
Graph-based Generation of Action-Adventure Dungeon
Levels using Answer Set Programming

Thomas Smith
Ninja Theory, ltd.

Westbrook Centre, Milton Road,
Cambridge, CB4 1YG, UK

t.a.e.smith@bath.ac.uk

Julian Padget
Centre for Digital Entertainment,

University of Bath,
Bath, BA2 7AY, UK
masjap@bath.ac.uk

Andrew Vidler
Ninja Theory, ltd.

Westbrook Centre, Milton Road,
Cambridge, CB4 1YG, UK

andrew.vidler@ninjatheory.com

ABSTRACT
The construction of dungeons in typical action-adventure computer
games entails composing a complex arrangement of structural and
temporal dependencies. It is not simple to generate dungeons with
correct lock-and-key structures. In this paper we sketch a control-
lable approach to building graph-based models of acyclic dungeon
levels via declarative constraint solving, that is capable of satisfying
a range of hard gameplay and design constraints. We use a quanti-
tative expressive range analysis to characterise the initial output of
the system, present an example of the degree to which the output
may be altered, and show a comparison with an alternate approach.

CCS CONCEPTS
•Computing methodologies → Logic programming and an-
swer set programming; •Theory of computation→ Abstrac-
tion; •Applied computing→ Computer games;

KEYWORDS
Procedural Content Generation, Generative Methods, Answer Set
Programming, Expressive Range
ACM Reference format:
Thomas Smith, Julian Padget, and Andrew Vidler. 2018. Graph-based Gener-
ation of Action-Adventure Dungeon Levels using Answer Set Programming.
In Proceedings of FDG, Malmö, Sweden, August 7-10, 2018 (FDG’18), 10 pages.
DOI: 10.1145/3235765.3235817

1 INTRODUCTION
Since the early days of computer gaming, dungeons and similar
spaces within action-adventure games like Rogue, Hack and their
descendants have been procedurally generated, often in highly be-
spoke and game-speci�c ways [8, 21]. Several previous approaches
to dungeon generation for 2D action-adventure games in academic
literature have used graph-rewrite rules and spatial grammars to
develop an initial model of the ‘mission’ within the dungeon (se-
quence of user actions required for completion) and then further
rewrite rules to develop a gameplay space that supports the exe-
cution of that mission [7, 8, 12, 13, 22]. However, the presence of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
FDG’18, Malmö, Sweden
© 2018 ACM. 978-1-4503-6571-0/18/08. . . $15.00
DOI: 10.1145/3235765.3235817

Figure 1: Sample layout of key (diamond) and lock (square)
concepts in Boss Key style (Sec. 2.2; image assets from [2]).
Concepts are related by colour and icon, connections are tra-
versable paths (abstracting away non-local challenges), and
relative vertical positions give a temporal partial order.

hard playability constraints (e.g lock and key puzzles) within this do-
main suggest that a constraint satisfaction approach for procedural
generation as described by Smith and Mateas [18] may also be e�ec-
tive. Previous work in this area has successfully demonstrated the
use of Answer Set Programming (ASP) for generation of dungeons
or similar spaces directly within a tiled grid [14–16]. We propose a
combination of the graph and constraint approaches that produces
dungeon level models in graph form via constraint satisfaction, by
modelling the graph generation problem and associated constraints
as an ASP problem formulation and using a domain-independent
solver to extract valid models, as in Smith et al. [17].

To assess the e�ectiveness of our approach and inform further
development we perform an expressive range analysis as described
by Smith and Whitehead [19]. This is a quantitative technique for
visualising the variety and style of outputs a generator can produce
(its ‘expressive range’), by calculating and displaying the values of a
small number of general metrics over a sample of outputs from the
generator. We compare the initial visualisation with the analysis
of another generator within the same domain [13] and also with
an updated visualisation resulting from minor modi�cations to the
generator constraints, in order to illustrate both the resemblance
in outcomes and capability for iteration through varied possible
generator outputs.

FDG’18, August 7-10, 2018, Malmö, Sweden Thomas Smith, Julian Padget, and Andrew Vidler

Overall we sketch a new approach for producing mission graphs
for dungeon levels that di�ers from the graph-rewriting techniques
in literature, and instead builds on Smith and Mateas’s work [18],
using ASP to generate models of content that ful�ll the range of
important gameplay and design criteria present in this domain. We
demonstrate an application of answer set solving as a generative
method for dungeon level models in ‘Zelda’-like action-adventure
games, and provide a comparison with existing work using an
expressive range analysis.

2 BACKGROUND
In this section we introduce the vocabulary for several important
dungeon generation concepts; an existing method of visualising
dungeons’ spatiotemporal structure, and several examples of related
work that have informed the current approach.

2.1 Dungeons in action-adventure games
‘Dungeons’ are a particular kind of contained episodic experience
and associated playable area within many action-adventure games.
Characterised by a degree of detachment from the main plot of
the game (if any) and a complicated physical layout, their self-
contained nature, somewhat formulaic structures and typical lack
of verisimilitude to any real-world space make them well-suited as
candidates for procedural generation.

Common features of dungeons across multiple games include:
— Increasing access: some of the dungeon is initially inaccessible

to the player until they have overcome various obstacles or located
and used keys/keylike items on locks (or similar concepts [7])
— A variety of obstacles (e.g. combat, puzzles), to avoid repetition
— An element of player choice or exploration, rather than a highly

linear sequence of events as in e.g. platform levels [23]
— optional or hidden routes or rewards that make progress through

the dungeon easier but are not critical for completion
— Some degree of ‘backtracking’ or return through previously

explored areas: a common trope is having the player �rst encounter
a locked door to indicate that they should search for a key[8]
— A ‘Boss’: a tougher-than-usual combat or scripted encounter

that serves as the �nal obstacle and goal within the dungeon [10],
and whose defeat typically advances some story-related purpose.

