
Conversational Interactions with Procedural Generators using
Large Language Models

Jim Whitehead
Dept. of Computational Media

University of California, Santa Cruz
Santa Cruz, CA, USA

ejw@ucsc.edu

Thomas Wessel
Dept. of Computational Media

University of California, Santa Cruz
Santa Cruz, CA, USA
twessel@ucsc.edu

Blythe Chen
Dept. of Computational Media

University of California, Santa Cruz
Santa Cruz, CA, USA
blschen@ucsc.edu

Raven Cruz-James
Dept. of Computational Media

University of California, Santa Cruz
Santa Cruz, CA, USA
rcruzjam@ucsc.edu

Luc Harnist
Dept. of Computational Media

University of California, Santa Cruz
Santa Cruz, CA, USA
lharnist@ucsc.edu

William Klunder
Dept. of Computational Media

University of California, Santa Cruz
Santa Cruz, CA, USA
wklunder@ucsc.edu

Justin Lam
Dept. of Computational Media

University of California, Santa Cruz
Santa Cruz, CA, USA
jlam53@ucsc.edu

Ethan Lin
Dept. of Computational Media

University of California, Santa Cruz
Santa Cruz, CA, USA
elin38@ucsc.edu

Roman Luo
Dept. of Computational Media

University of California, Santa Cruz
Santa Cruz, CA, USA
yluo111@ucsc.edu

Hung Nguyen
Dept. of Computational Media

University of California, Santa Cruz
Santa Cruz, CA, USA
huminguy@ucsc.edu

Naitik Poddar
Dept. of Computational Media

University of California, Santa Cruz
Santa Cruz, CA, USA
npoddar@ucsc.edu

Shiva Ravinutula
Dept. of Computational Media

University of California, Santa Cruz
Santa Cruz, CA, USA
shravinu@ucsc.edu

Alejandro Montoreano
Dept. of Computational Media

University of California, Santa Cruz
Santa Cruz, CA, USA
amontore@ucsc.edu

Logan Shehane
Dept. of Computational Media

University of California, Santa Cruz
Santa Cruz, CA, USA
lshehane@ucsc.edu

Yazmyn Sims
Dept. of Computational Media

University of California, Santa Cruz
Santa Cruz, CA, USA
yzsims@ucsc.edu

Jarod Spangler
Dept. of Computational Media

University of California, Santa Cruz
Santa Cruz, CA, USA
jrspangl@ucsc.edu

Michelle Tan
Dept. of Computational Media

University of California, Santa Cruz
Santa Cruz, CA, USA
mtan46@ucsc.edu

Zosia Trela
Dept. of Computational Media

University of California, Santa Cruz
Santa Cruz, CA, USA
ztrela@ucsc.edu

Abstract
This paper explores the potential of Large Language Models (LLMs)
to facilitate conversational natural language interactions to aid hu-
mans in mixed-initiative generation of game worlds. This paper
explores the issues in creating a system that allows for rapid iter-
ation in a turn-based user-LLM design software. We identify key

This work is licensed under a Creative Commons Attribution International
4.0 License.

FDG ’25, Graz, Austria
© 2025 Copyright held by the owner/author(s).
ACM ISBN /25/04
https://doi.org/10.1145/3723498.3723788

research topics, including game world representation in LLMs, nat-
ural language-based world manipulation using function calls, and
direct manipulation from processed LLM output. We successfully
created a QA dataset to compare the accuracy of leading models
using text, images, or both. Our findings highlight the potential of
LLMs to assist in procedural content generation through enhanced
natural language interaction and conversations while revealing the
challenges of in-game world manipulation that warrant further
research.

CCS Concepts
• Computing methodologies → Natural language processing;
• Applied computing→ Computer games.

https://orcid.org/0000-0002-6887-7330
https://orcid.org/0009-0001-1537-9661
https://orcid.org/0009-0008-6971-8148
https://orcid.org/0009-0003-1959-1939
https://orcid.org/0009-0000-1925-8165
https://orcid.org/0009-0005-5199-9437
https://orcid.org/0009-0005-7981-2646
https://orcid.org/0009-0000-8324-7778
https://orcid.org/0009-0002-8689-7359
https://orcid.org/0009-0007-4788-6100
https://orcid.org/0009-0000-4776-7338
https://orcid.org/0009-0000-8132-5170
https://orcid.org/0009-0002-9379-0672
https://orcid.org/0009-0009-5878-2678
https://orcid.org/0009-0002-5045-2171
https://orcid.org/0009-0007-0451-5465
https://orcid.org/0009-0008-9662-5975
https://orcid.org/0009-0001-0568-9471
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3723498.3723788


FDG ’25, April 15–18, 2025, Graz, Austria Whitehead et al.

