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Figure 1: Example of a Super Mario Bros level generated bymultifaceted EDRL. The play traces of three dissimilar agents are
also overlaid on the level. EDRL moderates the divergence of game level and gameplay based on Koster’s theory of fun [9].

ABSTRACT
The recently introduced EDRL framework approaches the experience-
driven (ED) procedural generation of game content via a reinforce-
ment learning (RL) perspective. EDRL has so far shown its effec-
tiveness in generating novel platformer game levels endlessly in an
online fashion. This paper extends the framework by integrating
multiple facets of game creativity in the ED generation process. In
particular, we employ EDRL on the creative facets of game level and
gameplay design in Super Mario Bros. Inspired by Koster’s theory
of fun, we formulate fun as moderate degrees of level or gameplay
divergence and equip the algorithm with such reward functions.
Moreover, we enable faster and more efficient game content gen-
eration through an episodic generative soft actor-critic algorithm.
The resulting multifaceted EDRL is not only capable of generating
fun levels efficiently, but it is also robust with respect to dissimilar
playing styles and initial game level conditions.
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• Computing methodologies→ Reinforcement learning; • Ap-
plied computing→ Arts and humanities.
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1 INTRODUCTION
The autonomous or semi-autonomous generation of games that
elicit the optimal experience for a player remains a critical challenge
for the AI and games research community [41]. More than a decade
after the introduction of the experience-driven procedural content
generation (EDPCG) framework [40] the idea that content (and
not agent behaviour) adapts according to a player’s experience has
gradually made it to commercial standard games such as Nevermind
(Flying Mollusk, 2015) and Spell Forest (Zynga, 2020). EDPCG was
recently blended with other popular frameworks such as the PCG
via reinforcement learning (PCGRL) [7] framework. The recently
introduced ED(PCG)RL blend, EDRL for short [26], enables the
generation of personalised content via the RL paradigm. EDRL
was initially tested in Super Mario Bros (SMB) (Nintendo, 1985)[17]
through the generative designs of RL agents that learn to optimise a
number of novelty-based reward functions relevant to level design.
That initial study, however, considers only preliminary formulations
of player experience for platformer level design.

In this paper, we focus on the notion of fun as a player experience
state and build formulations of fun based on Koster’s theory of
fun [9]. In particular, we train RL agents to moderate the level
of divergence of their own generated content as in [26]. In this
subsequent study, however, we build upon and extend the work
of Shu et al. [26] in a number of ways. First, we introduce the
notion of multifaceted EDRL generation as we develop experience-
driven content creation algorithms across creative facets of games as
defined in [11]: visuals, narrative, game rules/design, audio, levels and
gameplay. Initially in this study, we consider the two creative facets
of levels and gameplay design and construct ad-hoc formulations
of fun for both facets (see Fig. 1). We use and quantify the term
fun in alignment with Koster’s definitions; in Section 6 we discuss
the limitations of fun both as a term and as a quantifiable measure.
Second, we perform extensive experiments testing the robustness
of EDRL across different reward functions, initial level conditions
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and player styles. Finally, the enhanced EDRL framework features
an episodic generative soft actor-critic algorithm making it possible
to efficiently personalise game generators for individual players.

Prior to running any empirical experiments, the quality of our
fun formulations is cross-verified by using them to evaluate human
designed SMB levels vs randomly generated levels. The fun mea-
sures that maintain moderate degrees of game level and gameplay
variation appear to value human designed levels highly compared
to most randomly generated levels. Our EDRL algorithm equipped
with such reward functions is able to efficiently generate SMB lev-
els online and it is also highly robust with respect to dissimilar
starting level segments and play styles. This study demonstrates
the capacity of EDRL and opens up new avenues of research for
multifaceted and orchestrated [10] generation via EDRL1.

2 BACKGROUND
In this section we review the literature on player experience mod-
elling in particular, associated with the notion of fun (Section 2.1)
and then review the ways such measures have been used as heuris-
tics for procedural content generation (Section 2.2).

2.1 Measuring Player Experience
The player experience modelling literature is rich on methods and
approaches for modelling aspects of player behaviour and expe-
rience [40, 41]. A large body of work has focused on data-driven
methods that learn to predict particular player experience states
such as frustration, challenge [23, 24] and arousal [16] that are
either directly measurable from biosignals [23, 30] or are delivered
from player demonstrations of experience [1, 14, 16].

When it comes to the notion of fun, most studies in the literature
have been inspired by Koster’s theory of fun [9] suggesting fun is the
sweet game design spot between game difficulty and player skills.
Therefore, quantified notions of fun have usually relied on a dis-
tance, dissimilarity or diversity measure that considers the level as a
whole or as level segments. Shaker et al. [25], for instance, machine
learned the notion of fun through human annotations of various
SMB levels. A similar methodology was followed by Martinez et
al. for simple arcade games [20]. Preuss et al., relied on three types
of distance measures, namely tile-based distance, objective-based
distance and visual impression distance there were used as functions
for evaluating good and diverse game levels [22]. Wuff-Jensen et
al. used the mean squared error and structure similarity index to
evaluate the diversity of digital elevation maps for 3D landscape
generation [34]. Variants of the Kullback-Leibler (KL) divergence
have been employed to measure the dissimilarity between SMB
levels [13], as an objective function for SMB level generation [13],
or as a measure of a level’s fun value [26].

