Procedural generation of populations for storytelling

Bas in het Veld
Utrecht University
basinhetveld@gmail.com

Rafael Bidarra
Delft University of Technology

R.Bidarra@tudelft.nl

ABSTRACT

Procedural world generation is often limited to creating worlds

devoid of people and any background. Because of this, cre-
ating a vibrant, living world is still a problem that requires
a skilled designer. In this paper, we present a method that
generates a socially connected population in any virtual ter-
rain, using a mixed-initiative simulation of settlements that
adapt to the world and to a designer’s input. Using this sim-
ulation, we develop a number of sample worlds that convey
the expressive potential of the approach. We further eval-
uate ease of use with a user study. As a proof-of-concept,
we implement the system to bridge the output of a terrain
generation tool to the input of a narrative generation tool.

Keywords
computational storytelling, population generation, procedu-
ral content generation

1. INTRODUCTION

Procedural generation techniques are often necessary for cre-
ating the diverse, rich worlds found in many exploration
and role-playing games. Games like SKYRIM [2] make use of
procedural landscapes and, uniquely, procedural story gen-
eration (in the form of the Radiant Quest system). How-
ever, the landscapes by themselves are boring and lifeless,
and fail to provide the most important elements for a story,
the people. We argue that to better integrate story gen-
eration into existing procedural generation techniques, we
need to explore methods for creating populations that con-
tain the necessary data to be used for story generation.
DWARF FORTRESS [1] notably creates worlds filled with an
overwhelmingly diverse population, by simulating the his-
tory of the world, creating towns, populations and social
relations out of the evolution of this world over time. This
leads to very diverse results, however the methods of DWARF
FORTRESS do not allow for designer intent and are therefore
inescapably tied to one context.

Ben Kybartas
Delft University of Technology

B.A.Kybartas@tudelft.nl

John-Jules Ch. Meyer
Utrecht University

J.J.C.Meyer@uu.nl

This paper describes a method that takes a landscape as
input, and uses a designer-driven historical simulation to
generate an entire population, complete with settlements,
individual people and social relations. The designers can
customize their worlds in a number of ways, and work at
the level of population building rather than individual char-
acter design. Using the definitions provided by the de-
signer, a world is simulated, using an optimization algorithm
based upon evolutionary algorithms to accurately determine
whether populations migrate, collapse, or develop new rela-
tions with each other. In the case of offline generation, the
designer is granted further interactions during simulation,
to be able to fine-tune the positions and layouts of their
populations as seen fit. A massive set of characters are cre-
ated as the result of this simulation, complete with relations
and properties relating to their corresponding settlement.
Since the population is created after the simulation, the user
has full control over its size. For experimentation, the al-
gorithm has been tested with a variety of input landscapes
and population designs, and an evaluation was performed
to determine the ease of use and openness of the algorithm
to iterative design. Furthermore, as a proof-of-concept, the
algorithm has been successfully used to connect a sketch-
based landscape generation tool [13] to a narrative genera-
tion tool specifically geared towards creating quests for RPG
games [7].

2. RELATED WORK

Storytelling systems which work with large populations are
quite rare. In interactive fiction, the worlds are typically
populated with a small number of well-defined, complex,
hand-authored characters. Even larger scale emergent sto-
rytelling games such as McCoy et al.’s PRoM WEEK [11]
contain relatively few characters.

Typical approaches to combining procedural content with
game worlds have focused on tying the story directly into
the world generation, by creating dungeons [4], maps [14] or
even entire game worlds [6]. In the latter case characters
are generated, but only to serve particular events in a given
plot. Our approach, instead, targets emergent game envi-
ronments, in that we do not care about the representation
of a single story, but in creating what Mateas [9] describes
as a narratively pregnant world, one rich with potential for
many stories.

Lebowitz [8] explored methods for creating characters to be
used for storytelling in his UNIVERSE system. His focus was

on creating characters with a personality that was consistent
and coherent with an existing world. However the goal of
that study was to create complex new characters that inte-
grate properly into a hand-authored set of characters. Our
method does not focus on creating complex, completed char-
acters, but instead on large-scale populations with plausible
and consistent interrelations.

