
TownSim: Agent-based city evolution for naturalistic road
network generation

Asiiah Song
University of California, Santa Cruz

julinas@ucsc.edu

Jim Whitehead
University of California, Santa Cruz

ejw@ucsc.edu

ABSTRACT
We describe an agent-based city evolution algorithm creating road
networks over time, and explore several approaches for analyzing
the malleability of the algorithm to exposed parameters. In addition
to qualitatively assessing the generated content, we look at the
directionality, connectivity, and curvature of the generated road
networks.
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1 INTRODUCTION
Procedurally generated towns and cities are surprisingly useful.
When applied to games, they permit the gameworld to have large
amounts of procedural cities [1], or reduce authoring effort for cities
that are generated first and then modified by a level designer. The
Sinking City exemplifies this latter approach, using a procedurally
generated 1920s Boston filledwith streets, buildings, and submerged
areas as a starting point, which is enhanced to meet gameplay goals
[34]. Sunset Overdrive was developed using a procedural road sys-
tem, where a human designer specifies roads using curves, from
which road, intersection, sidewalk, and gutter geometry are gener-
ated [25]. Both projects report substantial improvements in design
iteration speed.

In the domain of urban planning, procedural city generators al-
low planners and architects to explore different urban planning sce-
narios. Architecture firm Houseal Lavigne used ESRI’s CityEngine
to explore and visualize plans for housing developments in Wood-
bridge, Illinois, highway landscape buffers in Tulsa, Oklahoma, and
a new entertainment district in Oshkosh, Wisconsin [18][2].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7217-6/19/08. . . $15.00
https://doi.org/10.1145/3337722.3341852

Autonomous vehicles are an important new application area for
procedural cities. Testing autonomous vehicle software in the real
world using physical cars and streets is important, but also time
consuming and expensive. Companies developing autonomous ve-
hicle software supplement real world testing with simulation based
testing in virtual street scenes.Waymo is an autonomous vehicle
company (a subsidiary of Alphabet) which uses a virtual environ-
ment called Carcraft to supplement real-world vehicle testing. As
of October 2018, Waymo had logged 10 million miles in the real
world, as compared to almost 7 billion miles in simulation [7][21].

While many virtual road networks are obtained by importing
real-world road networks from OpenStreetMap or other sources
of map information, procedural (synthetic) road networks have an
important role to play. Procedural roads can create situations not
present in the real world, or which occur very infrequently. They
can also simulate road configurations found in different parts of
the world. Ideally, road networks could be generated to focus on
situations that autonomous vehicle software finds challenging, and
hence fully exercise problematic aspects of the software. In the
present work, we are primarily motivated by the goal of generating
road networks suitable for testing autonomous vehicle software,
though our generated towns also have the potential for use in
computer games and urban planning.

While there have been many road network generators described
in the research literature, they tend to have three drawbacks that
make them less than ideal for autonomous vehicle testing. First, the
generated roads often look too regular or tidy, and hence artificial.
Real world road networks have unusual road situations related to
having evolved over many years of development and use. They
don’t always make sense. We wish to capture some of this real-
world naturalness in our generated towns. This has led us to adopt
a city generation approach that evolves a city over time, instead
of a strictly construction-based approach. Second, existing road
network generators do not output streets in formats usable by traffic
simulation software, such as the open source Simulation of Urban
Mobility (SUMO) package. Finally, existing road network generators
have not had an expressive range analysis performed on their output
[28]. There is hence limited (or no) information available that can
be used to guide the generator towards certain kinds of output. For
the purpose of testing, being able to intentionally generate certain
kinds of road networks is a desirable property.

In the current paper, we present an agent-based town simulator
called TownSim, which is capable of generating a wide range of
natural-looking street layouts. An expressive range analysis of
TownSim provides a detailed understanding of how it responds to
various changes to its input parameters, focusing on directionality,
connectivity, and curvature of generated road networks.
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Figure 1: A simplified flow chart of the algorithm.