Keywords
Procedural content generation, large language models, natural lan-
guage interaction, conversational interaction with procedural gen-
erators
ACM Reference Format:
Jim Whitehead, Thomas Wessel, Blythe Chen, Raven Cruz-James, Luc Har-
nist, William Klunder, Justin Lam, Ethan Lin, Roman Luo, Hung Nguyen,
Naitik Poddar, Shiva Ravinutula, Alejandro Montoreano, Logan Shehane,
Yazmyn Sims, Jarod Spangler, Michelle Tan, and Zosia Trela. 2025. Con-
versational Interactions with Procedural Generators using Large Language
Models. In International Conference on the Foundations of Digital Games (FDG
’25), April 15–18, 2025, Graz, Austria. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3723498.3723788

1 Introduction
Procedural generators for games support the expressive goals of
designers. From the serenely alien landscapes of No Man’s Sky to
the unpredictably deadly levels of Spelunky, procedural generators
act to support a game’s aesthetics, gameplay, and emotional tone.
When communicating with other human team members, designers
use a wide range of emotive terms to describe these expressive
goals. Traditional procedural generation systems give designers
a series of input parameters and expect them to understand the
mapping between expressive goals and parameter spaces. In con-
trast, human languages permit expressive goals to be stated directly.
Using natural language, a designer can request a generator to create
an “angry ocean” or a “tranquil sea”, instead of futzing with the
parameters of a wave simulation model.

Historically, the technical complexity of natural language parsing
and understanding has limited its use in procedural content genera-
tion systems. For example, Mobramaein created a functional natural
language interface for the creation of ocean wave simulations in
Unity games, but was limited to understanding only predefined
language patterns and a fixed set of adjectives [12]. The lack of ex-
pressive natural language interfaces that can integrate into existing
applications has limited the ability to create procedural generators
with a large range of natural language inputs.

Large language models (LLMs) change this. LLMs can accept and
understand an exceptionally wide range of natural language inputs.
This ability to understand a wide range of inputs means that LLMs
are not restricted to a narrow band of predefined command patterns.
It allows LLMs to understand a broad set of actions and interpret
expressive adjectives to modify the content being created. LLMs
are architecturally very flexible and are capable of being integrated
into software systems in multiple ways. An LLM can make an API
call (known as "tool use") based on user input, can interact with an
external service (via the model context protocol, or MCP), or can
directly interact with its own internal model of the artifact being
generated. This gives LLMs flexibility in how they can take action
based on a wide range of commands, thereby executing a range
of procedural generation tasks. Further, LLMs can also describe
the artifacts they are creating, answer questions about them, and
provide ideas for future directions to explore. In every capacity,
LLMs are more flexible than the previous generation of script-based
natural language interfaces.

The broad expressiveness and capability of LLMs creates the po-
tential to use them as a natural language front-end for procedural

generation tasks. Indeed, their flexibility allows them to be con-
sidered more broadly for game design tasks, as well as procedural
generation of levels [2]. LLMs support a conversational interaction
style where the human designer can make multiple requests in
a row and seek feedback from the LLM as part of an interactive
session with a procedural generator. In this way, LLMs support
a mixed-initiative style of interaction with a procedural genera-
tor, in addition to a more traditional command-driven generation
approach.