Novelty and surprise are notions that are closely linked to dis-
similarity and divergence and have been used in association with
procedural content generation. In [26] for example, a novelty-based
formulation of fun and a historical deviation metric were used to
estimate the quality of generated SMB segments. Gravina et al.
interpreted surprise as the deviation from expectation, and intro-
duced an algorithm that maximises the unexpectedness of game

1Code and results available at https://github.com/SUSTechGameAI/MFEDRL

content [4]. The notion of surprise has also been applied to qual-
ity diversity search [5]. In particular, Gravina et al. considered
playing behavioural diversity as a component of quality diversity
algorithms for content generation [3]. On a similar basis, Khal-
ifa et al. generated SMB levels of high quality and with diverse
behavioural mechanics using different simulation approaches [8].
Osborn and Mateas developed a tool named Gamalyzer to analyse
the dissimilarity of play traces based on constraint continuous edit
distance [18, 19].

In contrast to all earlier studies, in this paper we employ a num-
ber of dissimilarity metrics for measuring the variation of both
game levels and player behaviour. To the best of our knowledge,
there is no prior attempt available in the literature that explores the
multifaceted variation of in-game content and in-game behaviour
for content generation. The aim of the study is to build expressive
generators that are capable for generating fun levels in a multifac-
eted [11] fashion. Such levels can be tailored to any player via RL,
in particular, using the experience-driven PCG via RL framework
that is reviewed next.

2.2 EDRL Framework
The experience-driven PCG via reinforcement learning [26] frame-
work is built upon the EDPCG [40] and the PCGRL [7] frameworks.
EDRL enables online, endless generation of personalised content
driven by experience-based reward functions. The framework has
demonstrated its efficiency in training SMB level generators that are
capable of generating functional and diverse levels considering the
level playability and fun formulations. Motivated by the effective-
ness of EDRL, in this paper we employ EDRL for training SMB level
generators using notions of fun that maximise the divergence of
levels and playing behaviour. We extend earlier work in EDRL [26]
substantially in three ways. First, we introduce generic formulations
of player experience that are linked to multiple facets of in-game
creativity [11]—game level design and gameplay behaviour. Second
we propose a training procedure based on soft actor-critic [6] which
simulates and rewards complete levels generated by EDRL, thereby
yielding better quality (reward) estimates of the level. Finally, we
generate and test levels using different player styles.

3 FORMULATING FUN?
According to Koster’s theory of fun [9], a game is fun when players
learn new skills during gameplay. In terms of player skills and
corresponding game challenges, fun occurs when the experienced
game content is neither too hard (i.e., the player experiences an
unmastered game pattern) nor too easy (i.e., the player has already
mastered a game pattern). At the same time the game content that
is experienced by the player should be expressive enough so that it
enables rich gameplay—i.e. diverse ways to experience the content.

The question that arises is what kind of in-game variation af-
fects player experience and needs to be considered by a measure of
fun? According to Liapis et al. [11], games are multifaceted creative
outcomes and they are composed of 6 creative facets: visuals, narra-
tive, game rules/design, audio, levels and gameplay. In this paper we
introduce a multifaceted EDRL approach and initially examine the
impact of the game level and gameplay facets of creativity by con-
structing independent measures of fun for each one of them. Those
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measures are provided to EDRL which, in turn, generates game
content that elicits the right amount of variation for each player,
thereby maximising fun. These two facets are chosen because of
their importance to the platformer game genre considered in this
study. The level geometry of a platformer game (e.g., position of
platforms and placement of enemies) affects directly the player
traces available for navigating the level geometry, and vice versa.

In the remainder of this section, we formulate a divergencemetric
that measures both game level (Section 3.1) and gameplay (Section
3.2) variations, and then propose formulations of fun (Section 3.3).
In Section 3.4, the fun formulations of the two facets are verified
on human designed levels versus randomly generated levels.

3.1 Game Level Divergence
We employ the tile-pattern divergence used in [13, 26] to measure
the dissimilarity of level segments. In particular, we count the fre-
quency of all distinct tile patterns in a level segment to formulate
a tile-pattern frequency distribution, and then compute the diver-
gence between the tile-pattern frequency distributions of a pair of
segments. In [13, 26], KL-divergence is used to measure the differ-
ence between tile-pattern frequency distributions, in which two
hyperparameters 𝑤 and 𝜖 are introduced to cater for asymmetry
of distributions and non convergence when an uncommon pat-
tern is considered in the calculations. Determining suitable values
for 𝑤 and 𝜖 is not trivial, however. To tackle this issue, we base
our measure of fun for game level design on the Jensen Shannon
(JS) divergence [12]. 𝐷𝐿 (𝐴, 𝐵) is a parameter-free measure of JS
divergence between any two given level segments 𝐴 and 𝐵 and is
formulated as follows:

