds generated spaces in
response to player actions, but in this case players have a measure
of direct control over the spaces that the game builds. The game’s
generator can be actively manipulated by players as they explore
the playable space of the game and the generative space of the
system. Rathenn is an experiment in opening up the generator in
its entirety to players, allowing direct control over it as a function
of gameplay.

3.3 Future Directions

We consider the current prototype of the game to be fairly
successful. There is a need for further playtesting in subsequent
iterations to tune the amount by which parameters are adjusted for
the different ladders ladders, and also to determine an appropriate
interface for viewing greyed out paths. However, Rathenn is still
in its early stages, and there are a number of other, more major
directions we would like to explore.

Better incorporating coin generation and collection into
gameplay. Currently, the amount of coins of a certain color that
have been collected determine the colors of the ladders at the end
of each segment. We would like to investigate providing even
more direct control over generated levels to the player, and coins
seem a good mechanism for this. We intend to look at how coin
collection could be used to electively change certain segments of a
level (e.g. turning a jump over a gap into a stomper).

Separating physics from the generation process. Level
segments are generated according to the known physics properties
of the world at the time of generation: this ensures that all level
segments are guaranteed to be playable. We plan to investigate
ways to encourage the player to explore both the physical and
generative spaces more fully, and one way to do this would be to
separate the physics properties of the world from the level
generator. If the player explores and discovers a segment of the
level that cannot be traversed due to an inadequate jump height,
they could then be forced to explore the space to find a level
clement that changes the world physics before being able to move
further in that direction.

Exposing the system’s internal state. While Rathenn provides
the player with direct control over the input to the underlying
PCG system, there is no way for the player to understand the
generator’s internal state. Certain sets of parameters are harder for
the generator to meet than others. For example, a request for more
enemies to jump on combined with a request for more wait
actions is somewhat contradictory: enemies require jump actions,
and an increase in wait actions leads to a decrease in jump actions.
We are considering exposing this state through either visual
feedback in the background, or by explicitly representing the
generator as a character in the game.

4. EXPLORING MEANING IN RATHENN

As the use of PCG now enables a player to drive her own
experiences in a vast multiplicity of playable levels, we must
begin to reconsider how meaning might emerge from these new
design affordances. What makes each level significant — or at
least significant enough to motivate continued engagement?
Rathenn’s play is open-ended and player-driven, leaving open two
crucial ways of structuring meaning in traditional platformers: an
explicit narrative (in favor of play as creation/exploration), and an
explicit goal (in favor of play as process/performance). In prying
these open, we propose that a game shifts from being a space of
contest and narrative enactment [7] to a site of exploration and
becoming [4]. The player is positioned in not one, but now two
interrelated dimensions: the levels where play unfolds, and the
generative space that gives form to the levels. Expanding our
thinking from a sculpting of space to include a sculpting of
relations and negotiable platforms can potentially scaffold new
ways of considering the question of meaning.

Media theorist Henry Jenkins describes game design as the
sculpting of space [7]. This is helpful in considering traditional
platformers, almost all of which plot game play against a series of
designer-created spatial challenges. These challenges are designed
to lead the player through a specific skill progression or narrative
arc. However, in Rathenn, these challenges are constructed
procedurally, and open-ended exploration reduces the ability for a
game designer to direct a player through such progressions or
arcs. We begin by reconsidering a level in Rathenn as a “site”
that opens up many potential spaces, rather than a single,

prescribed space. Cultural theorist Miwon Kwon's important
articulation of site-specificity [9] is a helpful framework for this
analysis: “site” is defined as a contingent set of complex and
largely asymmetrical relations. In Rathenn’s case, we can point
out four interdependent relations: the player, the designer, the
affordances of the underlying generative system, and ideologies
within which player, designer, and system are embedded.
Meaning in the game therefore is always shifting and negotiable.
We are experimenting with exploring meaning in Rathenn in two
ways.

Rathenn redefines the traditional meaning of success and
failure. As in traditional platformers, dexterity-based challenges
motivate continued exploration and mark deepening engagement
in the game. However, in Rathenn, getting caught under a stomper
or not completing a jump does not entirely disrupt the play
experience, but instead provides an opportunity for the player to
constructively reshape the game world. While the player needs to
be able to pass a challenge to keep exploring, she can also choose
different paths for exploration. Challenges motivate further
exploration of the site, rather than attributing value to particular
actions or skill levels. This is a new affordance that procedurally
generated game play opens up, and one that still requires much
research. In allowing for such an immense field of play, it is
important to consider how player choices actually build up to a
larger, player-defined schema: a source of meaning. Without this
larger sense, players are reduced to arbitrarily moving from
Kwon's “one place to another”, or passing one challenge for
another.