The history generation of DWARF FORTRESS [1] served as in-
spiration for our approach to population generation. While
the details of the generation are unknown, the game cre-
ates relatively templated characters, but situates them in a
world in which several hundred years of history are simu-
lated. Likewise, the large scale approach to having relations
between settlements is inspired by the complex social rela-
tions present in CRUSADER KINGs II [12], where European
countries develop alliances and conflicts based on events dur-
ing game play.

Even though population generation is never mentioned, Em-
ilien et al. [5] use an algorithm based on lichen growth [3] to
determine the placement of villages in an arbitrary terrain.
Inspired by the results of this method, we expand upon the
original method to integrate social interactions and support
population generation.

3. OVERVIEW

Our method can produce a world populated by virtual char-
acters that can be used for storytelling, using an empty land-
scape as input. The resulting population is not just a large
set of randomly generated characters - each character has
a little background and relations to other characters and
places in the world. Characters generated by our method
are simple, but still contain enough information to allow
them to become a believable and interesting part of a story,
while all of this information is still consistent with other
characters from the population.

To create our population, we simulate a number of settle-
ments in the landscape, much like the method described by
Emilien et al. [5]. These settlements form the basis of the
creation of the population, as each settlement represents a
sort of blueprint for the characters that are generated from
them.

We use an algorithm that optimizes the fitness score of each
settlement, which is determined by the landscape and the
designer-defined way the settlement interacts with this land-
scape and other settlements. Our method lets these settle-
ments optimize, and also allows relations between them. We
allow a designer to create populations by looking at the land-
scape and specifying how characters would live there. They
can design the types of settlements they’d like to see as well
as the relations that may exist, and simulate the world until
the results are satisfactory.

4. METHOD DESCRIPTION

In this section, we take an in-depth look at the proposed
method, how to design a population, and how the simulation
and character generation take place.

4.1 Definitions

The input of our method, the landscape, is defined as
<H’m7 Tm? (F)>

where H,, is a height map, 7T, is a terrain type map, and
F is an optional set of terrain features such as forests and
rivers. The terrain type map simply indicates the terrain
type for each pixel on the terrain. Examples of these terrain
types are grasslands, mountains, hills, etc. Both the terrain
types and terrain features can be defined by the designer
and are used later to determine where settlements, and their
inhabitants, prefer to be.

The output of our method is a population composed of vir-
tual characters. A character is defined as

(S,D,R)

where S is the character’s settlement, D is the character’s
district, and R is the set of relations this character has to
other characters and settlements. The characters generated
by our method are relatively simple: they do not have a
strong personality, life goals or a specific history. What they
do have, however, is a general but consistent background
and social network, which should make it fairly easy for a
storyteller to adapt them to be more specific. Essentially,
our characters are nodes in a population’s social network.

A settlement is defined as
<P7 Dl7 R7 P'r>

where P is a position in the virtual world, D; is a list of one
or more districts, R is the set of relations this settlement
has with other settlements and P, is this settlement’s pro-
totype. Settlements are used as the main tool for creation
of the population, as they serve as a blueprint for characters
generated from them.

A district is defined as
<Na Pd? Ra>

where N is a list of needs, P; is a list of products and R,
is a list of relations this district allows its parent settlement
to use. A settlement adopts needs, products and allowed
relations from its districts, making districts an important
building block of settlements.

A product is a resource function, much like those used by
[5] and [3]. These functions can be seen in figure 1. Exam-
ples for use of these functions are distance from water (Close
distance function), terrain slope (Balance) and terrain types
that provide resources - woods, mountains, water (for fish-
ing) and fertile land (Open distance function). These func-
tions are especially well suited for our optimizing algorithm,
as their gain diminishes as they approach the optimum.