Many issues arise when seeking to use LLMs for procedural
generation, including: what might a designer plausibly want to say
to a generator? How are game worlds represented by and for the
LLM? How does an LLM manipulate a game world? How well does
an LLM actually understand and reason about a game world? We
explore these issues in the remainder of this paper. In Section 3
we give an overview of different kinds of statements a designer
might want to make to a LLM during procedural design tasks, such
as generation requests of varying granularity. Section 4 describes
ways of representing a game world both internally and externally
to an LLM. We introduce the world facts database, an external
representation approach that describes the component elements of
a level in a manner suitable for use in LLM prompting. Section 5
explores tradeoffs among different kinds of software architectures
for manipulating game worlds. For example, direct API calls via tool
use can provide greater accuracy, but limit the range of potential
actions. Finally, in Section 6we describe the creation of a QA dataset,
TinyTownQA, that can support fine-tuning of LLMs. This dataset
is used to characterize the ability of text-based and multi-modal
(vision) LLMs to understand and answer questions about tile-based
game worlds. Such understanding is a necessary foundation for
LLMs to support procedural generation and design feedback tasks
for 2D tile-based worlds.

2 Background
Use of natural language interfaces for mixed-initiative procedural
design systems traces its roots back to the 1970s. Yona Friedman
gives an early vision in the introduction to Chapter 3 of Negro-
ponte’s Soft Architecture Machines (1976), viewing human-machine
collaboration as a kind of dialog between the human designer and
the object being designed, with the computer acting as a translator
of design acts into their impacts and implications on the object
[17]. Bolt’s “Put That There” (1980) system added natural language
interfaces into the mix, and explored the combined use of natural
language and gesture inputs to take action in a 2D virtual world
projected on a screen [3]. The system supported actions such as
the ability to create and move objects, and to identify objects by
pointing.

Prior to the advent of LLMs, work on natural language inter-
faces with a focus on procedural generation was sparse, with Mo-
bramaein’s work on natural language interfaces for Pong game
variants (2018) [13] and wave generation (2020) [12] among the few
examples.

Since 2023, use of natural language prompts for LLMs has been
explored for the creation of levels for a roguelike brawler game
called Metavoidal [16], Sokoban [21], Super Mario World [18], and
Angry Birds-like games [1][20]. TheWord2World system uses LLMs

https://doi.org/10.1145/3723498.3723788


Conversational Interactions with Procedural Generators using Large Language Models FDG ’25, April 15–18, 2025, Graz, Austria

to create a narrative for a game world and then populate it with
internally consistent characters and items [15]. The game traversal
benchmark is used to explore LLMs ability to navigate through
2D tile maps [14]. The Five-Dollar Model creates game maps by
converting a natural language input (using a sentence transformer)
into a vector that then feeds a custom upsampling convolution net-
work, generating tile-based game maps [11]. In work that is similar
to ours, the Quick Custom Map Generation (QMBS) system takes
a text prompt as an input and uses an LLM to generate hexagonal
tile based game worlds [6].

LLMs have been used to generate entire games by asking them
to output the rules of the game using a game description language.
Hu et al. explore the a variety of different prompts for the creation
of a maze game, where an LLM outputs the rules in VGDL [8]. In a
similar vein, Tanaka and Simo-Serra use an LLM to generate games
by outputting GDL [19]. The DreamGarden system offers a more
ambitious approach, using an LLM as a planner to refine an intial
natural language game description into a functional game running
in Unreal [4].

More broadly, research involving applications of LLMs to games
has grown rapidly over the past three years, with several surveys
providing an overview of the research landscape. Gallotta et al.
[7] and Yang et al. [22] survey all applications of LLMs in games,
while Maleki and Zhao survey techniques for procedural content
generation, including an examination of uses of LLMs [5] and Mao
et al. survey uses of generative AI (including LLMs) for procedural
generation in games [10].

3 Communicating with the Game World
LLMs make it possible to have conversational interactions with a
game world. What are some of the things human designers would
like to be able to say to a generator during a design session?

Creation requests at multiple levels of granularity. We would like
to request the generator to modify the game world for us. Broad
generation requests involve actions that affect all or large portions
of a game world, such as creating an entire level. This is a large gran-
ularity generation request. A medium granularity request would
involve modifying an existing level to add a large feature without
recreating the entire level. For example, adding an island into a
pre-existing lake in a game map. Fine-grained generation requests
involve adding or modifying single items in a game world (e.g.,
adding a mushroom to a forest), or repetitions of such actions. A
variation on this theme is the use of prompts which apply only to
selected sub-regions, an idea explored in Reframer [9].