2 RELATEDWORK
Kim, Kavak and Crooks recently argued that procedural roadmap
generation can be used beyond games and in real-world applica-
tions such as social simulation, and urban testbeds [17]. Surveys of
road network generators can be found in [26][14]. Our work was in-
spired by Batty’s research on patterns in complex real-world cities
[4] and Emilien et al.’s work on generating naturalistic rural-like set-
tlements adapted to hilly terrain [8]—we’re ultimately interested in
generating naturalistic urban settlements adapted to terrain. Some
of the same authors in [8] (Galin, Peytavie) wrote earlier papers
on creation of road networks adapted to terrain, in particular rural
highways [9][10].

2.1 Map data-based methods
Parish and Müller’s CityEngine is an early influential paper, and
uses extended L-systems based on socio-statistical maps containing
information of water bodies, elevation, and population density [23].
Karagiorgou et al. directly extracts real-world road networks using
vehicle tracking data segmented at multiple granularities [13][12].
Sun et al. [29], CitiGen [15], and Nishida et al. [22] are “template-
based”, pulling from templates found in the real world. CitiGen
and Nishida et al.’s methods can both be described as sampling
real-world road patterns which are then placed in maps and grown
to connect to each other.

2.2 Agent-based methods
Lechner et al. is an early paper which featured many agents that
drive their generation algorithm, but utilized what was essentially
a top-down approach [19]. Land developer agents are driven by
profit to develop parcels and connect those parcels via roads, with
residential, commercial, and industrial zones which each afford
different profitability calculations. Road patterns are controlled by
explicit griddedness-variables applied directly to an area of a map,
also allowing users to erase areas that are zoned undesirably.

Vanegas et al. generates city maps based on population density
and predefined elements, such as user-defined placement of partic-
ular roads. Population density here is not taken from a real-world

Figure 2: Examples of 100x100 generated maps: major roads
are black, minor roads are gray, light yellow areas are build-
ings, blue is water, and green is vegetation.

socio-statistical map, but rather simulated agents which are placed
on the map following a value and accessibility algorithm [30].

2.3 Timeline-based methods
UrbanSim is an example of urban modelling meant to model the
future evolution of existing urban communities for city planning,
using detailed demographics and zoning and development infor-
mation [32]. Williams and Headleand use Unity3D to produce a
cityscape that developed over different time periods, where each
time period would have different, user-definable architectural styles
and road patterns [33].

2.4 Other methods
Approaches with a mathematical bent include Chen et al., based on
tensor fields [6], and Campos et al. which uses underlying graph
structures to create 3-dimensional road networks [5]. Kim et al.
uses SMT-based constraint solving methods [16]. Roglà et al. uses
semantically tagged component elements to procedurally compose
virtual cities [24]. Vanegas et al. discusses interesting work on
procedural division of lots into parcels [31].

Hartmann et al. uses generative adversarial networks in what is
essentially style transfer applied to road network generation [11].
Lipp et al. [20] and Smelik et al. [27] focus on interactive authoring
of road networks subject to geometric and terrain constraints.

3 SIMULATION ALGORITHM
At a high level, the TownSim simulation algorithm (Figure 1) enables
naturalistic growth of roads by allowing simulated agents to tread
their own paths. The resulting road network is a record of agent
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activity rather than assigned development. Agents are motivated
by a consume-work-trade-rest routine loosely inspired by the day-
night routines of human workers. Ideally, the map and the agents
are updated in parallel every cycle, but in the code this is done
successively in a random order.

TownSim outputs images of the generated road network (Fig-
ure 2), and can also generate road network files compatible with
the SUMO traffic simulator. A separate utility1 imports SUMO files
into the Unreal game engine, procedurally creating road and inter-
section geometry. TownSim is implemented in Python, available at
GitHub2.