Keys and locks form an important part of the hard constraints
relating to dungeon playability: in a badly designed or generated
dungeon a player might be unable to progress far enough to reach
the boss if they cannot �nd or use the correct keys (see Fig. 2;
Sec. 2.2). Dormans [8, pp.91–93] presents a taxonomy of possible
key and lock properties that determine the constraints they impose
on playability, of which two are presently relevant: keys may be
either consumable or persistent (i.e. able to be used once only or
multiple times) and may be particular or non-particular: able to
open a single, speci�c lock, or any of a class of available locks
respectively. In this paper we will be speci�cally considering con-
straints patterned on those found in the ‘Zelda’ franchise of games,
which contain three notable classes of keys per dungeon:
— one or more non-particular consumable keys (known as Small

Keys) and an equal number of associated locks, potentially resulting
in a choice of how to progress (see Limitations, opposite);

Figure 2: A pair of undesirable challenge arrangements.
Left branch: a key is inaccessible behind its associated lock.
Right branch: the �rst red key could be used in the wrong
(left) lock, leaving other keys inaccessible (see Sec. 2.2).
— a Boss Lock immediately before the Boss, only unlocked by a
particular consumable Boss Key elsewhere in the dungeon; and
— a Dungeon Item, a persistent, non-particular key-like item that

allows the player to cross or ‘unlock’ multiple previously impassable
lock-like obstacles blocking the route to the Boss Lock / Boss Key.

Dungeons in the ‘Zelda’ style contain two kinds of challenges:
key-and-lock combinations that relate to the order of progression
through the dungeon and require visiting two or more speci�c
locations in a certain sequence, as described above, and also lo-
calised challenges that take place entirely within a single small
region (‘room’) of the dungeon. We de�ne such ‘local’ challenges
as those that may be completed using only abilities that the player
character may be assumed to possess at the start of any level plus
those that are available within the room itself, and they are to a
degree interchangeable without a�ecting the dungeon structure1

In contrast, ‘non-local’ concepts impose constraints on the struc-
ture of and critical path through the generated dungeon. They
connect physically distant parts of the structure graph via a partial
temporal ordering that informs generation decisions (Listings 2-8).

Limitations. The features described in this section each indicate
constraints that must be satis�ed if we want to generate dungeons
in this style, however for this prototype we use modi�ed versions
of two of the ‘Zelda’ restrictions: 1) as in the shape-generation
portion of [13] we consider only acyclic dungeon layouts, to assist
direct comparison and simplify implementation, and similarly 2) we
accept an implementation of the Small Key concept that is particular,
and therefore potentially provides fewer choices. Many existing
Zelda levels are within the space represented by these modi�ed
constraints, and so we consider them acceptable for illustrative
purposes, however they also represent important future work to be
done if increased verisimilitude is desired.
1We consider three kinds of local challenge: combat, puzzle and traversal. We presently
distinguish these only to ensure a degree of balance and variety among di�erent kinds;
however annotation of room nodes with concepts could be useful for future re�nement.

Graph-based Generation of Action-Adventure Dungeon Levels using Answer Set ProgrammingFDG’18, August 7-10, 2018, Malmö, Sweden

2.2 ‘Boss Key’ dungeon graphs
To illustrate these non-local relationships in dungeons within this
paper we make use of Mark Brown’s ‘Boss Key’ representation
for dungeon lock and key arrangements (Figs. 1, 2 and 4), which
was developed to communicate design observations about Zelda
dungeon layouts as part of an educational video series [2]. Though
it bears similarities to the earlier graph representations used by
Dormans [6, 7] and others covered in Sec. 2.3, it is not constructed as
an intermediate step for generation but rather as an explanatory tool
to address the problems that arise when analysing traditional 2D
maps of existing dungeons. It can be unclear from a purely spatial
overview of a dungeon which areas are accessible based on changes
in player abilities and possessions during the course of the dungeon.
The format is therefore designed to omit unnecessary information;
clearly map temporal progress in addition to spatial relations, and
thereby highlight otherwise di�cult-to-read information such as
the degree of choice available at di�erent points or the necessity of
backtracking through previous areas.

Fig. 1 shows the simplest possible map containing all of the
non-local concepts listed previously (actual dungeons can often be
signi�cantly more complex; cf. [2]). The lines connecting nodes
represent concepts accessible to the player, and their temporal
progress through the dungeon is roughly mapped down the vertical
direction of the diagram. From the Entrance of the dungeon, one
Small Key and three locks are initially accessible (though two locks
cannot be opened until later). Once acquired, that Small Key can be
consumed to open the matching (central) lock, granting access to
the Dungeon Item (in this case, a bow and arrow). The player may
then open both Dungeon Item Locks in either order (perhaps by
�ring arrows at inaccessible levers controlling gateways), providing
passage to the Boss Key and the Boss Lock. These may be accessed
each in turn to reach the Boss itself, and the end of the dungeon.

In contrast, Fig. 2 illustrates some possible violations of typical
dungeon layout constraints. The most obvious is that the arrange-
ment of the blue lock and key on the leftmost branch is reversed,
meaning the player is unable to open the lock using the key they
cannot access behind it. A more subtle issue is present on the right
branch, where it is possible for the player to make choices that leave
the dungeon in an incompletable state. If the player chooses to use
the red Small Key to open the left red lock rather than the right one,
then they are once again in a situation where the key they need
next is inaccessible behind the lock it would open on the rightmost
branch. Though some games are designed with mechanics that
reduce the impact of otherwise incompletable levels [8], in general
it is desirable to ensure that these situations cannot arise.