Identifying items and objects. A challenge in any conversational
system is how to correctly identify locations and items in the game
world. This is necessary to describe which object is being acted
upon in update and delete actions, or to describe the location where
a create action will take place. While it is always possible to use
exact coordinates, this is tedious, especially compared to using a
mouse pointer. Relative positioning is one approach often used in
conversationwhere a location is given relative to another object. For
example, one can make a request to “add a house to the left of the
forest”. More complex relative positions are area identifiers, such
as asking for mushrooms to be placed within a forest, or placing
buckets around a well. A challenge in this approach is uniquely

identifying elements. In the previous example, if there were two
distinct clusters of trees in a game level, it is ambiguous which
forest is intended. There should ideally be ways to name items in
the game world for further use in the conversation, or, alternatively,
the LLM should be capable of detecting such ambiguity and ask the
designer to disambiguate.

Retrieval/query requests. A conversational system should be able
to answer questions about the game world. Queries can be about
object quantities (“how many keys are in the map”) or qualities
(“how many windows are in the brown house”). Ideally the system
could answer more complex queries, such as the number of tiles an
object uses (“how many tiles does the brown house have”) or the
distance between two objects.

Use of emotionally descriptive keywords. Ideally, a conversational
system should able to guide generation towards a particular emo-
tional response in the player, such as “Create a dark, foreboding
forest”. Mobramaein explored the use of emotion keywords for
wave generation (e.g., an angry sea) in [12].

4 Representing the Game World
In order to perform actions that modify a gameworld, an LLM needs
to have a representation of that game world. This representation
needs to support the following activities:

• Reflection. The LLM needs to understand what items are
currently in the game world (e.g., houses, castles, trees, paths,
signs, collectibles). It should understand their properties (e.g.,
a house has twowindows and one door) and howmuch space
each item uses in the game world.

• Identification. The LLM needs to be able to translate a natural
language statement identifying an item in the game world
to the item itself.

• Positioning. For items in the game world, the LLM needs to
understand their absolute (“the house in the center of the
level”) and relative positions (“the well to the right of the
house”).

• Analysis. Ideally, an LLM should be able to provide design
feedback to a human designer based on its understanding of
the game world and the desired goals for that world. This
requires an understanding of the items present in the world,
and their relative positions.

4.1 Internal and External Representations
Broadly, there are two approaches to providing LLMs with game
world context. An internal representation uses the LLM itself to
maintain a coherent model of the game world in the conversational
context. In this approach, user prompting directly modifies the
model’s “understanding” of the game world by affecting the conver-
sation history. An external representation maintains a model of the
game world in a format managed outside of the LLM. In this case,
before any request by the user is processed, the representation is
provided to the LLM (e.g., a tile map, or an image of a level), and
the model either outputs the updated tilemap, or a set of actions re-
quired to update the tilemap. Examples of external representations
for a 2D tilemap include a 2D array of tile identifiers with associated
key (e.g., 1, 1, 4, 25, ... where 1=grass, 4=flower, 25=house), a 2D
array of characters where each character represents a type of tile



FDG ’25, April 15–18, 2025, Graz, Austria Whitehead et al.

(e.g., ggfh... where g=grass, f=grass with flower, h=house), a 2D
array of strings (e.g., "grass", "grass", "grass+flower", "house"), or,
for vision models, a bitmap image of the level itself (e.g., a png or
jpg). The QMBS system uses Chinese characters to represent each
tile using a single character, taking advantage of the fact that each
character is a whole word [6].

Anecdotally, our experience has been that character- and word-
based approaches work better than using tile IDs, even with the
provision of a key. However, this performance does vary across
different LLMs, suggesting there are model-to-model variations in
training on grid-based representations (and the utility of fine-tuning
to improve understanding of grid worlds). We hypothesize this is
due to LLMs having a greater understanding of word co-occurrence
frequencies than number co-occurrence.

b) Worlds Facts Database

Index Structure Absolute

Position

Relative

Position

Colors Features

0 “house” “top left” [[“forest”, 
“left”]]

[“brown”, 
“gray”]

[“1 door”,

“1 window”]

1 “forest” “middle 
right”

[[“house”, 
“right”]]

[“green”, 
“yellow”]

[“3 logs”,

“1 beehive”]

a) Tilemap Input

Figure 1: a) A sample tilemap representing a tile-based game
world, and b) a portion of the associate world facts database
with metadata about the tilemap’s items.