Rathenn holds the possibility for player-directed content and
meaning. Procedurality and support for player choices provides
an opportunity to disrupt the ideologies embedded in traditional
platformers. As digital artist and game theorist Mary Flanagan
suggests [4], critical play is a technology that allows players to
imagine and inhabit particular kinds of worlds and apply their
own interpretations. Foucault might easily unpack the rule
systems of traditional platformers (quests, coins, enemies, friends)
as a disciplinary apparatus for a capitalist labor force that
functions on the accumulation of wealth. With the new rule
systems of a PCG-based platformer such as Rathenn comes the
potential for a designer to express new meanings and seed
different interpretations. But whereas traditional games with hand-
authored spaces and stories can be strictly designed to send a
specific message, games such as Rathenn, where the player’s
choices create new spaces and stories, provide the player with a
potentially powerful toolbox for creating their own instances of
the game with their own intended meanings. A great deal of
further study is needed to determine how best to provide these
tools, how players might interact with them, and how expressive
this toolbox can be. The task of designing PCG-based games that
provide such possibilities to the player has only just begun.

5. CONCLUSION

Rathenn is a work-in-progress 2D platformer 2D platformer that
aims to subvert the traditional meaning of platformers through its
use of procedural content generation. In this way, Rathenn is what
we call a PCG-based game: it is heavily dependent on its use of
PCG for providing the desired player experience.

By creating this game, we hope to learn more about the generative
space of the Launchpad procedural level generator and how we
can improve its design for use in a game. We also plan to further

explore how the design of the level generator affords different
game mechanics and aesthetics. Our experience in creating
Rathenn has shown that PCG-based game design, much like game
design in general, is a highly iterative process with the game
pushing constraints on the generative system and vice versa.

It is our hope that the work presented here, and our discussion of
how PCG is currently used in games, will promote the further
study of PCG as a means to create new playable experiences.

6. ACKNOWLEDGMENTS

This work is supported by the National Science Foundation, grant
no. 1002852. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National
Science Foundation. Our thanks also to Professor Noah Wardrip-
Fruin and his Winter 2011 Playable Media class at UC Santa Cruz
for their valuable feedback on an earlier prototype of Rathenn.

7. REFERENCES

[1] Booth, M. 2009. The Al Systems of Left 4 Dead. Keynote, Fifih
Artificial Intelligence and Interactive Digital Entertainment
Conference (AIIDE09), Palo Alto, CA, 2009.

[2] Braben, D. and Bell, L. 1984. Elite (Amstrad CPC). Acornsoft.

[3] Firaxis Games. 2005. Sid Meier’s Civilization IV (PC Game).

[4] Flanagan, M. 2009. Critical Play: Radical Game Design. MIT Press:
Cambridge, MA.

[5] Gearbox Software. 2009 Borderlands (PC Game), 2K Games.

[6] Hunicke, Robin, LeBlanc, Marc, and Zubek, Robert. 2004. MDA: A
Formal Approach to Game Design and Research. In Proceedings of
the AAAI Challenges in Game AI Workshop. San Jose, CA. July 25-
26,2004.

[7] Jenkins, H. 2004. Game Design as Narrative Architecture. In First
Person: New Media as Story, Performance, and Game, Harrington,
P. and Wardrip-Fruin, N. eds. MIT Press, Cambridge, MA: 2004,
pp. 118-130.

[8] Jennings-Teats, M., Smith, G., and Wardrip-Fruin, N. 2010.
Polymorph: A Model for Dynamic Level Generation. In Proceedings
of the Sixth Artificial Intelligence in Interactive Digital
Entertainment Conference (AIIDE10), Palo Alto, CA, 2010.

[9] Kwon, M. 2002. One Place After Another: Site-Specific Art and
Locational Identity. MIT Press: Cambridge, MA.

[10] Ohkubo, H. T. 2005. Warning Forever (PC Game). Hikware.

[11] Persson, M. 2010. Minecrafi (PC Game). Mojang.

[12] Robinson, A. 2009. Gearbox Interview: Randy Pitchford on
Borderlands’ 17 Million Guns. Computer and Video Games, July
28, 2009. Available:
http://www.computerandvideogames.com/220328/interviews/gearbo
x-interview/

[13] Rohrer, J. 2011. Inside a Star-Filled Sky (PC Game).

[14] Saltsman, A. 2009. Canabalt (Online Game). Available:
http://www.adamatomic.com/canabalt/

[15] Smith, G., Whitehead, J., Mateas, M., Treanor, M., March, J., and
Cha, M. 2011. Launchpad: A Rhythm-Based Level Generator for 2-
D Platformers”. I[EEE Transactions on Computational Intelligence
and Al in Games 3, 1 (Mar. 2011), pp1-16.

[16] Togelius, J., De Nardi, R., and Lucas, S. M. 2007. Towards
automatic personalised content creation for racing games. In
Proceedings of the IEEE Symposium on Computational Intelligence
and Games 2007 (CIG07), Honolulu, HI, 2007, pp. 252-259.

[17] Toy, M., Wichman, G., Arnold, K., and Lane, J. 1980. Rogue (PC
Game)