3.1 2-Dimensional Landscape
The sandbox is a 2-dimensional pixel map where each pixel is a
node. Each node can contain a limited number of agents and is
labeled with a set of types. Types include the following: water, for-
est, greenfield, building, park, major road, minor road, bridge, and
bypass. Most of the types are mutually exclusive, except for bridge
and bypass which are also major road. Water nodes yield the water
resource, while forest, greenfield, and building yield the generic
resource. In future versions of the algorithm, we would like to
include a city-authority entity which would enforce policies for
city planning—this was not implemented in the current version of
TownSim. To support the possibility of city planning activities, we
envisioned letting forest types to become greenfield due to agent ac-
tivity, allowing building only on greenfield, as well as an additional
brownfield type (not in the previous list) that would be created when
built node types (building, major road, minor road, bridge, bypass,
and park) are destroyed. This interactivity, like the city-planning
policy enforcer, was not implemented, and the only difference be-
tween forest and greenfield right now is that forest yields a little
more generic resource than greenfield.

The decision to distinguish a park type is due to small, leftover
bits of undeveloped, enclosed gaps in the middle of generated towns.
The small gaps are too close to other roads for a new road to form,
and don’t accumulate enough activity to meet the minimum to
become a building type. The real-life analogy would be underdevel-
oped areas where rent is cheap and traffic is sparse. If we leave them
as forest/greenfield types, agents will continue to perform rural-like
gathering activities on those nodes, which is undesirable. Therefore,
we turn them into park types, which are the most common type of
broadly vegetated area in the middle of a city.

Imitating a settlement phase, the map is seeded with a randomly
placed patch of water that follows the shape of a low-dimension
polynomial and a small stretch of straight road and building area
close to the water. The rest of the map is random-uniformly dis-
tributed with forest and greenfield types.

In each time step, first, all agents update (details in the next sub-
section); then, all map nodes update. The updates are implemented
sequentially, re-randomizing the order each time. If prosperity and
traffic values are above certain thresholds, the type of the node can
change: forest and greenfield types, which we call “unbuilt” types,
can become road, building, or park; building type nodes can become

1https://github.com/AugmentedDesignLab/Sumo2Unreal
2TownSim: https://github.com/AugmentedDesignLab/town-sim-py. Generated data:
https://github.com/AugmentedDesignLab/town-sim-data.

Param Default Description
mr 3 The range within which more than one minor

road should not be created.
lr 5 The range within which nodes are a “local"

group; used to calculate local prosperity and
local traffic.

tr 10 The range that an agent can traverse in one
movement; more than one major should not
be created within this range.

ma 10 Minimum local prosperity for a major road.
mi 400 Minimum local prosperity for a minor road.
br 1000 Minimum local prosperity for a bridge and/or

a new lot.
by 2000 Minimum local traffic for a bypass.
bu 400 Minimum local prosperity for a building.
co 5 Amount of correction for the snap-to-grid

effect on new roads.
dp 0.75 Decay multiplier for prosperity every cycle.
dt 0.25 Decay multiplier for traffic every cycle.

Figure 3: Parameter labels, default values, and descriptions.

road. By default, major roads can be motivated by relatively low
prosperity, while creating minor roads, bridges crossing water, and
new lots for major roads that want to be created outside of existing
lots, require relatively higher prosperity. Bypass-type roads are mo-
tivated by traffic. The thresholds for when the building of various
road types triggered are controllable by exposed parameters in the
software, which we discuss later.

Lastly, prosperity and traffic decrease by decay factors, which
are also exposed parameters. Figure 3 contains more information
about the exposed parameters.

3.2 Agents
In the “settlement phase”, 100 agents are scattered into building
nodes. For each following time step, each agent undergoes a se-
quential consume-work-trade-rest routine, a simplified version of
basic human activities, although the time scale of the simulation
does not follow day-to-day cycles. At the beginning of each time
step, each agent consumes a fixed amount of water and generic
resource. Next, for “work”, the agent chooses one resource type
to gather depending on which stock is low. To gather, the agent
randomly selects a node within its explorable range (tr) containing
the wanted resource and moves to it (for water, a water node, and
for the generic resource, a forest, greenfield, or building node).

