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ABSTRACT

Levels are a key component of many different video games, and a large body of work has
been produced on how to procedurally generate game levels. Recently, Machine Learning
techniques have been applied to video game level generation towards the purpose of auto-
matically generating levels that have the properties of the training corpus. Towards that end
we have made available a corpora of video game levels in an easy to parse format ideal for
different machine learning and other game AI research purposes.
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INTRODUCTION

For many different video games, levels are one of the critical pieces of game content. They
represent the virtual space wherein the majority of player interaction occurs. As such, they
represent a very attractive target for Procedural Content Generation (PCG), i.e. the creation
of artefacts via an algorithm. Most PCG level creation has been accomplished via human-
authored rules from early computer games such as Rogue up through modern games such
as No Man’s Sky. A large body of academic work has been performed in this field utilizing
classical AI techniques such as constraint satisfaction (G. Smith et al. 2010), Answer Set
Programming (A. M. Smith et al. 2012), Evolutionary Algorithms (Sorenson and Pasquier
2010), and others. More recently, statistical AI, i.e. Machine Learning (ML), techniques
have been used such as Bayes Nets (Summerville, Behrooz, et al. 2015), Markov Chains
(Snodgrass and Ontañón 2013, Summerville, Philip, et al. 2015, Dahlskog et al. 2014),
clustering (Guzdial and Riedl 2015), non-negative matrix factorization (Shaker and Abou-
Zleikha 2014), PCA (Summerville, Behrooz, et al. 2015), and others. While a large number
of different ML techniques have been used they all have one thing in common, they require
a training corpus.



Towards that end we have assembled a corpus consisting of 428 levels from 12 games1.
These levels exist as parseable text files, along with the corresponding image representation
of the level, ideal for machine consumption for either ML PCG or other game AI applica-
tions. In the following sections we will first discuss the games in the corpus and the details
of the levels included; we will then show a small subset of work that has been done with
these levels; and finally we will discuss ways these levels could be used in the future.

RELATED WORK

The collection of resources for the creation of a shared corpus is commonplace in fields
such as Natural Language Processing (NLP). A large number of corpora exist in the NLP
community, but the two most noteworthy are COCA: ”the Corpus of Contemporary Amer-
ican English” (Davies 1990) and the Wall Street Journal Corpus (Paul and Baker 1992).
Similarly, many corpora are available in the machine learning community for a variety of
different tasks including image classification (Krizhevsky et al. 2016), hand-writing recog-
nition (Lecun and Cortes 2016), and speech-recognition (Godfrey et al. 1992).

Machine learning based approaches for the procedural generation of video game levels have
relied on a couple of different data sources: synthetic data, annotated images, and video.
While a commonplace activity in many machine learning communities, the only known
videogame level PCG to use synthetic data is the work of Shaker and Abou-Zleikha (Shaker
and Abou-Zleikha 2014) which used data generated by other generation systems. A number
of works have used annotated level images (either annotated by human hand or automatically
via image-processing), mostly of Super Mario Bros. (Summerville, Philip, et al. 2015, A.
Summerville andMateas 2016, Snodgrass and Ontañón 2013, Snodgrass and Ontañón 2014,
Dahlskog et al. 2014, Hoover et al. 2015, Londoño andMissura 2015) but occasionally other
games such as those from The Legend of Zelda series (Summerville, Behrooz, et al. 2015,
A. J. Summerville and Mateas 2015) or Lode Runner (Snodgrass and Ontañón 2014). The
work of Guzdial and Riedl 2015 used Long Play videos of Super Mario Bros. gathered from
Youtube to learn the spatial relationships of different sprite groupings.

DATASETS

The levels from 12 games are present in the corpus as of the publication of this paper. There
are three annotation formats: Tile, Graph, and Vector. A breakdown of the games can
be seen in table 1. Most of the games in the corpus are 2D tile-based sidescrolling games
which are all annotated with the Tile format, as are the levels from Doom, Doom 2, Mario
Kart, and the first quest of The Legend of Zelda. The levels from The Legend of Zelda series
which have a room based level structure are also annotated in the Graph format, and the
levels from the Doom series can also be found in the Vector format.

Annotation Formats

We will now detail the annotation formats. The Tile format is an intuitive format for tile
based games, particularly those where reasoning over the space of the game should be done
in a tile grid. These tile based levels exist as a two dimensional grid of size w × h with
w being the width and h being the height. Each entry in this grid is annotated by a single