A relation is defined as a
<T7 SS7 DS7 Re7 (A)>

where T is the relation’s type, Ss is the set of settlements
the relation applies to, D is the set of distances relevant
for this relation (a preferred distance and a maximum dis-
tance), Re is the set of resources that can be exchanged for
this relation, and A is the relation’s optional attitude, which

Attraction-Repulsion Balance

Open Close

Figure 1: The resource functions[5] used by a district to determine its resource production efficiency. The x-axis is the relative
distance from the terrain feature that allows resource income, the y-axis is the resource fitness - the amount of resource

produced.

might restrict other relations from forming once an attitude
is established. Relations form an important way for settle-
ments to exchange resources, and also a strong basis for the
relationships between the characters in the population.

4.2 Designing the virtual world

To create a world, a designer needs to define three of the
method’s main ingredients: Districts, Relations and Proto-
types. Also, designers must tell the system how many set-
tlements they want of each prototype, and from there they
can just watch the world unfold, interfering if desired.

The relations and districts are strongly tied to the popula-
tion that is later generated: Any relation that is between two
settlements will cause such relations to exist between mem-
bers of their respective populations, while districts can say
a lot about a character’s background. Prototypes have an
indirect effect, as they force settlements to adopt a certain
stereotype. The effect is that rather than adapting to the
world, the settlement should instead find its optimal place
in the world. To illustrate the strong effect of prototypes
on designing a world, consider Figure 2. In the first image,
we did not design any prototypes, and designed fishers to be
slightly more efficient at producing food when close to the
sea. As a result, most settlements decide to be fishing settle-
ments. In the second image, we introduce two prototypes:
Fishers, which demands the settlement has a fishing district
and no agricultural district, and Farmers, which works the
other way around. Both examples were allowed 15 iterations
of optimization.

Designing a district is very simple. Throughout the pa-
per, please refer to Table 1 for some definitions. In these
examples, the resource functions should be read as:

6(R, Rm: T7 Dmin: Dmaac)

where § is the type of distance function, for example dis-
tance_open, R is the resource that is being produced, R.,
is the multiplier, signifying how much of the resource is be-
ing generated, T is the type of terrain feature, Dp,n is the
minimum distance to this terrain feature and D, is the
maximum distance to this terrain feature.

By adding the option of a resource multiplier, one can make
certain districts more efficient at producing them. In effect,
a multiplier of 1.0 means that under optimal conditions (for
example, a fishing village at its minimum distance to water),
will produce exactly enough food to sustain itself.

Table 1: Example district definitions

Fishing

needs: food

produces: distance_open(food, 2.0, water, 30, 150)
relations: Trade

Agricultural

needs: food

produces: distance_open(food, 3.0, fertility, 0, 5)

relations: Trade

Military

needs: food, metals

produces:
distance_open(manpower, 4.0, domination, 0, 0.3)
constant(1.0)

relations: Raid

Mining

needs: food

produces: distance_open(metals, 1.0, mountains, 0, 200)
relations: Trade

Using only the definitions from Table 1, we can create mili-
tary settlements raiding fishing settlements, while other set-
tlements are optimized to have agricultural, mining and mil-
itary districts and to be self-sufficient. In this example, we
are using only three resource types and two types of rela-
tions. Recall that the open distance function has optimal
results for close distances, but declines as it gets closer to
the maximum. In the Fishing district, the production of
food is an open distance function using water as terrain fea-
ture, a minimum distance of 30 and a maximum distance
of 150. This means that such a settlement’s fitness will be
optimized by moving closer to water, until its distance is 30
or less. The Military district, described in Section 5, be-
haves similarly, but our domination map used values in a
range [0.0 1.0], hence the smaller range. This domination
map was generated from the height map, and is useful to
determine relative height for each terrain pixel. The mili-
tary district produces its resource manpower at a constant
rate, no matter the terrain domination. All resources and
types of districts are simply examples we came up with, so
a designer can define any named resource by defining it as
need or product for a district.

Designing relations is quite easy, as they are modeled as
restrictions on a resource exchange. In Table 2 we can see

Figure 2: Left: A simple island with only fishers and farmers, no relations and no defined prototypes. Right: A simple
island with only fishers, farmers, no relations, but with two prototypes that cause a designer-defined amount of fishers (8)

and farmers (8) to exist.