Water is a non-depletable resource, while generic resources are
depletable. For every time step, forest and greenfield nodes start
with hard-coded amounts of generic resource, while the amount in
building nodes correlates with the current prosperity of the node.

After gathering, the agent randomly selects another agent in the
same node, and trades if there is a trade profitable to both parties.
An agent’s valuation of each resource is determined by the ratio of
the two resources in its stock (e.g., each water is worth x generic
resource, and vice versa). If a trade occurs, the average between
the agents’ valuations is used as the price. Finally, the last action
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that an agent performs in a time step is rest: moving to a vacant
building node within their explorable range.

As a result of each agent movement, the prosperity of the des-
tination node is increased, and the traffic of the midpoint node in
the path is increased. An agent fails to survive if it cannot rest at
the end of the cycle, or if either of their resources become negative.
Instead of implementing a social system enabling reproduction and
immigration, as a simplification, an agent with sufficient resources
in a node with extra room can spontaneously spawn a new agent
with half of its own resources.

3.3 Road Logic
We define local prosperity as the sum of the prosperity of all the
neighboring nodes in the local range of a node (lr). If local prosperity
of a node reaches a minimum threshold, the program runs other
checks to see if a road will be created. A minor road, the kind
that might be alleyways or residential, must be in an existing lot
and near existing building nodes. If the local prosperity of a node
outside existing lots is quite high (br), a major road can be built to
it and a new lot created around it. The part of a major road that
crosses over a body of water has the bridge type as well as the
major road type, and the creation of this bridge requires higher
local prosperity; as in reality, bridges are more expensive.

New road nodes that can be shifted co units to make the result-
ing road exactly vertical or horizontal, would be shifted, creating a
weak “snap-to-grid" effect. Although the rest of the simulation, as
implemented, tries to imitate unplanned city growth, the snap-to-
grid feature very loosely imitates real-life city planning. Real-life
city planners, especially in the United States, have been observed
to favor grid-like cities. Circular city designs are more common in
Europe, where original city centers were built on circular roman
campsites. In cities which are so old that their beginnings are be-
fore planned development, city centers reflect much more organic
patterns [4]. After the simulation makes the decision that a road
would be created, major roads are extended toward the edge of the
lot, expanding access to previously unexplored areas; minor roads
are extended a small amount to reach another street in the other
direction, essentially favoring through streets over culs-de-sac.

4 EXPRESSIVE RANGE ANALYSIS
Figure 3 lists and describes the exposed parameters. Default values
are a set of parameter settings that reliably produced reasonable out-
puts in development. We manually selected 4 values spread around
the defaults of each parameter to test. For each parameter/test value,
we generated 30 100 × 100 maps using that parameter/test value
pair and default values for remaining parameters. Each map was
generated over 750 time steps.

4.1 Qualitative Analysis
The outputs of TownSim can be characterized as a range within
“semi-gridded". Some generated maps contain more regular blocks,
and others have more organic patterns while retaining enough
structure to not become quite “dendritic". This variation also occurs
within a single map.