1. The corpus can be found at: https://github.com/TheVGLC/TheVGLC
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Game Levels Minimum Sizes Median Sizes Maximum Sizes
Super Mario Bros. 20 Tile 150 x 14 188 x 14 374 x 14
Super Mario Bros. 2 25 Tile 161 x 12 194 x 15 364 x 16
Super Mario Land 9 Tile 261 x 15 294 x 16 441 x 16
Super Mario Kart 7 Tile 128 x 128 128 x 128 128 x 128
Kid Icarus 6 Tile 16 x 159 16 x 205 16 x 281
Lode Runner 150 Tile 33 x 22 33 x 22 33 x 22
Rainbow Islands 28 Tile 32 x 83 33 x 165 33 x 252
Doom 36 Tile 36 x 69 121 x 117 225 x 213
Doom 2 32 Tile 54 x 60 131 x 123 231 x 274
The Legend of Zelda 9 Tile 67 x 32 89 x 80 89 x 128
The Legend of Zelda 18 Graph |V| = 12 |E| = 22 ∆(G) = 3 |V| = 27 |E| = 58 ∆(G) = 4 |V| = 66 |E| = 161 ∆(G) = 6
The Legend of Zelda:
A Link to the Past 12 Graph |V| = 14 |E| = 31 ∆(G) = 2 |V| = 34 |E| = 76 ∆(G) = 4 |V| = 65 |E| = 125 ∆(G) = 8

The Legend of Zelda:
Link’s Awakening 8 Graph |V| = 21 |E| = 43 ∆(G) = 3 |V| = 43 |E| = 98 ∆(G) = 5 |V| = 59 |E| = 136 ∆(G) = 8

Doom 36 Vector 122 lines, 53 objects 956 lines, 251 objects 1764 lines, 463 objects
Doom 2 32 Vector 93 lines, 69 objects 774 lines, 253 objects 1690 lines, 509 objects

Table 1: The games included in the corpus as of publication

Figure 1: A section of level 1-1 (left) and the annotated text file version (right).

character. Along with the w × h array for each level there is a JSON file that acts as a
legend. Each tile character is an entry in a dictionary named tiles and has an associated
array of possible annotation tags, e.g. for Super Mario Bros. the tile character for the
tile has the tags [solid, ground] and the character for the has the tags [solid,breakable].
The JSON legend file for Super Mario Bros. is included below:

{"tiles" : {"X" : ["solid","ground"],
"S" : ["solid","breakable"],
"-" : ["passable","empty"],
"?" : ["solid","question block", "full question block"],
"Q" : ["solid","question block", "empty question block"],
"E" : ["enemy","damaging","hazard","moving"],
"<" : ["solid","top-left pipe","pipe"],
">" : ["solid","top-right pipe","pipe"],
"[" : ["solid","left pipe","pipe"],
"]" : ["solid","right pipe","pipe"],
"o" : ["coin","collectable","passable"],
"B" : ["solid","bullet bill","hazard","enemy"],
"b" : ["solid","bullet bill"] } }

A section of the annotated version of Level 1-1 of Super Mario Bros. alongside the image
it is derived from can can be seen in Figure 1. It should be noted that multiple different
images can be mapped to the same tile character, e.g. all enemies are mapped to the same
character, “E”, and all solid unbreakable tiles (ground, stairs, tree tops, giant mushroom
tops) are mapped to the same character, “X”.

–3–



The Graph annotation format is used for games where the high-level topology should be
reasoned about at differently than the low-level structure. Games with discrete room-to-
room structures, e.g. The Legend of Zelda, or classic adventure games such as Zork and
King’s Quest are well represented by graphs. The graph format we chose was the DOT lan-
guage used by Graphviz (Gansner and North 2000). This format was chosen for 3 reasons:

• Easily Parseable - The format is very easily parsed with nodes being represented by
<Node ID> [label="<Node Label>"] and edges being represented by
<Source ID> -> <Target ID> [label="<Edge Label>"]

• Easily Visualized - As part of Graphviz, DOT files can be consumed by the dot
program to visualize the graphs

• Portable - Because it is a popular, well-documented format it is able to be used by
other programs

As with the Tile format there is a corresponding JSON file that acts as a legend for each
game. The Legend of Zelda legend can be seen below:

{"vertices" :{"e" : ["enemy" ],
"S" : ["switch" ],
"b" : ["boss" ],
"k" : ["key"],
"K" : ["boss key"],
"I" : ["key item"],
"p" : ["puzzle"],
"s" : ["start"],
"t" : ["triforce"]},

"edges" : { "S" : ["switch locked" ],
"b" : ["bombable" ],

"k" : ["key locked"],
"K" : ["boss key locked"],
"I" : ["key item locked"],
"l" : ["soft locked"],
"S" : ["switch locked"],
"s" : ["visible", "impassable"]}}

Additonally, below we have a section of the DOT file for the first dungeon from The Legend
of Zelda, “The Eagle.” The original annotation and the output of the DOT file can be seen
in Figure 2:

digraph {0 [label=""]
1 [label="e,I"]
2 [label="I"]
...
17 [label="e,k"]
18 [label="p"]
7 -> 8 [label=""]
8 -> 7 [label=""]
...
3 -> 13 [label="b"]
13 -> 3 [label="b"]}

The final annotation format is the Vector format. For this we chose the Scalable Vector
Graphics (SVG) format as it is the most readily readable and viewable vector format. Games
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Figure 2: The annotated tilemap for Level 1 “The Eagle” of The Legend of Zelda (LEFT)
and the corresponding svg output of the DOT file for it (RIGHT).