Table 2: Example relation definitions

Trade

g

out(*)

distance_open (550, 650)
attitude_required(not Negative)
Raid

o)

out(manpower)
distance_open(250, 400)
attitude_effect(Negative)

two basic relations we used during testing. In this example,
the Trade relation has no restrictions on its import or its
export resources, it has a preferred distance of 550, a max-
imum distance of 650 and it requires the existing attitude
not to be Negative. The attitude of a relation prevents an-
other relation that has a different attitude to also establish
between two settlements. For example, if settlement A raids
settlement B, we would not expect B to establish a trading
relation with A. To do this, we allow relations to have an
attitude effect, and an attitude requirement, which can take
the value "Positive’, "Negative’ or Neutral’. As soon as two
settlements have a relation between them that has such an
effect, the attitude between those takes on this value. For
example, a raid relation’s effect is 'Negative’, while a trade
relation’s requirement is 'not Negative’.

Designing prototypes involves determining what the re-

strictions are for a settlement. The main restrictions the
designer can apply are:

e Which district and relation types are (not) allowed?

e How many districts/relations are allowed?

e How does the settlement respond to proximity of other
settlements?

With these simple properties, prototypes become a powerful
tool for designers to steer their settlements in their desired
direction. For example, by limiting the maximum number
of relations and districts, we can force settlements to spe-
cialize. We can also create a simple raiding prototype by
using Military as the only allowed district, and having Raid
as preferred relation.

Finally, we allow our designer to determine a prototype’s
social type, which helps determine how the settlement deals
with other nearby settlements. The social type can have
two values, or it can be undefined: Master or Slave. A
master settlement has a territory and benefits from having
slave settlements in that territory, and is penalized when
its territory overlaps other masters’ territory. A slave set-
tlement benefits from being in any master’s territory, and
only has slight penalties for being close to other slave set-
tlements. If no social type is defined, a settlement simply
benefits from keeping its own preferred distance from other
settlements. A master’s territory and regular settlements’
preferred distances can be defined for each prototype, mak-
ing it very easy to introduce a degree of size to each pro-
totype’s settlement. We experimented with around 5 mas-
ter settlements and around 20 slaves, and simulating the
world quickly caused the masters to take their own space
in the world, while the (smaller) slave settlements quickly
distributed in these territories. In the resulting population,
there was a clear social network between masters and their
slaves, while settlements without a social type tended to be

Table 3: Example prototype definitions

Extra_Large
social_type: Master
master_territory_size: 450

Small Raider : Small
districts:Military
relations: Raid
districts: not Fishing

not Agricultural
Small_Mining
social_type: Slave
districts: Mining
max_districts:1

Large_Military
districts: Military
social type: Master
master_territory_size: 350
Small

max_districts: 2
max_relations: 3
Small_Food : Small
districts: not Military
max_districts: 1
social_type: Slave

solitary. Table 3 shows a few prototype definitions. Note
how definitions can be used as ’parent’ definition, copying
all properties from it; in this way, for example, Small Food
has all properties from the Small prototype.

4.3 Simulating the virtual world

In this section, we discuss the simulation of the virtual world,
and the mixed-initiative interaction between the simulation
and designer. It is possible to simply simulate a number of
generations, then generate a population with the press of
one button. However, if designers have a certain world in
mind, we wish to enable them to create it just as they want
it. For this reason, we designed the method to be mixed-
initiative, allowing the designer to proceed to the next gen-
eration of settlements, make customizations, and continue.
We designed our interface to allow designers to simply drag
and drop settlements, and change a settlement’s properties,
immediately seeing the effect that it has on their fitness. At
any time, designers can allow the system to simulate the
next generation. Once the designers are done, they can gen-
erate the population from the current generation, and still
keep going after that too.