𝐷𝐿 (𝐴, 𝐵) =
∑︁

𝑥∈𝑋 (𝐴,𝐵)

(
𝑝 (𝑥 |𝐴) log 𝑝 (𝑥 |𝐴)

𝑝 (𝑥 |𝐴, 𝐵) + 𝑝 (𝑥 |𝐵) log
𝑝 (𝑥 |𝐵)

𝑝 (𝑥 |𝐴, 𝐵)

)
, (1)

where 𝑋 (𝐴, 𝐵) is the set of tile-distinct patterns that appear in the
segments 𝐴 and 𝐵; 𝑝 (𝑥 |𝐴) denotes the frequency of a tile-pattern 𝑥
that appears in 𝐴; 𝑝 (𝑥 |𝐴, 𝐵) = (𝑝 (𝑥 |𝐴) + 𝑝 (𝑥 |𝐵))/2 is the averaged
frequency of 𝑥 appearing in 𝐴 and 𝐵. 𝐷𝐿 (𝐴, 𝐵) is high when the
diversity of 𝑥 (of a predefined size) is high across two segments 𝐴
and 𝐵. In this work, the size of the tile-pattern is set empirically to
2 × 2. More details can be found in the code repository1.

3.2 Gameplay Divergence
Beyond a player’s own style, a player’s behaviour is affected pri-
marily by the game rules and the game genre. In the platformer
game genre examined in this paper, one could consider play traces
(i.e., player coordinates over time) as the most representative as-
pect of player behaviour that is affected directly by the geometry
of the level. On that basis, we record a sequence of player posi-
tions 𝜏 (𝐴|P) = ( [𝑥1, 𝑦1], [𝑥2, 𝑦2], · · · , [𝑥𝑡 , 𝑦𝑡 ], · · · ) that represent
the behaviour of a player P on a level segment𝐴, where [𝑥𝑡 , 𝑦𝑡 ] are
the pixel-level coordinates of P’s position at the 𝑡-th frame while
playing level segment 𝐴. To compute the divergence of play traces
we employ dynamic time warping (DTW) [2], a method with wide
adoption for the analysis of sequential data.

DTW has a clear physical meaning and supports sequences with
different lengths as it computes the minimal summation of distance
along a warping path. Let 𝑀 and 𝑁 denote the lengths of 𝜏 (𝐴|P)
and 𝜏 (𝐵 |P), respectively, and let 𝐾 = max{𝑀, 𝑁 }. A warping path

𝐴𝐶 (𝐷𝑥 ;𝑔, 𝑟 )

𝐷𝑥

1

𝑟

𝑔𝑟𝑔 (2 − 𝑟 )𝑔

optimal
range

Figure 2: Illustration of the A-clip function used for moder-
ating the variation of game levels and gameplay behavior.

W = ( [𝑖 (𝑘), 𝑗 (𝑘)] | 𝑘 = 1, 2, · · · , 𝐾) is defined as a sequence of
paired position indices [𝑖 (𝑘), 𝑗 (𝑘)], where 𝑘 ∈ {1, 2, · · · , 𝐾}, and
𝑖 (𝑘) ∈ {1, 2, · · · , 𝑀}, 𝑗 (𝑘) ∈ {1, 2, · · · , 𝑁 }. A warping path satisfies
three conditions: (i) it starts from [1, 1] and ends at [𝑀, 𝑁 ]; (ii)
it never goes backward; and (iii) it covers every entry of the two
sequences that are compared. We formulate the DTW dissimilarity
of play traces across two level segments 𝐴 and 𝐵 for player P as:

𝐷𝐺 (𝐴, 𝐵 |P) = min
W

𝐾∑︁
𝑘=1

E(𝜏𝑖 (𝑘 ) (𝐴 |P), 𝜏 𝑗 (𝑘 ) (𝐵 |P)) . (2)

In our case, the distance measurement E in Eq. (2) is the Euclidean
distance between two position vectors. To normalise DTW values,
𝐷𝐺 in Eq. 2 is divided by the width of segments (i.e. 28 as in [31]).

3.3 Moderating Divergence
According to [9] in-game variation should lie within some ideal
range. To moderate that amount of variation and thus formulate
fun, we use the following A-clip function:

AC(𝐷𝑥 ;𝑔, 𝑟 ) = min{𝑟, 1 − |𝐷𝑥 − 𝑔 |
𝑔

}. (3)

where 𝐷𝑥 is either 𝐷𝐿 (see Eq. 1) or 𝐷𝐺 (see Eq. 2). Parameters 𝑔
and 𝑟 (0 < 𝑟 ≤ 1) are the target value and the clipping rate of the
A-clip function, respectively. The range [𝑟𝑔, (2− 𝑟 )𝑔] is the optimal
range of the A-clip function (see Fig. 2).