In Figure 4, we identify 5 parameters that show interesting visual
variations as their values are varied. The minor road range pa-
rameter (mr) results in sparser minor roads as it increases,
because this parameter essentially controls the size of the con-
flict box for minor roads. Local prosperity/traffic range (lr) re-
sults in an increased range of density as it increases. While
the road density of the densest generations remains similar, the
sparsity of the sparsest generations increases as lr increases. There
is also varied road density within a single map, especially visi-
ble in the figure (lr=4)-left, for example. We reason that this is
because this parameter, which controls the size of the area over
which prosperity is counted, essentially gives options to the system
for where roads should emerge. Agent traversal range (tr) re-
sults in greater sprawl as it increases. Limiting the exploration
range stifles growth of the road network. We suspect that this effect
would wear off for even higher values of tr, although we didn’t
generate higher values for this data set. In tr=10, two of the 30 sim-
ulations halted prematurely after unfortunately losing all agents
after a few initial road segments.Minimum local prosperity for
a bridge (br) decreases the likelihood of bridges forming as
it increases. This is an expected effect since br controls the amount
of prosperity needed to incentivize a bridge. By the time br is in-
creased to 5000, the roads appear to actively avoid crossing water.
The snap-to-grid correction factor (co) increases the preva-
lence of grid-like sections of roads on the map. The effect is
evident as co is increased from 1 to 3 to 5, and seemed to level off
at a value of 9.

The ability to control some characteristics of the generated road
networks through varying parameter values shows that our rules
for agent activity and road generation are good models of road-
user activity and road generation at an abstract level. We now
examine if the interesting qualities of these parameters are reflected
in quantitative metrics, and if the effects of other parameters were
overlooked visually, but show up in quantitative metrics.

4.2 Methods of Quantitative Analysis
We use three visualization methods to characterize the sensitivity
of the output to different parameter settings. Each method attempts
to reflect one important characteristic for road networks: direction-
ality, connectivity, and curvature, respectively. While geographic
information systems (GIS) uses data analysis techniques, they have
not been carried over to research in procedurally generated road
networks. We suggest that the use of quantitative analysis is a
contribution of this paper.

4.2.1 Radial Plot. We use radial plots (Figure 5, Figure 6) to visual-
ize the general directionality of generated roads under a parameter
setting. The spokes in the plot show the cumulative lengths of the
roads running in each direction in a set of generated towns. All gen-
erated road segments are straight; curved roads are simply straight
segments joined together. The roads are bi-directional, so directions
are north-south, east-west, and so on. We create radial plots for
minor road types and major road types separately in order to isolate
individual patterns or lack of patterns, since they are generated
from related but different groups of rules. To highlight patterns, we
also plot a subset of that information using only primary (90◦ and
180◦) and secondary (45◦ and 135◦) directions in bar graphs.
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mr=2 mr=3 mr=4 mr=5

lr=3 lr=4 lr=5 lr=7

tr=6 tr=8 tr=10 tr=12

br=600 br=1000 br=2000 br=5000

co=1 co=3 co=5 co=9

Figure 4: For each parameter setting of parameters mr, lr, tr, br, and co, 30 instances of a 100x100 map are generated. From
each group of 30 maps, we chose two visually representative examples to be shown in this figure. Green areas are greenfield
and forest types; blue areas are water; beige areas are building; black nodes are major road; gray nodes are minor road.

4.2.2 Connectivity Histogram. The connectivity of roads is often
analyzed in various ways in GIS research. We adopt three related
measures of connectivity from space syntax [3] using road junctions
as base units. We define a junction to include intersections and the
ends of culs-de-sac.

m∑
s=1

s × Ns =


simple connectivity ifm = 1
local depth ifm = k
дlobal depth ifm = l

(1)

where s is the shortest distance between j and the connected junc-
tion,Ns is the number of connected junctions with shortest distance
s , l is the maximum shortest distance, and 1 < k < l . We use k = 3
following [3]. Simple connectivity measures the number of imme-
diately neighboring road junctions. Local depth and global depth
measure the depth of the connectivity graph on different scales.

We find that simple connectivity and local depth do not change
significantly across different settings, hence we omit those figures
in this paper. For each parameter setting, we plot the global depth
values of all nodes in a histogram, which is useful in showing the
shapes of interesting distributions (Figure 7).