This style of dungeon diagram is a high-level representation of
the overall progression of accessible subsections of the dungeon.
Notably, it does not include any information about local obstacles
within the dungeon, nor does it show any route, key or lock that
is not on the critical path between the Entrance and Boss nodes.
However, it is useful for illustrating the relationships between non-
local challenges, comparing the spatiotemporal structure of two
or more visually-dissimilar dungeons, and many of the original
dungeons from the Zelda franchise have already been mapped in
this style and are available online [2].

2.3 Procedural Dungeon Generation
The simpli�cation a�orded by abstracting a dungeon layout as
a graph enables a number of possible approaches to generating
dungeons using a graph as a starting point. A previous survey on
the topic by van der Linden et al. [23] lists a range of techniques and
their implementations in literature; many of those most relevant to
the present work are described below.

In two early papers on automated top down 2D action-adventure
level generation, Dormans [6, 7] details and re�nes an approach
for generating an abstract graph model of both mission and space
together, for dungeon-like levels containing locks and keys. The
model is transformed via a collection of graph-rewrite systems that
successively re�ned the design model into a functional level.

Van der Linden et al. [22] build on this work with an application
to the commercial game Dwarf Quest. They implement a system
for constructing designer-guided semantic gameplay grammars,
capable of generating action graphs used to generate dungeon levels.
They also perform an expressive range analysis (Sec. 4.1) using two
bespoke metrics in units particular to their approach.

Karavolos et al. [12] describes a mixed-initiative implementa-
tion of Dorman’s original concept capable of producing both 2D
platformer and dungeon levels, using tile templates and a layout
solver to perform the �nal transformation from model to level, and
allowing for direct designer input as part of the generation process.

Separately, Lavender [13] also builds on Dorman’s work, present-
ing a model transformation approach using graph-rewrites and tile
templates tailored speci�cally to the Zelda domain, and discussing
the impact of customised sets of rewrite rules designed to produce
dungeons exhibiting particular characteristics.

Coming full circle, Dormans [8] introduced a new technique used
in the commercial game Unexplored2 that considers speci�cally
cyclic graphs and transformations that preserve these cycles, due to
the congruence between those patterns and common route designs
in both the real world and handcrafted levels.

Valtchanov and Brown [21] present an alternative paradigm:
evolving a dungeon layout by constructing a population of trees
of nodes drawn from a library of templates. They use a �tness
heuristic that favours dungeons made up of many small clusters of
rooms and Event spaces, connected by hallways.

Baldwin et al. [1] also use an evolutionary approach; to provide
diverse o�spring of the current map. They use pattern detection
algorithms on an edited grid of tiles to identify and construct a
hierarchy out of instances of design patterns. Possible successors
are selected for according to various design heuristics, and the
designer is able to guide mixed-initiative evolution of the level.

Heijne and Bakkes [10] present a system where the main focus
of the work is not the generator but the data collection it enables.
Their dungeon generation process follows a speci�c comparatively-
simple rules-based approach to assist in comparability of data gath-
ered between runs, but elements of the �nal rei�cation are adapted
at runtime to respond to the skill level of the player.

Finally, Summerville et al. [20] train a range of Bayesian network
structures on a corpus of annotated Zelda levels, and show that the
networks can learn topology su�ciently for classi�cation. They
suggest generation by sampling the network as future work.

2Unexplored (PC Game), Ludomotion (22 Feb 2017)

FDG’18, August 7-10, 2018, Malmö, Sweden Thomas Smith, Julian Padget, and Andrew Vidler

2.4 Answer Set Programming for PCG
Answer Set Programming (ASP) is a declarative logic programming
approach aimed at modelling constrained combinatorial search
problems. ASP problems are speci�ed by asserting appropriate
facts, rules and constraints relating to the domain of interest, and a
domain-independent solver is able to return all sets of supported
mutually-comprehensible facts that satisfy the assertions.

Smith and Mateas [18] establish an approach for modelling de-
sign spaces and thereby formulating content generation problems
as ASP logic programs, which result in answer sets that each specify
a single instance of valid content. This is achieved by iteratively
carving out a desired region of the possible design space using a
combination of construction rules and constraints. Smith et al. [17]
use this approach to generate an abstract speci�cation for desired
puzzles, before embedding the puzzles in a space in a manner sim-
ilar to that in [7]. Nelson and Smith [14] use the generation of
grid-based perfect mazes and simple dungeons as illustrative peda-
gogical examples in a book chapter on ASP for content generation
as constraint-solving problems, including techniques for express-
ing high-level design goals via universally quanti�ed conditions.
Neufeld et al. [15] use a combination of evolutionary algorithms
and ASP to evolve solutions for grid-based level generation in the
Video Game Description Language domain3, including dungeons
for the VGDL Zelda-inspired game. ASP rules are used to infer the
existence and location of objects from the VGDL game de�nition,
with a mutation and evolution approach used to improve numeric
parameters. Smith and Bryson [16] describe a system using ASP
to assemble room modules from a pool of pre-generated templates
into a consistent dungeon layout according to connectivity, and
suggest methods for hierarchical re�nement of key locations.

Anza Island [4] is an ASP-based puzzle game centred on alter-
ing the (re-)generation of a graph of navigable connections, using
player-speci�ed constraints such as “Monumental Stone Head can’t
be connected to Hidden Grotto”. The graph generation problem
— including player constraints — is formulated in ASP and solved
again each turn at runtime to update the game map with valid
connections between landmarks.