In addition to moderating divergence via the A-clip function we
also consider the memory of the playing experience for quantify-
ing fun. Inspired by [26], we assume that the player’s memory of
experiencing earlier parts of the level decays over time; hence, the
importance of moderating divergence should be higher for newly
generated level segments compared to level segments played in
the past. We therefore let 𝑔 and 𝑛 describe, respectively, the target
divergence value and the maximum number of previous segments
that could be memorised by a player. The degree of fun, 𝑓𝑥 , of the
𝑖-th level segment 𝑆𝑖 is formulated as a slacking A-clipped function:

𝑓𝑥 (𝑆𝑖 ;𝑔𝑥 , 𝑛) =
∑min{𝑛,𝑖}
𝑘=1 AC(𝐷𝑥 (𝑆𝑖 , 𝑆𝑖−𝑘 ) ;𝑔𝑥 , 𝑟𝑘 )∑min{𝑛,𝑖}

𝑘=1 𝑟𝑘

, (4)

where𝐷𝑥 (·, ·) is the divergence measure of either game level𝐷𝐿 , Eq.
(1), or gameplay behaviour 𝐷𝐺 , Eq. (2); 𝑔𝑥 is a parameter that is set
independently for𝐷𝐿 and𝐷𝐺 . 𝑟𝑘 = 1− 𝑘

𝑛+1 is the rate parameter for
moderating divergence between 𝑆𝑖 and 𝑆𝑖−𝑘 . Clearly, the optimal
range of moderating divergence between 𝑆𝑖 and 𝑆𝑖−𝑘 keeps slacking
as 𝑘 goes larger. In this paper, we consider Eq. (4) for either game
levels (via 𝐷𝐿) or gameplay behaviour (via 𝐷𝐺 ) as two independent
objectives, namely 𝑓𝐿 (·;𝑔𝐿, 𝑛), and 𝑓𝐺 (·;𝑔𝐺 , 𝑛).
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Figure 3: Scatter plot of f values of randomly generated levels
(blue) versus human designed levels (red) computed with
𝑔𝐿 = 0.1, 𝑔𝐺 = 0.25 and 𝑛 = 4.

3.4 Verifying Fun
To cross-verify the degree to which our fun formulation approxi-
mates the experience of fun, one would ideally need to solicit labels
of fun and then correlate the formulation with the solicited human
annotations. Such a process was introduced in [36, 37] and followed
by a number of studies since then [16, 25, 28]. The alternative ap-
proach we examine here is to consider human authored levels of
SMB as the ground truth of fun. Therefore, we conduct an empirical
study contrasting randomly generated and human designed SMB
levels assuming that good formulations of fun should be able to
rate human designed levels highly and also be able to distinguish
between fun and non-fun (i.e., boring or very challenging) levels
among randomly generated ones. Note that a randomly generated
level could still be loads of fun.

For that purpose, 1, 000 playable levels are generated by con-
catenating 5 level segments produced by a GAN as in [31] from
randomly sampled latent vectors. Each segment is 28-tile width as
in [31]. Human designed SMB level pieces are collected by employ-
ing a sliding 5-segment width window across all the available levels
in the Video Game Level Corpus (VGLC)2 [29]. In total, we obtain
729 such levels from the human designed SMB levels.

The 𝑓𝐿 and 𝑓𝐺 scores of each level are computed by averaging
the 𝑓 values across all segments. We perform preliminary sensi-
tivity analysis studies using different hyperparameter values on
the randomly generated and human designed levels. The target
dissimilarity values of 𝑓𝐿 and 𝑓𝐺 are set to 𝑔𝐿 = 0.1 and 𝑔𝐺 = 0.25,
respectively, as those were the values that would distinguish well
between fun and non-fun levels among randomly generated ones.
The maximum number of segments to be considered (𝑛) is set to 4.

Figure 3 illustrates the 𝑓 scores of randomly generated and hu-
man designed levels computed with the selected hyperparame-
ter values. What is obvious from this scatter plot is that human-
designed levels—in their majority—are placed in the top right corner
of the 𝑓𝐿, 𝑓𝐺 map indicating the high correlation between our mea-
sures and the quality (i.e., the human engineered player experience)

2https://github.com/TheVGLC/TheVGLC

(a) A level with high 𝑓 values (𝑓𝐿 = 0.961, 𝑓𝐺 = 1.0).

(b) A level with high 𝑓𝐿 and low 𝑓𝐺 value (𝑓𝐿 = 0.850, 𝑓𝐺 = −0.749).

(c) A level with high 𝑓𝐿 and average 𝑓𝐺 value (𝑓𝐿 = 0.819, 𝑓𝐺 = 0.511).

(d) A level with low 𝑓𝐿 and high 𝑓𝐺 value (𝑓𝐿 = −2.270, 𝑓𝐺 = 0.887)

(e) A level with average 𝑓𝐿 and high 𝑓𝐺 value (𝑓𝐿 = 0.605, 𝑓𝐺 = 0.801).

(f) A level with low 𝑓𝐿 and 𝑓𝐺 values (𝑓𝐿 = −0.761, 𝑓𝐺 = −0.504).