Before the initial generation can be created, the designers
specify the types of settlements they would like to see in his
world, by supplying a list of prototypes. Each prototype is
assigned to a settlement and placed in the world by ’polling’
a number of locations (we polled 15 times) in the landscape,
and determining the fitness of the settlement, should it be
placed there. For each settlement, the best scoring poll is
selected for the first generation. The advantage of using
a polling method is that the resulting locations are nonde-
terministic and cause the settlements to be in local optima
rather than global optima after simulating. After all, we
are not looking for the optimal situation of the simulated
world - rather, we want to generate a possible way a popu-
lation may exist in that world. The fitness of a location for
a settlement is determined by the following factors:

Landscape : is the slope suitable, is the spot legal (e.g. no
water)?

Resource : based on the settlement’s districts and relations,
how well will it do resource-wise?

Spacing : are we too close or too far from other settlements.
This depends on the social type of the settlement.
Prototype : is the settlement true to its prototype?

Because we are working with an optimization algorithm, we
scored all these factors on a scale from 1.0 to potentially
negative infinity (but usually -1.0). For example, if the land-
scape is perfect - no slope and the position is legal - the score
for that will be 1.0. For resources, this was trickier, since
more should always be better. For this reason, meeting all
needs gives a score of 0.5, and as the amount of resources
approaches infinity, the score approaches 1.0. We use simi-
lar strategies for the other fitness factors and compute the
final fitness by taking their equally weighted sum, causing
settlements to optimize on all fronts.

The spacing fitness is determined by distance to all nearby
settlements. It depends on the social type of the settlement,
but each settlement always has a preferred distance to each
other settlement. A settlement with no other settlements
in its preferred distance radius has a spacing fitness of 1.0,
while each nearby settlement diminishes this value. Mas-
ter and slave settlements are an exception: Master settle-
ments do not lose fitness when slaves are in their territory,
while slaves lose fitness if they are not in a master’s territory,
proportional to the distance to the nearest master (causing
them to move toward that master).

When a new generation is created, each settlement makes
copies of itself and mutates them slightly. Mutation involves
a change in one or more properties including position, rela-
tions and districts. The ’child’ that has the highest scoring
fitness is chosen and used in the next generation. To pre-
vent a settlement from becoming less optimal by mutation,
we always include the original settlement in the selection
process.

4.4 Population generation

When the designer is satisfied with the world, the population
generation can take place. For each settlement (prototype),
the designers can determine how many characters they want
to have generated by the method. In this phase, the settle-
ments act as character generators: each settlement now has
districts, which help determine the background for a char-
acter. For example, a settlement with a Military district
might produce soldiers or raiders (depending on relations),
while fishing villages should produce mainly fishermen. Fur-
thermore, settlements have relations to other settlements,
and often they already have attitudes to other settlements
too. So, if we have settlement A raiding settlement B, the
attitude between these two settlements is Negative (see Ta-
ble 2). If we now generate a character for settlement B, it
can automatically inherit this from its settlement: it has a
negative attitude towards A, and anyone from A. To give
the character more flavour, we can even give this attitude
flavour: the attitude is negative because A raids B.

However, if we generate all characters like this we end up
with a whole group of characters from settlement B that
hates every single person from settlement A. For a number
of reasons, this is undesirable. For example, a story such
as Romeo and Juliet would not be possible. It also makes
sense that many characters from settlement B do not even
know anyone from settlement A. This is why we allow the
designer to set a few simple values for character generation:

inter_settlement_relation_chance: the chance a character

knows another character from a different settlement.
inter_district_relation_chance: the chance a character knows
another character from a different district (in the same set-
tlement).

intra_district_relation_chance: the chance a character knows
another character from the same district.
attitude_change_chance: the chance a random attitude change
occurs between any two characters.

These values can be used to add some variation to the ini-
tially generated characters. We found that if these values
are not used, an enormous amount of relations is being gen-
erated: every character will have a relation to every other
character in the settlements their own settlement has a rela-
tion to. However, since we expect the output of our method
to be used by a procedural story generator, it can also be
considered the responsibility of that system to tune these
possibilities.

5. APPLICATION

To test our method, we have built a number of different
input landscapes, and designed varying sets of districts, re-
lations and prototypes. In this section, we present a few de-
signs we made, and show how our method deals with these
inputs. We show a simple world in detail, and consider some
others more broadly.