such as those in the Doom series (which is ostensibly 3D but gameplay exists solely in a
2D plane) are best thought of as line segments (walls, doors, etc.) and objects (enemies,
weapons, decorations). The SVG format readily handles line segments and discrete objects
can be handled as graphical primitives (circles, rectangles, ellipses). Once more, each game
has a corresponding JSON legend, Doom’s can be seen below:

{"element" : { "line" : { "stroke" : { "#333" : ["solid","wall"],
"#999" : ["floor","walkable","stairs"],
"#d00" : ["door","locked"],
"#00d" : ["teleport","source","activatable"],
"#666" : ["door","walkable","activatable"],
"#0d0" : ["exit","activatable"], } },

"rect" : { "stroke" : { "#900" : ["enemy","walkable"],
"#090" : ["decorative","walkable"],
"#009" : ["teleport","walkable","destination"] } },

"circle" : { "stroke" : {"#900" : ["weapon","walkable"],
"#090" : ["ammo","walkable"],
"#009" : ["health","armor","walkable"] } },

"ellipse" : {"stroke" : {"#900" : ["explosive barrel","walkable"],
"#090" : ["key","walkable"],
"#009" : ["start","walkable"] } } } }

In the legend, the color of the stroke determines the annotation for that line or object primi-
tive. An SVG representation of Doom’s first level can be seen in Figure 3.

The annotations explained above are the initial set of annotationswe explored. We recognize
that there are limitations. For instance, theTile annotation does not have a tile representation
for each enemy, and some other special tiles, which results in a loss of information. In the
future, we intend to explore more lossless representations, including more expressive tile
sets and ontologies for those tile sets, allowing for more complete representations of the
levels. Additionally, the original map images are included in the corpus to allow users to
create their own annotations.
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Figure 3: The first level of Doom rendered in SVG. Blue circles represent health/armor,
green circles represent ammo, red squares represent enemies, red ovals represent explosive
barrels, and other shapes correspond to other less common elements such as teleporters, start
points, weapons, etc.

TOOLS

Along with the levels, we have also included tools that we have used as part of processing.
These include a tile based platformer A∗ solver and a parser and rasterizer for Doom WAD
files. The platformer solver takes in a JSON file that acts as a legend (telling it which tiles
are solid) as well as the dynamics of the game (what does a jump arc look like) and produces
paths through a given level. The Doom parser and rasterizer take in WAD files (the data
format for Doom and Doom-likes) and produces either the SVG or tile based levels found
in the corpus.

POTENTIAL USAGE

In hope of sparking future research, below are some potential uses of the VGLC.

Corpora Based Procedural Content Generation

This is the most obvious use, or at least the most common use for this work so far. The
Tile format is set up in a way where nearly any text generation based approach (Markov
chains, recurrent neural networks, etc.) can produce results, but given their grid based na-
ture they are also translatable into a form that can easily be consumed for image based
methods (Markov random fields, convolutional neural networks, etc.). The Graph could
be used for graph grammar learning or other graph based approaches (spectral graph anal-
ysis, relational learning). The levels can also be processed such as in the work of Londoño
and Missura (Londoño and Missura 2015) or Summerville and Mateas (A. Summerville
and Mateas 2016) where simulated agents are run through levels to determine how a player
could actually traverse through the levels. To our knowledge, the only games to have been
used for corpora based generation are Super Mario Bros., Kid Icarus, The Legend of Zelda,
and Lode Runner meaning any of the other games are ripe for generation.

Design Analysis
A large amount of PCG work has relied on assumptions about successful design decisions,
but the levels from these games represent actual examples of successful design decisions.
Dahlskog and Togelius (Dahlskog and Togelius 2012) performed an analysis on 20 of the
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levels from Super Mario Bros. to find design patterns that could be used for PCG research,
but even in the Super Mario Bros. domain, this corpus contains an additional 34 levels to
be analyzed. Similarly, Dormans (Dormans 2010) performed an analysis on the mission
and physical structure of a level from The Legend of Zelda: Twilight Princess, and while
none of the 3D Zelda games are represented in this corpus, there are 48 levels from the 2D
games of the series that could be analyzed. Beyond those series, the 3 other games could be
compared and contrasted with the closer to saturated Super Mario Bros.

Style Transfer
Along those lines, we do not know of any work that has successfully transferred level design
style across different games. All work has focused on a single game or series, andwhenwork
has included multiple games the work has always been partitioned. Following the work of
Gatys et al. (Gatys et al. 2015) there has been an interest in applying different artistic styles
to images, similarly, we imagine that an interesting avenue for future work would be one
that could reimagine levels of one game in the style of another, or a user could sketch the
skeleton of a level and in turn generate variants based on different game styles.

CONCLUSIONS AND FUTURE WORK
We present this corpus in hopes of helping the community. Each group of researchers that
have used corpora based machine learning approaches have needed to reinvent this, admit-
tedly, not altogether exciting wheel, which is why we expect this work to be adopted by the
community so that focus can be placed on more exciting and innovative work. The VGLC is
already available online (https://github.com/TheVGLC/TheVGLC), ready to use. Further-
more, we encourage researchers to contribute additional games and tools to this corpus, to
make it become more useful to the community.
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