4.2.3 Stacked Gradient Chart. We are interested in showing the dis-
tributions of different road-curvatures in generated maps. Naively
composing spatial curvature maps would have variations cancel
out by averaging. We attempt to visualize distributions of curvature
using stacked gradients. We first create a gradient map for each
generated road network. Road-lengths of different curvatures, rep-
resented by color, are sorted and stacked in a gradient bar (Figure 8).
We normalize ±2 standard deviations of all of our curvature data
to 100% of the colored portion of the gradient, reserving gray for
positive outliers. Straight roads with 0 curvature are violet.

4.3 Evaluating road angles
Figure 5 shows that most minor roads run in primary directions,
while another significant portion of minor roads run in secondary
directions. Minor road range (mr) appears to have a weak negative
correlation with minor roads in all directions. The summary bar
graph reveals that there is a strong negative correlation in secondary
directions, which is dampened by the absence of a correlation in
primary directions. Local prosperity/traffic range (lr) appears to
have little effect on minor roads, although the summary bar graph
indicates a weak positive correlation in secondary directions. Agent



FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA Asiiah Song and Jim Whitehead

mr=2 mr=3 mr=4 mr=5

lr=3 lr=4 lr=5 lr=7

tr=6 tr=8 tr=10 tr=12

Figure 5: Road angles for minor roads in 30 runs of each setting..

mr=2 mr=3 mr=4 mr=5

lr=3 lr=4 lr=5 lr=7

tr=6 tr=8 tr=10 tr=12

Figure 6: Road angles for major roads in 30 runs of each setting.
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mr=2 mr=3 mr=4 mr=5

lr=3 lr=4 lr=5 lr=7

tr=6 tr=8 tr=10 tr=12

br=600 br=1000 br=2000 br=5000

Figure 7: Global depth is on the y-axis and node count is on the x-axis (log scale). Each histogram contains information from
30 maps generated for that parameter setting.

2 3 4 5
mr

3 4 5 7
lr

6 8 10 12
tr

600 100020005000
br

1 3 5 9
co

0.5 0.75 0.9 1
dp

Figure 8: Stacked Gradient Charts. Each bar represents 30 maps generation for that parameter setting. Colors from violet to
red represent ±2 standard deviations of mean curvature, where violet is the minimum and light gray represents outlier values.

traversal range (tr) has a clear positive correlation with minor roads
in all directions. The summary bar graph shows positive correlation
in both primary and secondary directions.

Figure 6 shows that a significant portion of major roads in sec-
ondary directions, but the distribution of directions is not as skewed
toward primary/secondary directions as with minor roads. Minor
road range (mr) has a clear positive correlation with major roads in

all directions. Both primary and secondary direction major roads
clearly trend upwards in the summary bar graph. lr again shows no
pattern in the progression of radial plots, although the summary bar
graph shows slight upward trends for both primary and secondary
directions. tr also shows no apparent pattern in the radial plots,
which is confirmed by the summary bar graph.
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param corr. median GD corr. max GD
mr -0.86 (< 0.01) -0.84 (< 0.01)
lr 0.48 (< 0.01) 0.66 (< 0.01)
tr -0.85 (< 0.01) -0.59 (< 0.01)
br -0.13 (0.16) -0.70 (< 0.01)

Figure 9: Pearson correlation of parameters to median and
max global depth on 30 data points each. p-values are in
parentheses.

We expected some level of inverse correlation between the distri-
bution of minor and major roads, since both types of roads occupy
the same space. However, Figure 5 and Figure 6 did not reflect such
an inverse correlation. The relative prevalence of the primary di-
rections with minor roads adds some confusion; however, this is
because snap-to-grid works more often for minor roads, which are
generally shorter. Trends were not found with other parameters.

4.4 Evaluating node connectivity
Earlier, we defined global depth as a measurement of node connec-
tivity. In Figure 7, the y-axis is the global depth value, and the x-axis
is the corresponding count of nodes in log-scale. These global depth
values were calculated from Equation 1, where a node connected
deeper down is worth more in the sum, so that a high global depth
indicates a deep connectivity graph. Figure 9 shows correlation
values between parameters and median/maximum global depth.