(g) A level with average 𝑓𝐿 and 𝑓𝐺 values (𝑓𝐿 = 0.611, 𝑓𝐺 = 0.639)

(h) An indicative human-designed level with high 𝑓 values (𝑓𝐿 = 0.894, 𝑓𝐺 = 0.948)

Figure 4: Randomly generated levels with dissimilar values
of fun computed via Eq. (4), and hyperparameters 𝑔𝐿 = 0.1,
𝑔𝐺 = 0.25 and 𝑛 = 4 (a–g). A human designed level of high 𝑓

values is included for comparison (h). The positions of these
levels among 1, 000 randomly generated levels are indicated
with stars and corresponding caption letters in Fig. 3.

of human designed SMB levels. We also observe that most randomly
generated levels are scattered in the 𝑓𝐿, 𝑓𝐺 map of Fig. 3. Our mea-
sures, unsurprisingly, fail to rate all randomly generated levels with
high values. To offer more insights on the relationship between a
SMB level, its potential playtraces and the resulted 𝑓 values, some
extreme levels are sampled from Fig. 3 and displayed in Fig. 4.

4 EDRL WITH EPISODIC GENERATIVE SAC
In this work, 𝑓𝐿 and 𝑓𝐺 are considered as two different reward
functions, namely 𝑅𝐿 and 𝑅𝐺 , respectively, that will train SMB level
designers using the EDRL framework. Based on the hyperparameter
experiments outlined earlier we formulate 𝑅𝐿 (𝑆𝑖 ) = 𝑓𝐿 (𝑆𝑖 ; 0.1, 4)
and 𝑅𝐺 (𝑆𝑖 ) = 𝑓𝐺 (𝑆𝑖 ; 0.25, 4) (cf. Eq. 4). In addition to 𝑅𝐿 and 𝑅𝐺 , we
consider a playability reward 𝑅𝑝 to make sure the computational
designer will generate playable levels. Formally, 𝑅𝑝 (𝑆𝑖 ) = −1 if 𝑆𝑖
is playable and 𝑅𝑝 (𝑆𝑖 ) = 0 otherwise.

Both 𝑅𝐺 and 𝑅𝑝 require agent-based simulations on the gener-
ated levels. In traditional RL algorithms, rewards are computed and
provided after each time step. Following this traditional approach
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implies that levels are simulated on a segment-by-segment basis.
Doing so, however, leads to a truncation bias as simulating a level
segment-by-segment will likely differ from simulating it as a whole.
To overcome the challenge of potential truncation biases, we pro-
pose an episodic generative soft actor-critic (EGSAC) algorithm,
build upon soft actor-critic (SAC) [6], to train level designers via
EDRL. SAC is selected as it has proved to outperform many RL
algorithms including PPO on a variety of continuous decision mak-
ing benchmarks and has shown promise in dungeon generation
studies [32]. What differentiates EGSAC from the original SAC [6]
is that rewards are computed after each episode rather than after
each time step. At each episode, EGSAC first generates a complete
level using the RL designer, then it repairs and simulates it, and
finally it computes rewards for each segment of the level. Once the
rewards are computed, the rewarded transitions are added into the
replay buffer and the SAC models (actor and critic) are updated
with randomly sampled transitions in the replay memory. Algo-
rithm 1 details the EGSAC training procedure that involves five
core components, outlined as follows.

GAN generator G(·) : Z→ S. A pre-trained GAN generator is
used to map a latent code to a level segment. Z = [−1, 1]20 is the
latent vector space and S is the level segment representation space.
Our implementation of GAN is based on MarioGAN [31]. To better
match the latent vector space of GAN and the action space of the
RL designer, latent vectors are sampled uniformly at random rather
than using a Gaussian distribution.

RL designer 𝜋 (·) : Z𝑛 → Z. The RL designer is a SAC model
composed of an actor and a critic. Two multi-layer perceptrons with
3 hidden layers of 256 neurons each are used for the actor and critic
networks, respectively. The RL designer takes the concatenated 𝑛
most recent latent vectors [z𝑖−𝑛 : z𝑖−1] as input, and outputs a new
latent vector z𝑖 at each time step 𝑖 .

Reward function R(·, ·) : S𝑚+𝑛 × T𝑚+𝑛 → R𝑚 . T and R are
the play trace space and real number space, respectively.𝑚 is the
length of episode. The reward function is computed from the 𝑖𝑡ℎ to
the (𝑚 + 𝑛)𝑡ℎ segments and their corresponding play traces, while
the first 𝑛 segments are needed to compute 𝑓𝐿 and 𝑓𝐺 .

Repairer F (·) : S𝑚+𝑛 → S𝑚+𝑛 . A repairer is used to repair
broken pipes in the levels generated by GAN. The algorithm is
based on the repairer introduced in [27]; its efficiency, however, is
further improved by using a divide-and-conquer strategy: a level is
split into a number of pieces with the same number of pipe tiles.
Then, the pieces are repaired separately and those pieces are then
concatenated to yield a complete repaired level.