3 APPROACH
In this section we outline the key elements of our implementation,
expand on certain details of the encoding, and present and discuss
a sample output from the described formulation (Fig. 3).

Our initial formalization attempts to capture the high-level de-
sign concerns and commonalities of the Zelda-like dungeon domain,
as described in Sec. 2.1 and including speci�cally the exceptions
relating to acyclicity of the dungeon graph structure, and particu-
larity of the Small Keys. We follow the approach laid out in [18]
and construct a design space through the use of choice rules that
generate a selection of available nodes within the graph, deduce
additional elements of the design space through the use of deduc-
tion rules that infer additional necessary nodes, relationships and
semantic tagging, and then constrain the design space through the
use of integrity constraints that forbid undesirable outcomes.

Key elements that are produced by the initial choice rules are the
initial pool of nodes and the parenthood relation assignment, which

3http://www.gvgai.net/vgdl.php — Accessed 24/05/2018

Figure 3: Example of a generated graphwith local (black out-
line) and non-local (bold, coloured red/gold) challenges, re-
wards (gold), optional path (grey text starting at c(1)) and ex-
plicit temporal relations (dashed connections). A Boss Key
abstraction of this graph is presented in Fig. 4 for compari-
son, and node IDs are detailed in Table. 1.

together form the basic structure of the graph. Some semantic tags
provided by the deduction rules are inherent and listed in Table. 1,
such as the quality of being a keyy(N) or the strt(N); others
are relational and dependent on the assigned parenthood relation.
Some integrity constraints represent concerns that are important
for gameplay, while others are a matter of designerly intent — in
the present formulation they are treated equally.

Within the choice rule for each directly-generated node type are
speci�ed an upper bound and lower bound on expected node counts
as listed in Table. 1; these initial values were selected observation-
ally based on dungeon mappings in [2] for non-local concepts, and
by inspection of existing dungeons for local challenges. The table
also speci�es the additional tags each node receives, the implica-
tions of which are detailed below.

http://www.gvgai.net/vgdl.php

Graph-based Generation of Action-Adventure Dungeon Levels using Answer Set ProgrammingFDG’18, August 7-10, 2018, Malmö, Sweden

name ID m
in

m
ax

lo
ca

l

tags
Start start 1 1 * strt

Combat c 2 5 * -
Puzzle p 2 5 * -

Traversal t 2 5 * -
Small Key sk - - keyy, rewd

Small Lock sl 1 3 lock
Dungeon Item di 1 1 keyy, rewd
Dungeon Lock dl 2 3 lock

Boss Key bk 1 1 keyy, rewd
Boss Lock bl 1 1 lock

Reward r 2 5 * rewd, <special>
Boss boss 1 1 * rewd, critical

Table 1: Initial con�guration of bounds and semantic tags.

3.1 Implementation
To facilitate comparison with existing work in the domain using
expressive range analysis, and to simplify both implementation and
evaluation we presently consider only dungeons in the form of trees,
which may require backtracking but do not contain connections
between branches4. To e�ciently guess a total, acyclic5 connection,
each node is assigned precisely one parent according to the paft/2
or ‘physically after’ relation. To begin the process the node labelled
strt is assigned as its own parent, with a fact stating that strt is
physically after itself:

paft(N,N) :- strt(N). (1)

1{ paft(B, N) : paft(_, B) }1 :- node(N), not strt(N).

Thereafter any node N that is not labelled as the strt is assigned
precisely one parent B from among atoms that are already a child
in a paft relationship. This ensures that we generate a single valid
tree containing a route through the dungeon and all nodes are
ultimately connected to the strt. Integrity constraints can be used
to disallow undesirable outcomes; for example forbid any answer
set where some node has the boss or the boss key as its parent, or
the boss is not behind a lock:

%% boss and bosskey must both be terminal (2)

:- node(N), paft(boss, N).

:- node(N), paft(bk(1), N).

%% boss must be behind bosslock (3)

:- node(boss), not paft(bl(1), boss).

A similar approach can be used to tag all nodes that represent dead-
ends within the graph (have no known children), and then forbid
all answer sets where those nodes are not tagged as a reward — this
ensures that the generated dungeon will never contain useless dead
ends where a challenge leads to no payo�:

terminal(N) :- node(N), not paft(N, _). (4)

:- terminal(N), not rewd(N).

For non-local concepts there is also a taft/2 or ‘temporally af-
ter’ relation; represented explicitly in Fig. 3 by the dashed edges
connecting keys to locks, and in Fig. 4 implicitly via relationships
4Adding alternate routes, cyclic routes as in [8] and/or shortcuts is left for future work.
5mostly. The strt node is a special case.

between vertical heights, and colour-/symbol-coordination. The
union of taft and paft represents a partial order across the nodes
in the graph, with start and boss at �rst and last respectively.

%% trace criticality (5)

critical(boss).

critical(N) :- paft(N, P), critical(P).

critical(N) :- taft(N, T), critical(T).

%% restrict deviation (6)

exploration(N) :- node(N), not critical(N).

:- 5 {exploration(N) : node(N) }.

Deduction rules allow us to selectively apply additional semantic
tags to nodes, and identify routes that are not on the critical path
to the boss. These are greyed out in Fig. 3 and faded in Fig. 4 to
signify that they are optional — though the constraint in Listing 4
ensures that the optional path will necessarily be rewarding.

%% locks imply the existence of their key (7)

node(sk(X)) :- node(sl(X)).

taft(sk(X), sl(X)) :- node(sk(X)), node(sl(X)).

keyy(sk(X)) :- node(sk(X)).

lock(sl(X)) :- node(sl(X)).

%% lock cannot be immediately after another lock (8)

:- paft(X, Y), lock(X), lock(Y).