Our first world is a medieval-themed design, and has also
been the running example throughout the paper. We used
exactly the districts as presented in Table 1, the relations in
Table 2 and the prototypes in Table 3. The initial generation
of the resulting world can be seen in Figure 3 (left). The im-
ages under a circle signify which districts a settlement has.
Even though no optimization has yet taken place, the settle-
ments often have locations that are quite suitable for their
prototype. However, without simulation the social graph is
quite limited. Figure 3 (right) shows the same world after 10
generations without user intervention. It is clear that most
settlements remain true to their stereotype, but without user
intervention, some others have not been able to escape their
local maxima (yet). For example, the settlement in the far
left bottom should be large and have a military district, but
since there are absolutely no other settlements around to
have relations with, it became a fishing settlement instead.
Of course, this problem was already there in generation 0,
and could have been fixed by the designer, e.g. by simply
dragging it to a new position.

Expanding this first example to be more specific is quite
simple. We added a hunter-gatherer district that generates
food from forests, and to give our world a fantasy game-
like feeling, we introduced a few prototypes: Elven : Using
the new hunter-gatherer district only, making them drawn
to forests. Dwarven : Using the mining district, making
them drawn to mountains. Orcs : Only allowed to use Mil-
itary districts, and Raid relations. By making only these
simple changes, the designer can expect elven settlements
(usually) in forests, dwarven settlements in the mountains,
and orcs raiding everyone, everywhere. Although interest-
ingly, sometimes an orc settlement would be too far away
to raid anyone and would instead become a self-sustaining
fishing settlement.

we

&

- "

Figure 4: Simulation of a SIMCITY [10] like world. Commer-
cial, industrial and residential districts of low, medium and
high wealth form cities that exchange resources like workers,
materials, products and even influence and money.

Beyond this quite straightforward example, we developed
some very different approaches. Figure 4 shows a region
of the same landscape for our fantasy-themed example, but
modern settlements are being simulated instead. Aiming
to mimic the basic mechanics of SIMCITY [10], we defined
residential, commercial and industrial districts of different
social classes: low wealth, medium wealth and high wealth.
We model unique relations between cities, allowing trade
and freight shipments, but also allow cities the option to
use influence and bribery to get resources from other cities.
The result is a much darker, more corrupt vision of modern
society that may be more befitting of storytelling.

Another popular setting for storytelling and games is the
wild west, so we simulated a world where the collection of
gold is the goal for (most of) the population. We set up
our landscape to contain just a few places where gold can
be collected, and designed a specialized prototype that can
collect gold while the others cannot. Other settlements are
allowed to be towns that provide workers and earn gold by
having them work in the mines, bandits that can steal gold,
and ’lawbringers’ that can arrest bandits. In Figure 5, we
can see how all settlements converge toward each other, even
though we did not define any master or slave prototypes in
this scenario.

Exploring alternative forms of resources, our final popula-
tion example aimed to mimic zombie apocalypse worlds.
This setting uses people and zombies as the main resources,
allowing zombies to infect human settlements and humans
to cure zombie settlements. Relations are mapped to scav-
enging, zombie hunting, resource gathering, and acquiring
medical supplies. To demonstrate the versatility of the sys-
tem, we generated four different populations in very different
landscapes, as shown in Figure 6. Likewise, we split the pro-
totypes into one large city which contains the medical center

Figure 3: The initial generation of a medieval-themed world, defined with the values presented in the example tables. A plus
sign is a Raider prototype, a cross is a Mining prototype, settlements with a territory are the Large (Military) prototypes,
and all the others Small. Left: Initial generation. Right: world after 10 generations.

and laboratory needed to create zombie cure, several cities
largely infected with zombies, and then a number of small
scavenger or survivor groups.

Figure 5: A wild west scenario, with only gold as terrain-
based resource. Because of this, all settlements tend to con-
verge to these locations.