Simulated player P. An agent is used to simulate a player
throughout the complete level. If the simulation terminates before
the agent reaches the rightmost point of the level, the agent will be
reset to 1-tile away from its terminal position. In this paper, we use
three agents with different play styles (playing personas), namely
runner, killer and collector. The runner is an A* agent, which aims
at completing the level as soon as possible. The killer and collector
agents introduced in [42] aim, respectively, at killing more enemies
and collecting more coins while completing the game level. All
three are based on the A* algorithm but employing different cost
and heuristic functions. Section 5.3 provides more details of those
three agents when discussing experimental results.

Algorithm 1 EGSAC. In all experiments,𝑚 = 25, 𝑇 = 10, 𝐵 = 384,
𝑝 = 50. Hyperparameter 𝑛 of Eq. (4) is 4.
Require: Length of episode𝑚; Interval of updating the networks

𝑇 ; Batch size of updating the networks 𝐵; number of processes
𝑝; GAN generator G(·); RL designer 𝜋 (·); Reward function
R(·, ·); Repairer F (·); Simulated player P

1: Initialise an empty replay memory D
2: repeat ⊲ Lines 3-12 run in parallel across 𝑝 processes
3: for 𝑖 = 0→ 𝑛 − 1 do
4: Randomly initialise z𝑖 ∼ 𝑈 (−1, 1)
5: 𝑆𝑖 ← G(z𝑖 )
6: end for
7: for 𝑖 = 𝑛 → 𝑛 +𝑚 − 1 do
8: s𝑖 ← [z𝑖−𝑛 : z𝑖−1], z𝑖 ← 𝜋 (s𝑖 ), 𝑆𝑖 ← G(z𝑖 )
9: end for
10: [𝑆0 : 𝑆𝑛+𝑚−1] ← F ([𝑆0 : 𝑆𝑛+𝑚−1])
11: [𝜏0 : 𝜏𝑛+𝑚−1] ← Simulate P on [𝑆0 : 𝑆𝑛+𝑚−1]
12: [𝑟𝑛 : 𝑟𝑛+𝑚−1] ← R([𝑆0 : 𝑆𝑛+𝑚−1], [𝜏0 : 𝜏𝑛+𝑚−1])
13: for 𝑖 = 𝑛 → 𝑛 +𝑚 − 1 do
14: Store ⟨s𝑖 , z𝑖 , 𝑟𝑖 ⟩ into D
15: end for
16: for 𝑢 = 1→ ⌊𝑚 ∗ 𝑝

𝑇
⌋ do

17: B ← Uniformly sample a mini-batch of size 𝐵 from D
18: Update the SAC model with B
19: end for
20: until run out of training budget

The use of our EGSAC implementation for EDRL has two core
benefits: it reduces the truncation bias and it improves the training
efficiency. The episodic computation of rewards enables repairing
and simulating a complete level rather than a segment. On that
basis, the divide-and-conquer strategy we employ to the repairer
was both deemed to be necessary and yields faster training of EDRL
designers. Experimental tests show that repairing and simulating
25 successive segments via EGSAC is about 5 times faster than
repairing and simulating every individual segment as in earlier
work [26]: 10.54 and 49.96 seconds, respectively, averaged over 100
trials. Moreover, our implementation of EGSAC supports repairing
and simulating multiple levels using parallel processes.

5 EXPERIMENTS
This section presents experiments with EDRL across different re-
ward functions, different initial conditions and different player
types. Designers are trained with the same procedure on the same
machine with an Intel Xeon Gold 6240 CPU and a RTX 2080Ti GPU.

5.1 Varying the Reward Function
In the first set of our experiments EDRL designers are trained for 1𝑒6
time steps (segments). EDRL uses different reward functions that
consider fun attributed to the level design (𝑅𝐿) and the gameplay be-
haviour (𝑅𝐺 ) independently or together. In all experiments reported
here, we employ the runner agent to train the EDRL designers.

Table 1 summarises the key results across 100 independent trials.
It becomes clear that all EDRL trained designers are capable of
generating playable levels. The designer trained with the sum of
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Table 1: Mean reward and standard deviation values across
segments. Values are averaged across 100 independent trials
of 25 generated segments each. The best and worst results
are highlighted in bold and italics, respectively. A random
designer (bottom row) is also added as a baseline. All of our
trained designers are capable of generating playable levels.

Reward 𝑅𝐿 𝑅𝐺 𝑅𝑝

𝑅𝐺 + 𝑅𝑝 0.685 ± 0.06 0.938 ± 0.04 -0.005 ± 0.01
𝑅𝐿 + 𝑅𝑝 0.974 ± 0.03 0.826 ± 0.08 -0.000 ± 0.00
𝑅𝐿 + 𝑅𝐺 + 𝑅𝑝 0.975 ± 0.03 0.946 ± 0.03 -0.001 ± 0.01
Random 0.493 ± 0.25 0.536 ± 0.20 -0.172 ± 0.07

𝑅𝐿 and 𝑅𝐺 performs better than the other two designers tested on
both 𝑅𝐿 and 𝑅𝐺 . All the designers outperform the random designer
significantly. The EGSAC algorithm employed in this paper is ef-
ficient as all training scenarios examined converge quickly. More
experimental results can be found in the code repository1.