Small Locks, Dungeon Item Locks and the Boss Lock are all part of
a lock/1 category with certain commonalities: e.g. there are never
two in a row without some other concept in between; locks are
never physically before their own key. Likewise, Small Keys, the
Dungeon Item and the Boss Key are all part of the keyy/1 category.

3.2 Application
This formulation of the dungeon generation problem within ASP
occupies 50 lines of code, not counting whitespace or comments.
We use Clingo 5.2.16 via Python, and con�gure the solver with
solver.sign_def = "rnd" and a random seed from numpy. Out-
put from the ASP is a series of facts relating to a model of the
dungeon, which the Python script translates into a source format
suitable for rendering with GraphViz; one example is shown in
Fig. 3, with a Boss Key equivalent in Fig. 4. Several instances of the
concepts represented by Listings 1-8 are apparent. Clingo returns a
new model in less than one second7, which facilitates casual exper-
imentation with alternative formulations or varying parameters.

3.3 Re�ection
Rendering a single sample output in this way can be instructive
while attempting to re�ne the formulation as it allows easy ob-
servation of potentially undesirable outcomes, however without
more thorough analysis (covered in Sec. 4.1) it can be di�cult to
know whether any single �awed production is representative of the
generator’s typical output. As an example, in the sample output,
the leftmost branch contains two key-like items (the Dungeon Item
and Boss Key) with no challenges in between. If this is deemed
undesirable, there are two possible solutions in Listing 9.
6https://potassco.org/clingo — Accessed 06/07/2018
7or 10,000 in less than 6s on a 6-core 3.7GHz Windows 10 PC with 16GB RAM.

https://potassco.org/clingo

FDG’18, August 7-10, 2018, Malmö, Sweden Thomas Smith, Julian Padget, and Andrew Vidler

Figure 4: Boss Key abstraction of generated graph in Fig. 3,
with only non-local challenges, optional path and rewards.

:- paft(A, B), keyy(A), keyy(B). (9)

:- paft(A, bk), not local(A).

The �rst rule is modelled on the equivalent formulation for locks
that forbids any two in a row (Listing 8). The second approach is
particular to only the BossKey and ensures that it is always pre-
ceded by a local concept. Either could �x this speci�c arrangement,
though it is also undesirable to specify too many special-case rules.
However, this rapid iteration and re�nement of the space of possi-
ble outputs is a demonstration of the iterative process proposed by
Smith and Mateas [18].

4 EVALUATION
In this section we describe the approach used for evaluation of
the systems’ output, present a basic comparison with the output
of another generator within the same domain, and demonstrate
the impact of altering some of the constraints highlighted in the
previous section. A key problem with even automated visualisation
of output as described in Sec. 3.2 and demonstrated in Fig. 3 is that it
is di�cult to ascertain how representative a single specimen is. This
issue motivated Smith and Whitehead [19] to develop an approach
for characterising the ‘expressive range’ (variety and style) of a
generator via visualisation of generator-independent quantitative
metrics, sampled over a large number of outputs.

4.1 Expressive Range Analysis
Proposed by Smith and Whitehead [19], expressive range analysis
considers the outputs of a generator in aggregate rather than indi-
vidually. It is an approach that attempts to facilitate interrogation
of the generator’s range and responsiveness to changed parameters,
and can also be used to compare an abstraction over the outputs of
two or more generators within similar domains, as in Horn et al.
[11] where the technique is used to compare the expressive range
of generators in the 2D platforming genre.

Lavender [13] has already made use of the technique within the
domain of Zelda-like dungeon generation to analyse her imple-
mentation using graph-rewrite rules, which provides a useful point
of comparison with an alternative paradigm. We aim to generate
comparable heatmaps across the same measures, in order to inves-
tigate the expressive range of the present system and compare its
performance with another approach.

The expressive range analysis consists of four main steps [19]:
— Determine appropriate metrics. As we intend to contrast the

outcome of this analysis with existing visualisations, we will use
the same metrics, as de�ned below. In addition, we measure and
report the average size of generated graphs.
— Generate content. We collect 1,000 individual sample dungeon

models from separate seeds and collate the metrics scores for each.
— Visualise the generative space. We use matplotlib to render

heatmaps of pairs of metrics (Fig. 5), comparable to the existing
visualisation by Lavender [13] (Fig. 6).
— Analyse the impact of parameters. In Secs 4.3, 4.4, 4.5 and Fig. 7

we compare and contrast the e�ects of slight alterations to the
problem formulation.

4.2 Appropriate Metrics
We use the following four metrics, as de�ned by Lavender [13] and
based on the original Linearity and Leniency metrics proposed by
Smith and Whitehead [19]:
Mission Linearity: the number of nodes on the shortest direct

path between start and end of the mission graph, divided by
nodes within the graph total. In Fig. 3 this is 9÷19 = 0.473684211.

missionL =
Number of Nodes on Shortest Path

Total Nodes in Graph

Map Linearity: a weighted scoring of each room with one or more
forward exits divided by all rooms with any forward exits: those
with a single entrance and exit (fully linear) have weight 1; those
with two forward exits have weight 0.5, and those with three
exits are considered maximally non-linear and do not contribute
to the numerator. ‘Dead ends’ (rooms with an entrance but no
forward exit) are not directly counted by this metric. In Fig. 3
this is (1 × 12 + 0.5 × 3) ÷ 15 = 0.9.

mapL =
(1×SingleExits) + (0.5×DoubleExits) + (0×TripleExits)