6. EVALUATION

With our method, designers can populate a virtual world
by designing districts, relations and settlement prototypes.
Since this approach is rather involved, we wanted to test
how easily people unfamiliar with the system could use it to
create a population.

For the experiment, we asked 9 persons to do a number of
tasks with our method. Our participants were all between
20 and 26, 5 were female, 4 were male and none of them
has a background in computer science, although two have

experience playing computer games. We briefly explained
what the method does, how the designer can interact with
the system and introduced the medieval population example
shown in Figure 3. Furthermore, the participants were given
a ’cheat sheet’ that displayed the main options and available
terrain features for the landscape they worked in. After
this introduction, the participants were given definitions of
the Fishing district as shown in Table 1, the Trade relation
as shown in Table 2 and the Small prototype as shown in
Table 3 to serve as a start for their design. Using this,
they were asked to do the following tasks to incrementally
improve their world.

1. Add an agricultural district that produces a resource
'food’ from the terrain feature 'fertile’.

2. Create a world that has around 8 settlements that have
the Agricultural district only, and around 8 that have
the Fishing district only.

3. Create a large settlement that has surrounding vil-
lages.

4. Create small settlements that cannot produce food,

but rather have to steal it from other settlements (raiders).

5. Make the raider settlement rely on 'metals’ as well,
and create a district that can generate this resource
from mountains.

We were primarily interested in seeing how many times par-
ticipants had to make a change to their design after getting
results that differed from their expectations. After working
with the system ourselves, we already noticed that trial-and-
error is a common way of fine-tuning your world, and this
is visible in the retries of participants for each trial shown
above:

Task 2 proved especially challenging, as our landscape had a
great amount of fertile land. Because of this, the chance of

(¢) Frozen Island (d) Natural Valley
Figure 6: Four different populations of the zombie apoca-
lypse scenario. Each contains radically different resources
available, yet the system is still able to create logical popu-
lations for each landscape.

Task | 1 2 3 4 5
Average retries | 1.6 | 5.7 | 2.3 | 4.0 | 2.9

a settlement becoming agricultural was greater, and partic-
ipants needed to utilize prototypes to make fishers appear
more often. We required the participants to have 7 to 9 of
each settlement type in the first generation, without user in-
tervention, in order to complete this task. Similarly, task 4
required participants to define a new relation, and this was
especially interesting because that boils down to using the
more abstract resource 'manpower’. Four of our participants
used similarly abstract resources (’soldiers’, ’barbarians’ and
‘manpower’), while the rest used resources like 'weapons’.

After the tasks, we allowed our participants to freely try
adding districts, relations and prototypes to the world, and
asked them if they felt how well the method could help them
to create a population as they wanted it. The responses
were rather similar: Most participants found the method to
be quite complex, but also rather intuitive once they un-
derstood the basics. In particular, 8 out of 9 participants
mentioned ’trial-and-error’, meeting our expectation, espe-
cially considering none of the participants had a background
in computer science.

7. DISCUSSION

We implemented our method in C++, using Simple and
Fast Multimedia Library (SFML) for simple 2D rendering.
Most tests were done on a computer with a Intel Core i7
@2.20 GHz. Our implementation is capable of automatically
iterating through 50 generations of settlements in under 2 s
on average, then generate around 1450 characters in under

1 s on average.

To create our landscape model, we used the procedural ter-
rain sketching tool SKETCHAWORLD [13]. SKETCHAWORLD
allowed us to make landscapes in minutes, which made the
whole progress much more streamlined.

Our main goal is to make characters fit for storytelling, and
to test this goal, we succesfully integrated our system with
REGEN [7], a graph-rewriting tool that can be used for
narrative generation. We were successfully able to generate
narratives within our populations, and further have the pop-
ulation be updated by changes made within each narrative.

Our method has shown to be an effective tool for designing
a population for a world. It is true that one cannot fully
control or predict how exactly certain ideas play out, since
many factors have influence on settlements in the world. For
example, when a designer wants a world with lots of farms
and fisher villages, but fails to define prototypes, they might
find all of them become fishers (if those are defined to be
more efficient). However, even if the design is nontrivial, the
mixed-initiative designer interaction during the simulation
makes up for that.