As an indicative example of EDRL generation in Fig. 5 we visu-
alise the 10 segments generated by the 3 different EDRL designers
as starting from level (g) of Fig. 4; in these examples we illustrate
the play trace of an A* agent. As seen in Fig. 5 (a), the EDRL designer
trained solely to design levels that yield diverse enough gameplay
behaviours (via 𝑅𝐺 ) generates levels that look far less diverse. Even
though the play traces are varied enough, the game level patterns
appear to be similar, giving the level a monotonous feel. On the
other hand, the EDRL designer trained solely with 𝑅𝐿 (see Fig. 5
(b)) generates level segments that alternate patterns so that content
variation is kept within appropriate bounds. The EDRL designer
trained tomaximise both game level and gameplay rewards (𝑅𝐿+𝑅𝐺 ;
Fig. 5 (c)) seems to generate more interesting and varied levels with
regards to both level and behavioural patterns.

5.2 Varying the Initial Conditions
The robustness of our EDRL designers is evaluated as follows: we
first select the latent vectors of 3 outlier random initialisations in-
dicated by levels (b), (d) and (g) of Fig. 4, we then employ our 3
trained designers on those initial observations, and request them
to generate 10 new segments. We record the mean values of 𝑅𝐿 and
𝑅𝐺—using a sliding window of size 4 and stride of 1—across the
10 generated segments. In Fig. 6 we plot the 𝑓𝐿 and 𝑓𝐺 values as
they evolve across the 10 generated segments. Our EDRL designers
appear to be robust with respect to the initial segment they are
presented with as all of them manage to reach the top right corner
of Fig. 6. Interestingly, the EDRL designer trained with 𝑅𝐿 initially
heads towards the lower right corner—i.e., increase of 𝑓𝐿 but de-
crease of 𝑓𝐺 values—but then manages to recover and increase both
𝑓 values. Qualitatively this behaviour suggests that it is necessary
to first improve the fun values for gameplay behaviour prior to im-
proving fun associated with the game level. A similar phenomenon
also appears with the EDRL designer trained with the 𝑅𝐺 only.

5.3 Varying the Player
In the last round of experiments we fix the reward function to
𝑅𝐺 + 𝑅𝐿 + 𝑅𝑝 and use different agents as simulated players. We

employ the 3 different agents described earlier: the runner, the
killer and the collector. We evaluate those designers with all of
the agents and present the obtained results in Table 2. We can
observe that designers trained with the corresponding player yield,
unsurprisingly, higher values for 𝑅𝐺 and 𝑅𝑝 than for other player
personas; the only counter example is the playability reward of
the runner agent. One possible reason for this anomaly lies in
the runner’s ability to complete levels faster than the other two
agents; thus, training designers using other agents makes them
generate easier levels for the runner agent. The agent used during
training also influences the corresponding 𝑅𝐿 score positively. It
appears, however, that the EDRL designer trained with the killer
player finds it more challenging to moderate the divergence of level
design (𝑅𝐿=0.920) compared to the other two agents (𝑅𝐿 = 0.974
for the runner and 𝑅𝐿 = 0.956 for the collector agent).

Figure 7 visualises the levels generated by the different EDRL
designers using the same initial conditions (i.e. initial segments).
It is evident that the resulted levels are very different from each
another. Interestingly, it seems that the designer trained with the
killer persona generates fewer monster enemies, while the designer
trained with the collector persona generates fewer coins, compared
to the EDRL designer trained with the runner agent. Such a finding
verifies the principle of moderated divergence quantified by our
𝑓 formulation. It further indicates that generating way too many
coins and enemies yields way too divergent player behaviours,
respectively, for the killer and the collector persona and, in turn,
results to levels with lower 𝑓 values.

6 DISCUSSION
In this paper we introduced formulations of fun based on Koster’s
theory of fun and used those as reward functions for the EDRL
generative framework. We observed the efficiency and robustness
of the introduced EGSAC algorithm to generate endless SMB levels
that are playable and fun across the creative facets of game level
design and gameplay [11]. Given that this paper introduced EDRL
for experience-driven multifaceted generation, in this section, we
discuss a number of limitations and research avenues that need to
be explored in future studies.

Although EDRL appears to be robust to initial conditions, the
generated levels highly depend on the reward function and the
behaviour of the test agent. In addition to the 3 agents tested in
our experiments, more human-like agents and reward functions
will need to be studied in future work to further encourage the RL
agent to learn to select suitable level segments for different types of
players. Using data and play traces (demonstrations) from human-
like agents, our EDRL may continually (online) learn through such
behaviour and adapt to the player’s skill and preferences.

In the proposed implementation of EDRL, we used a number of
metrics to directly represent player experience (in particular fun)
in a theory-driven manner [41]. In addition to fun, we intend to
generate levels with adaptive levels of diversity, surprise [5, 39] or
novelty as in [26]. Importantly, we wish to extend the fun formu-
lations presented here to the 4 remaining facets—where relevant
and appropriate—including visuals, narrative, audio and game rules
[11]. Similarly to [3, 21], we aim to apply multi-objective optimisa-
tion to consider simultaneously the various facets of fun in game
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(a) Level generated by the designer trained with 𝑅𝐺 + 𝑅𝑝 reward function

(b) Level generated by the designer trained with 𝑅𝐿 + 𝑅𝑝 reward function

(c) Level generated by the designer trained with 𝑅𝐿 + 𝑅𝐺 + 𝑅𝑝 reward function, using runner agent for both training and testing.