4.2 World Facts Database
A variation on the external approach is to provide the LLM with
a direct representation of the game world along with a dictionary
of key-value pairs that provide metadata about it. We call this
dictionary a world facts database. The world facts database includes
a list of items in the game world, descriptive text about each item,
and the relative position of the items with each another (see Figure
1). In its role as a store of world information used by other artificial
intelligence components in a generation system, the world facts
database acts like a traditional knowledgebase or blackboard. The
world facts database is intended to be provided to the LLM as
part of the prompt that includes the user request. This world fact
information is intended to improve the LLMs ability to understand
and take accurate action in the game world. In this way, it acts
similar to a retrieval augmented generation (RAG) type system,
where relevant context is supplied to the LLM as part of a request
in order to increase response accuracy.

One challenge is maintaining consistency between the tile-based
representation and the world facts representation of a level. We
developed a sample algorithm for extracting a world facts database
from 2D tilemaps created using the Kenney “Tiny Town” asset pack,
a series of 16x16 pixel 2D tiles that can be composed to make scenes
comprised of a grassy background, with grey or brown houses,
castles, forests, pathways, fenced-in areas, and various decoration
items (beehive, well, wheelbarrow, etc.).1 We use this tileset as a
running example due to its simplicity (it has a relatively limited
number of tiles) and ability to create a large number of interesting
1https://kenney.nl/assets/tiny-town

top-down 2D levels. The input to the algorithm is a 2D array of
tile identifiers representing the visible 2D tilemap. The algorithm is
provided with an array of structure identification information, in-
cluding the name of each structure type (e.g. “house"), features that
may appear on it (e.g. “door,” “window”), and the tile IDs associated
with each part of the structure. A flood-fill algorithm is employed
to locate contiguous tiles of the same structure type in the tilemap.
Each identified structure then undergoes descriptive analysis:

• Positional description (absolute). The structure’s location on
the map is classified into predefined spatial categories (e.g.,
top-left, top-center, top-right, middle-left, center, middle-
right, etc.) in relation to the overall map.

• Positional description (relative). The structure’s location is
classified into predefined spatial categories in relation to
other structures on the map (e.g. “...to the top left of the
forest”).

• Substructure analysis. Any smaller components within the
primary structure (e.g. roofs for houses), usually multi-tile.

• Feature identification.Key features within each structure (e.g.,
windows and doors for houses, mushrooms and beehives in
forests), usually one tile in size.

• Color characteristics. The dominant colors of the structure.
The analyzed structure is then stored as an object in an array,
encapsulating the parameters structure type, unique ID, bounding
box coordinates, and the descriptive attributes generated through
this process. This dataset can subsequently be serialized into a
string format, providing a natural language description of the input
tilemap, suitable for inclusion in LLM prompts.

5 Manipulating the Game World
There are two broad architectural approaches for using an LLM
to support conversational interactions with a game world. In the
tool-based approach, an LLM is instructed to call a user-supplied
function that most closely matches the human designer’s natural
language request (see Figure 2). The LLM identifies the correct func-
tion, and extracts parameters for the function call. This approach
has the advantage of precise semantics: once the correct function
is identified, the code implementation of the function ensures con-
sistent execution of the desired action, reducing the likelihood and
impact of LLM hallucination. However, it has the drawback of only
supporting a fixed range of actions, reducing the expressive advan-
tages of LLMs. Further, some LLMs find it challenging to creating
composite actions involving a series of multiple tool use calls.