Total Rooms with Exits

Leniency: the proportion of safe rooms within the dungeon graph
to total rooms. For the purposes of this evaluation we have
considered only local combat challenges and the �nal Boss node
to be ‘unsafe’, though the precise calculation of this metric is
to a degree dependent on the details of the �nal realisation of a
level: it is possible that any of the traversal or puzzle challenges
or even dungeon item locks could be implemented in a way that
was potentially ‘unsafe’ for the player character. In Fig. 3, this is
15 ÷ 19 = 0.789473684.

leniency =
Number of Safe Rooms

Total Rooms

Graph-based Generation of Action-Adventure Dungeon Levels using Answer Set ProgrammingFDG’18, August 7-10, 2018, Malmö, Sweden

Figure 5: Three views of the expressive range of the initial ASP formulation (Sec. 3.1). This approach to visualisation reveals
several potential weaknesses of the initial formulation, as described in Sec. 4.3. Notably, the tight clustering on the Leniency
and Map Linearity axes indicates a lack of possible variety in the values of these metrics across all sampled outputs (i.e. gen-
erally highly lenient levels, highly linear maps). While it may in fact be desirable for outputs to cluster near these speci�c
values for certain contexts, we wish to show that this generation approach is capable of a broader expressive range. A small
number of informed changes to the ASP formulation (Sec. 4.5) results in the considerably more varied output shown in Fig. 7.

Figure 6: Figures 61, 67 and 70 from Lavender [13], representing evaluation of Control Rules. Reproduced with permission.
The approach in Lavender [13] uses a pair of grammars to generate a mission graph and, from it, a mission space. TheMission
Linearity and Leniency view (left) is evaluated over the output of the Control mission graph grammar; the Map Linearity and
Path Redundancy view (centre) is evaluated over the output of the Control shape grammar over a single mission graph ([13,
Fig. 66, p. 78], not reproduced here) and the Map Linearity and Mission Linearity view (right) is evaluated over the output of
the Control shape grammar over the output of the Control mission graph grammar. These di�ering sources explain the gap
in Map Linearity at about 0.85 in the centre view, which Lavender suggests may be an artefact of the size of mission chosen.

Figure 7: Three views of the expressive range of the altered output generated via ASP after making the changes listed in
Sec. 4.5. Note that the variance in Path Redundancy and Map Linearity values has greatly increased compared to the original
formulation shown in Fig. 5; the average leniency has decreased; there is increased clustering around the theoreticalminimum
values forMission Linearity andPathRedundancy; and theminimumpossible value for PathRedundancy appears to be higher.
These changes are as expected based on the alterations in Sec. 4.5; informed by this new visualisation additional changes could
be made in order to attempt target certain areas of the possible expressive domain if desired, or further broaden the variance.

FDG’18, August 7-10, 2018, Malmö, Sweden Thomas Smith, Julian Padget, and Andrew Vidler

Path Redundancy: the number of rooms that are present but do
not need to be visited in order to complete the level, divided by all
rooms. In [13] these are de�ned as rooms that “do not eventually
lead to, or themselves contain, any reward”, and are byproducts
of possible expansions of the graph-rewriting rules used in that
system. However under the ASP formulation described in Sec. 3
these rooms are only generated as optional ‘exploration’ paths
leading to non-critical reward nodes — a comparable but not
identical concept. In Fig. 3, these are the combat challenge and
dungeon item lock blocking access to the Map reward, and the
measure is 3 ÷ 19 = 0.157894737.

redundancy =
Number of Non-critical Rooms

Total Rooms

4.3 Initial Results
Having selected appropriate metrics according to the approach
laid out in [19] and de�nitions provided by [13], we generated
1000 dungeon graphs following the approach in Sec. 3, and for
each graph calculated the value of the four general metrics. The
outcome of this approach is visualised in Fig. 5, where the colour of
each square bin in the plot corresponds to the quantity of dungeon
graphs possessing those metric values.

Several distinct behaviours of the generator are clear from the
visualised heatmap. In general, levels are fairly strongly clustered
around a few speci�c areas, indicating a lack of variety between
generator outputs. The leftmost plot shows that all sampled lev-
els are highly lenient, likely due to the low theoretical maximum
proportion of dangerous nodes (the maximum possible is �ve local
combat challenges according to the bounds in Table. 1, plus one
boss node, totalling 6, and the average graph size was 22.363). The
second plot shows low path redundancy and high map linearity,
likely due to a combination of the rule that forbids dead-ends that
don’t provide rewards (Listing 4) and the rule that constrains the
number of exploration nodes to 5 or less (Listing 6). There are also
notable gaps despite the clustering: due to the enforced variety
of local challenges and the guaranteed presence of a Boss node,
it is impossible for any graph to reach the theoretical maximum
Leniency value. Similarly, due to the requirement that the BossKey
must be terminal (Listing 2), it is not possible for any map to be
fully linear.

4.4 Comparison to existing generator
Fig. 6 reproduces three of the outputs of the expressive range anal-
ysis performed by Lavender on the system detailed in [13] and
summarised in Sec. 2.3 — speci�cally, the outputs relating to the
Control rules: a set of graph- and space-rewrite rules based on those
in Dormans [6]. These rules are intended to provide a balance be-
tween the other deliberately biased rulesets analysed in that work,
and therefore are the most representative point of comparison. The
heatmaps reveal a good, central spread of values for leniency and
mission linearity, but incredibly tight clustering on the path redun-
dancy metric, apparently due to limitations of the mission graph
used. Between the two approaches, the spread of values for both
mission and map linearity are reasonably similar, with the primary
di�erence across all four measures being the extreme comparative
leniency of the ASP-based levels.

Figure 8: A samplemap generated after the changes detailed
in Sec. 4.5, showing additional redundancy andnonlinearity.