8. CONCLUSION

In this paper, we present a method for the generation of
large populations of virtual characters, with basic but intu-
itive relations between them. A designer is required to do
the creative work, while the method itself simulates a be-
lievable world based on the designer’s ideas. Even when the
designers do not get exactly what they want, they can still
strongly influence the outcome of the program. The method
is quite fast, making it easy for the designer to experiment
and try different approaches. After the designers are sat-
isfied with their world, they can proceed to the generation
of meaningful characters who have a real place in the world
they were created in, and personality traits that are derived
from their origin.

We applied our method to fundamentally different scenarios,
proving that it can deal with a wide variety of worlds and
populations, from medieval/fantasy themed worlds to wild
west and apocalyptic settings.

By letting a small number of people without background
in computer science test our method, we have seen that
technical knowledge is no prerequisite for using our method.
However, the method is not trivial either, and requires de-
signers to understand a few basic concepts before they can
start. The experience of our participants has shown that ef-
fectively creating a world requires some degree of trial-and-
error, since the interaction between settlements, the world
and the designer can become quite complex.

For future work, we will improve the interaction the designer
has with the method. Right now, designers can edit their
designs, then reload the program to see their changes take
effect. Instead, being able to make changes to districts, rela-
tions and prototypes while running the program would make
the interaction even more fluent. Our method is particularly
well suited for this kind editing, because it will simply keep
optimizing based on its new inputs.

[12]

[13]

[14]

REFERENCES

T. Adams. Slaves to Armok: God of Blood Chapter II:
Dwarf Fortress. Bay 12 Games, August 2006.
Bethesda Game Studios. The Elder Scrolls V: Skyrim.
Bethesda Softworks, 2013.

B. Desbenoit, E. Galin, and S. Akkouche. Simulating
and modeling lichen growth. Computer Graphics
Forum, 23(3):341-350, 2004.

J. Dormans and S. Bakkes. Generating missions and
spaces for adaptable play experiences. Computational
Intelligence and AI in Games, IEEE Transactions on,
3(3):216—228, Sept 2011.

A. Emilien, A. Bernhardt, A. Peytavie, M.-P. Cani,
and E. Galin. Procedural generation of villages on
arbitrary terrains. Visual Computer, 28(6-8):809-818,
June 2012.

K. Hartsook, A. Zook, S. Das, and M. O. Riedl.
Toward supporting stories with procedurally generated
game worlds. In Computational Intelligence and
Games (CIG), 2011 IEEE Conference on, pages
297-304. IEEE, 2011.

B. Kybartas and C. Verbrugge. Analysis of ReGEN as
a graph-rewriting system for quest generation. I[EEE
Transactions on Computational Intelligence and Al in
Games, 6(2):228-242, 2014.

M. Lebowitz. Creating characters in a story-telling
universe. Poetics, 13(3):171-194, 1984.

M. Mateas. Interactive Drama, Art, and Artificial
Intelligence. PhD thesis, Carnegie Mellon University,
Pittsburgh, PA, December 2002.

Maxis. SimCity. Electronic Arts, March 2013.

J. McCoy, M. Treanor, B. Samuel, A. Reed,

M. Mateas, and N. Wardrip-Fruin. Social story worlds
with Comme il Faut. Computational Intelligence and
Al in Games, IEEE Transactions on, 6(2):97-112,
June 2014.

Paradox Development Studio. Crusader Kings II.
Paradox Interactive, February 2012.

R. M. Smelik, T. Tutenel, K. J. de Kraker, and

R. Bidarra. Interactive creation of virtual worlds using
procedural sketching. In Proceedings of the 2010
Workshop on Procedural Content Generation in
Games, pages 1-8. ACM, June 2010.

J. Valls-Vargas, S. Ontanon, and J. Zhu. Towards
story-based content generation: From plot-points to
maps. In Computational Intelligence in Games (CIG),
2013 IEEE Conference on, pages 1-8, Aug 2013.