Figure 5: EDRL designers seeded with level (g) of Fig. 4 as the initial segment and trained with different rewards. Black, white
and red curves illustrate the play traces of the runner, killer and collector agents, respectively.

Table 2: Mean reward values (and standard deviation values) across segments. Values are averaged across 100 independent trials
of 25 generated segments each. Columns represent evaluation metrics and conditions (reward|agent) whereas rows represent
which agent is used during the training of the EDRL designer. The best and worst results are highlighted in bold and italics,
respectively. Cells with underlined values correspond to the agents that are used during training.

Training Player 𝑅𝐺 | 𝑅𝑢𝑛𝑛𝑒𝑟 𝑅𝐺 | 𝐾𝑖𝑙𝑙𝑒𝑟 𝑅𝐺 | 𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑜𝑟 𝑅𝑝 | 𝑅𝑢𝑛𝑛𝑒𝑟 𝑅𝑝 | 𝐾𝑖𝑙𝑙𝑒𝑟 𝑅𝑝 | 𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑜𝑟 𝑅𝐿

Runner 0.945 ± 0.03 0.465 ± 0.13 0.621 ± 0.13 -0.002 ± 0.01 -0.682 ± 0.09 -0.467 ± 0.12 0.974 ± 0.03
Killer 0.774 ± 0.05 0.878 ± 0.06 0.873 ± 0.07 -0.001 ± 0.01 -0.040 ± 0.04 -0.047 ± 0.05 0.920 ± 0.03
Collector 0.870 ± 0.06 0.860 ± 0.10 0.900 ± 0.06 -0.007 ± 0.02 -0.184 ± 0.14 -0.046 ± 0.05 0.956 ± 0.02

Figure 6: The fun path (𝑓𝐿 and 𝑓𝐺 value pairs) of EDRL gener-
ators starting from levels (b), (d) and (g) of Fig. 4.

generation, instead of their linear aggregation with fixed weights.
The current fun-based reward formulations and any ad-hoc de-
signed reward functions based on player experience will need to be
cross-verified and tested against human players as in [37] or against
publicly available SMB annotated levels [28]. Our findings from
this paper, however, suggest that the two ad-hoc designed mea-
sures of fun manage to value human-designed levels higher than
most random levels. Nevertheless, our assumptions are strong as
we hypothesise that the ground truth of player experience (defined
by the term fun) can be found in human-designed levels. Arguably
not all players enjoy all levels out there which calls for user studies.

(a) Level generated by the designer trained with the runner player

(b) Level generated by the designer trained with the killer player

(c) Level generated by the designer trained with the collector player

Figure 7: Generating levels with different simulated play-
ers given an identical initial segment. Black, white and red
curves refer to play traces of the runner, killer and collector,
respectively.

There is often a lot of critique and discussion about the limita-
tions of fun both as a term and any attempt to quantify it. Earlier
studies have defined a long list of arguments against [35] but also
for the use of the term in applied AI research in games [38]. Ar-
guably the term is not easily measured, it is not supported by any
theory of emotion, it is not measured by any sensor available, yet
people can still express it, game design frameworks like Koster’s
defined it, and thus one can even attempt to measure it via, e.g.,
affective computing methods [15]. One additional limitation is that
the definition of fun used in this paper appears to be objectively
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defined as a function of game levels and behaviour diversity. EDRL,
however, is trained on three different play styles and hence fun
is subjective to these playing styles and can be personalised to a
player’s archetype. To our best knowledge, there is no universal
way to define and formulate fun comprehensively. Our planned
user studies will consider the variation of human play for the per-
sonalised generation of fun content for different play styles.

While EDRL is only tested on platformer games, we expect it
to operate for any game generation task. Our plan is to test EDRL
on more complex games that feature large game and action space
representations. Visualising the latent space and corresponding
levels [33] is also worth exploring in follow up studies.

7 CONCLUSION
In this paper we introduce an experience-driven generative para-
digm [40] via reinforcement learning [7] that is able to design fun
facets of game creativity [11]. In particular, we extend the EDRL
framework [26] and train RL agents to design endless and playable
levels that maximise notions of fun [9] for game level and gameplay
design. We employ a pre-trained GAN generator that designs level
segments for Super Mario Bros considering moderate degrees of
game level and gameplay diversity. Interestingly, the fun formula-
tion introduced in this paper appears to value human-designed SMB
levels higher than most randomly generated ones. The efficiency
of the EDRL framework is improved via an episodic generative
soft actor-critic method for rapid training of SMB generators. Our
key findings suggest that EDRL is not only effective and fast in
generating fun levels for players, it is also robust with regards to
different initial conditions and player types.
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