4.5 Changes to problem formulation
Motivated by the observed clustering in the original visualisation,
we investigate the impact of three minor changes to the problem
formulation. Working under the hypothesis that the initial path
redundancy and map linearity clustering were due to the dead-
end and exploration restrictions (Listings 4 and 6), we weaken the
former from “:- terminal(N), not rewd(N).” to “:- rewd(N),
not terminal(N).”8, and we invert the exploration constraint to
require a minimum of 5 exploration nodes, rather than 5 maximum.
The e�ects of these changes are clearly visible through comparison
of Figs. 5 and 7 — a considerably broader spread. The third change
was to replace all potential puzzle nodes with additional combat;
resulting in a small but notable decrease in the general leniency.
Fig. 8 illustrates a sample dungeon graph generated under the
new rules, and clearly shows the e�ects of constraints requiring
increased exploration nodes. As with Fig. 3 in Sec. 4, a single
specimen does not indicate how representative of the typical output
it is, and so Fig. 9 provides a thorough visualisation of the new space.
8‘forbid terminal nodes that are not rewards’→‘forbid rewards that are not terminal’

Graph-based Generation of Action-Adventure Dungeon Levels using Answer Set ProgrammingFDG’18, August 7-10, 2018, Malmö, Sweden

Figure 9: A corner plot [9] showing each of the combinatorial views of the the output data visualisations after making the
changes described in Sec. 4.5. Though three of the views duplicate those in Fig. 7 presented for comparison purposes, the
remaining three and the single-metric histograms provide additional detail regarding individual distributions. From the Path
Redundancy histogram it is apparent that the sampled outputs do not vary smoothly over that metric but rather cluster at
a range of speci�c values, whilst the Leniency variable, viewed in isolation, reveals a continued tight clustering that is more
pronounced than is apparent in any of the 2D plots. Visualisations of this nature can help to guide informed changes to the
problem formulation, or reveal previously hidden �aws or inexpressible areas within the expressive range [13, 19].

FDG’18, August 7-10, 2018, Malmö, Sweden Thomas Smith, Julian Padget, and Andrew Vidler

5 FUTURE WORK
The present outcomes suggest a range of promising future work.

An initial improvement would be to increase the sophistication
of constraints expressible on the system, such as reasoning over a
wider range of concepts present in some traditional Zelda levels
including shortcuts between branches or non-particular Small Keys.
Additional desirable properties might include explicit reasoning
over backtracking, the e�ects of reward items, or layout symmetry.
A further step could be to integrate the existing work with a suit-
able editor such as Solarus [13] or Unreal Engine 4, using Clingo’s
constraint-solving as the basis of an ASP sculpting interface for
dungeon content within the engine. This could also support a more
interactive version of the expressive range analysis, akin to the
work on Danesh by Cook et al. [5].

Butler et al. [3] propose a method for generating sequences of
levels containing an increasing number of concepts. A similar
approach could be applied to the present work: if rather than gener-
ating levels in isolation a sequence of levels are generated according
to a generated progression speci�cation, additional functionalities
are possible. Notably, Dungeon Item Locks relating to Dungeon
Items that are known to have been collected in prior dungeons are
then potentially available for use as local challenges (see Sec. 2.1).

There is also potential for a more in-depth comparison of the
generative space characteristics of a wider range of generators
within this domain, along with investigation into altering parame-
ters, grammars or constraint formulations. A study by Horn et al.
[11] in the domain of 2D platformer (Mario) levels considered seven
generators from literature and levels from the original Super Mario
Bros game. There are a comparable number of dungeon generators
in literature [1, 7, 10, 12, 13, 16, 21, 22, present paper], though this
domain lacks the broad consensus on common assumptions and
de�nitions the domain of Mario generators has achieved.

6 CONCLUSION
In this paper we present a work-in-progress approach for generating
graph models of action-adventure dungeons using a declarative
constraint-based formulation and an o�-the-shelf solver. We apply
a quantitative analysis in order to investigate the expressive range
of the initial formulation, and compare this system to a previous
grammar-based generation approach for similar content. We note
that using ASP enables us to easily carve out desired areas of the
generative space whilst also continuing to satisfy hard gameplay-
or implementation-related constraints.

7 ACKNOWLEDGEMENTS
We gratefully acknowledge the support of the Engineering and
Physical Sciences Research Council (EPSRC) through the Centre
for Digital Entertainment, under grant reference EP/G037736/1.
We would also like to thank Becky Lavender for permission to
reproduce �gures from her work as a point of comparison (Lavender
[13], Fig. 6), and Mark Brown for developing the Boss Key dungeon
graphing approach and making the visual resources freely available
(Brown [2], used in Figs. 1, 2 and 4). We also thank our anonymous
reviewers, in particular for the recommendation of corner plots
(Foreman-Mackey [9], Fig. 9) as an appropriate visualisation for the
expressive range metrics across more than two dimensions.

REFERENCES
[1] Alexander Baldwin, Steve Dahlskog, Jose M. Font, and Johan Holmberg. 2017.

Towards Pattern-based Mixed-initiative Dungeon Generation. In Proceedings of
the 12th International Conference on the Foundations of Digital Games (FDG ’17).
ACM, New York, NY, USA, Article 74, 10 pages. DOI:http://dx.doi.org/10.1145/
3102071.3110572

[2] Mark Brown. 2017. How my Boss Key dungeon graphs work. (August 2017).
https://www.patreon.com/posts/how-my-boss-key-13801754 Accessed: 2018-
06-29.

[3] Eric Butler, Adam M Smith, Yun-En Liu, and Zoran Popovic. 2013. A mixed-
initiative tool for designing level progressions in games. In Proceedings of the
26th annual ACM symposium on User interface software and technology. ACM,
377–386.