Minor road range (mr) results in lower global depth values as it
increases, and especially the instances of higher global depth in the
hundreds disappeared in the higher settings. Together with radial
plots, the histograms show that although the is only a small decline
in the cumulative length of minor roads as mr increases, many
short minor roads have been replaced with fewer, longer minor
roads (it is harder to attribute the drop in global depth to major
roads because there is a higher total length of them asmr increases).
Now we have a better picture of a pattern visually identified in 4.1.

The histograms don’t show a trend when varying lr (local pros-
perity/traffic range). For agent traversal range (tr), interestingly,
the low end has a relatively large number of nodes with higher
global depth in the hundreds, which is unexpected because this is
the setting where the road network’s growth appeared trapped in
the initial block and the road density was not strikingly different
from the next higher parameter setting. This is new information
that was not identified by simply looking at the map images. The
next few histograms [tr=8, 10, 12] show an increasing spread of
connectivity — less nodes with low global depth, but more nodes
with high global depth.

Minimum local prosperity for a bridge (br) results in lower global
depth values as it increases, losing the long tail of deep global depth
in the hundreds at br=5000.

4.5 Evaluating distribution of curvature
Minor road range (mr) and agent traversal range (tr) result in evi-
dently higher curvature as they increase, with the violet sections
representing 0 curvature dropping around 25% and 15%, respec-
tively, between the lowest and highest settings. Local prosper-
ity/traffic range (lr) results in a slight decrease of curvature as

it increases; a subtle but likely real effect since it’s corroborated by
the radial plots and bar graph in 4.3. Bridge min prosperity (br) and
snap-to-grid correction (co), also parameters of interest identified
by the qualitative discussion in 4.1, don’t show much variation of
curvature across settings. An interesting discovery is that as the
parameter dp, which is the decay multiplier for prosperity, is in-
creased, the percentages of curvature at both extremes decrease —
there are slightly fewer roads with 0 curvature and high curvature,
and slightly more roads with middling curvature values.

4.6 Limitations and Future Work
The simulation uses environment and agent behavior that is many
times simplified from the real-life counterparts for computability.
Although such a simulation would necessarily be a simplification,
we hope to include more nuance in a future version of this project.
Expressive range analysis is traditionally used to expose emergent
properties of interacting parameters on more than one axis; this
is lacking in our analysis due to space constraints. Moreover, the
final evaluation of a generative system must be to observe its use
by real users; this too was lacking in this report. We expect that
some feedback will be gathered from autonomous vehicle testing
engineers using our generator regarding controllability, qualitative
similarity to/interchangeabilitywith naturally-occurring roadmaps,
and gaps in the expressive range.

5 CONCLUSION
In this paper we describe an agent-based city generation algorithm
outputting evolved road networks, and explore approaches for ex-
pressive range analysis for such generated road networks. There
are benefits and drawbacks for each of the approaches. Using quali-
tative analysis, we looked at each group of road networks generated
using a particular parameter setting, and tried to visually parse for
unifying characteristics that could be attributable to that parameter
setting. This gave a strong sense of the range of road networks
generated in response to each parameter and was a very useful
point of departure from which to explore other analyses.

We looked at the directionality of generated roads using radial
plots, which showed some relative trends between roads of different
types and directions, but lost information about the length and
number of individual road segments. The radial plots would reveal
any impact the parameter settings have on the relative directionality
of generated road networks; they showed us that there was limited
impact. Network connectivity histograms show some trends of how
well-connected typical generated road networks are under different
parameter settings. This metric also acts as a proxy for showing the
density of roads and magnifies the effect of changes in road density.
Lastly, we used stacked gradient charts to look at the curvature of
generated road networks, and they revealed a lack of expressivity
in the simulation: a few parameters have a limited broad-stroke
effect on curvature, but otherwise it is not possible to control the
curvature distribution of generated road networks.
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