[4] Kate Compton, Adam Smith, and Michael Mateas. 2012. Anza island: Novel
gameplay using ASP. In Proceedings of the The third workshop on Procedural
Content Generation in Games. ACM, 13.

[5] Michael Cook, Jeremy Gow, and Simon Colton. 2016. Danesh: Helping bridge
the gap between procedural generators and their output. In Proceedings of the
7th International Workshop on Procedural Content Generation in Games. ACM.

[6] Joris Dormans. 2010. Adventures in level design: generating missions and spaces
for action adventure games. In Proceedings of the 2010 workshop on procedural
content generation in games. ACM, 1.

[7] Joris Dormans. 2011. Level design as model transformation: a strategy for
automated content generation. In Proceedings of the 2nd International Workshop
on Procedural Content Generation in Games. ACM.

[8] Joris Dormans. 2017. Cyclic Generation. In Procedural Generation in Game Design.
CRC Press, 83–96.

[9] Daniel Foreman-Mackey. 2016. corner.py: Scatterplot matrices in Python. The
Journal of Open Source Software 24 (2016). DOI:http://dx.doi.org/10.21105/joss.
00024

[10] Norbert Heijne and Sander Bakkes. 2017. Procedural Zelda: A PCG Environment
for Player Experience Research. In Proceedings of the 12th International Conference
on the Foundations of Digital Games (FDG ’17). ACM, New York, NY, USA, Article
11, 10 pages. DOI:http://dx.doi.org/10.1145/3102071.3102091

[11] Britton Horn, Steve Dahlskog, Noor Shaker, Gillian Smith, and Julian Togelius.
2014. A comparative evaluation of procedural level generators in the mario ai
framework. (2014).

[12] Daniël Karavolos, Anders Bouwer, and Rafael Bidarra. 2015. Mixed-Initiative
Design of Game Levels: Integrating Mission and Space into Level Generation..
In FDG.

[13] Rebecca Lavender. 2016. The Zelda Dungeon Generator: Adopting Generative
Grammars to Create Levels for Action-Adventure Games. (2016).

[14] Mark J Nelson and Adam M Smith. 2016. ASP with applications to mazes and
levels. In Procedural Content Generation in Games. Springer, 143–157.

[15] Xenija Neufeld, Sanaz Mostaghim, and Diego Perez-Liebana. 2015. Procedural
level generation with Answer Set Programming for General Video Game playing.
In Computer Science and Electronic Engineering Conference (CEEC), 2015 7th. IEEE,
207–212.

[16] Anthony J Smith and Joanna J Bryson. 2014. A logical approach to building
dungeons: Answer Set Programming for hierarchical procedural content genera-
tion in roguelike games. In Proceedings of the 50th Anniversary Convention of the
AISB.

[17] Adam M. Smith, Erik Andersen, Michael Mateas, and Zoran Popović. 2012. A
Case Study of Expressively Constrainable Level Design Automation Tools for a
Puzzle Game. In Proceedings of the International Conference on the Foundations
of Digital Games (FDG ’12). ACM, New York, NY, USA, 156–163. DOI:http:
//dx.doi.org/10.1145/2282338.2282370

[18] Adam M Smith and Michael Mateas. 2011. Answer set programming for pro-
cedural content generation: A design space approach. IEEE Transactions on
Computational Intelligence and AI in Games 3, 3 (2011), 187–200.

[19] Gillian Smith and Jim Whitehead. 2010. Analyzing the expressive range of a level
generator. In Proceedings of the 2010 Workshop on Procedural Content Generation
in Games. ACM.

[20] Adam J Summerville, Morteza Behrooz, Michael Mateas, and Arnav Jhala. 2015.
The learning of zelda: Data-driven learning of level topology. In Proceedings of
the FDG workshop on Procedural Content Generation in Games.

[21] Valtchan Valtchanov and Joseph Alexander Brown. 2012. Evolving dungeon
crawler levels with relative placement. In Proceedings of the Fifth International
C* Conference on Computer Science and Software Engineering. ACM, 27–35.

[22] Roland Van der Linden, Ricardo Lopes, and Rafael Bidarra. 2013. Designing pro-
cedurally generated levels. In Proceedings of the the second workshop on Arti�cial
Intelligence in the Game Design Process.

[23] Roland van der Linden, Ricardo Lopes, and Rafael Bidarra. 2014. Procedural
generation of dungeons. IEEE Transactions on Computational Intelligence and AI
in Games 6, 1 (2014), 78–89.

http://dx.doi.org/10.1145/3102071.3110572
http://dx.doi.org/10.1145/3102071.3110572
https://www.patreon.com/posts/how-my-boss-key-13801754
http://dx.doi.org/10.21105/joss.00024
http://dx.doi.org/10.21105/joss.00024
http://dx.doi.org/10.1145/3102071.3102091
http://dx.doi.org/10.1145/2282338.2282370
http://dx.doi.org/10.1145/2282338.2282370

	Abstract
	1 Introduction
	2 Background
	2.1 Dungeons in action-adventure games
	2.2 `Boss Key' dungeon graphs
	2.3 Procedural Dungeon Generation
	2.4 Answer Set Programming for PCG

	3 Approach
	3.1 Implementation
	3.2 Application
	3.3 Reflection

	4 Evaluation
	4.1 Expressive Range Analysis
	4.2 Appropriate Metrics
	4.3 Initial Results
	4.4 Comparison to existing generator
	4.5 Changes to problem formulation

	5 Future Work
	6 Conclusion
	7 Acknowledgements
	References