In the direct manipulation approach, the LLM directly acts upon
a representation of the level to perform any action requested by the
human designer (see Figure 3). No external code functions are called
to perform requested actions, the LLM manipulates the game world
without any intermediary code. The key advantage of this approach
is expressivity: it takes full advantage of the LLM to interpret and
execute a wide range of natural language statements, and supports
a much broader range of conversational interaction patterns. The
primary drawback is that LLMs struggle to correctly interpret and
understand tile-based worlds, especially to understand composite
elements such as a house comprised of multiple tiles, or elements
with built-in constraints, such as a path that must connect two
houses.

https://kenney.nl/assets/tiny-town


Conversational Interactions with Procedural Generators using Large Language Models FDG ’25, April 15–18, 2025, Graz, Austria

Figure 2: Diagram demonstrating the workflow for a Tool-
based system

Figure 3: Diagram demonstrating the workflow for a Direct
Manipulation system

We implemented two prototypes to explore these approaches.
Our experience with the direct manipulation approach was disap-
pointing because the LLM found it challenging to understand the
tile-based world and hence this limited its ability to accurately per-
form human designer requests. We do not report on this experience
further in this section, but note that these challenges drove our
desire to characterize the performance of LLMs for game world
understanding tasks in Section 6. All prototypes were implemented
in JavaScript using the Phaser game development environment and
employed the Tiny Town tile set.

Prototype 1. This prototype used the Gemini Flash 1.5 model via
Langchain using tool calling (see Figure 4).2 Available functions
can place a single tile, remove a tile, describe the tile at a location,
and create an entire tilemap. This uses the internal representation
of the game world, where working in multiple sessions requires re-
prompting the LLM to refresh its context. The world representation
is a list of tiles, where each tile has an (x,y) coordinate and a descrip-
tive label limited to a set of 7 options ("dirt", "grass", "flower_grass",
"bush", "tree", "mushroom", "wheelbarrow"). This prototype was
used to explore how to identify items and positions in the game
world. It successfully interpreted cardinal directions ("place a tree
2https://github.com/SentientDragon5/CMPM-118-LLM-Test

in the southeast"), relative directions ("place a tree above the mush-
room"), and screen space directions ("place a tree in the top center")
from only a system prompt. Gemini seemed to be able to remember
contexts based on the chat history, especially when coordinates
were specified by the tools so that they could be referenced in the
future by the LLM. Gemini seemed to only be able to handle about
5 iterations when being told to batch add any sprite to the world.
For example, when asked to make a forest it will only add about 5
trees.

Prototype 2. This prototype used the ChatGPT 3.5 model via the
OpenAI REST API using tool calling.3 Available tool use functions
are "placeItemAdjacentToTree", "placeItemAdjacentToPath", "pla-
ceItemsInsideFencedAreas" and "placeItemAnywhere". No world
model was presented to the LLM, though it did have the conver-
sation history and a list of available objects that could appear in
the game world. This led to the prompts needing to be in a fairly
specific syntax for the LLM to correctly output useful data. Cardinal
and screen space directions had to be hard coded for the LLM to
recognize them. The LLM was successful at figuring out which
function to call after the input is parsed, for example if the user
typed "Generate ..." or "Please place ...", it understood to call the
function to place items on the map. After parsing the user input, the
LLM works well with directional wording such as, "Top" or "North"
when describing where to place the objects. The LLM was able to
batch add large amounts of objects from a single call.

Figure 4: UI for Prototype 1, Gemini Flash 1.5 with tool use.

6 Understanding the Game World
In order to improve the ability of LLMs to understand their contents
and take accurate action in game worlds, we wished to evaluate
their performance answering questions about tile-based worlds.

6.1 TinyTownQA Dataset
To perform this analysis, we needed a dataset of example tile-based
worlds with associated descriptive information. We create such a
database by first creating a procedural generator capable of gener-
ating Tiny Town game worlds, along with their associated world
facts database.4

The tilemap generator begins by recursively dividing the map
into sections of varying sizes using a space-partitioning method,
ensuring that each section falls within defined size constraints.
3https://github.com/GigzPumpking/z3demo
4https://github.com/collectioncard/Tiny-Town-Dataset-Generator



FDG ’25, April 15–18, 2025, Graz, Austria Whitehead et al.

Figure 5: Tilemap, associated world facts, and sample multiple choice questions from the TinyTownQA dataset.

Houses are designed with walls, doors, roofs, and windows, while
forests contain a mix of single-tile and multi-tile trees, bushes, and
mushrooms. Fences can appear as fully enclosed areas, L-shaped
enclosures, or straight-line barriers, contributing to the spatial di-
versity of the town. Decorative objects, such as logs, wheelbarrows,
and beehives, are placed randomly within designated sections. Each
section is then assigned a random generation function that deter-
mines whether it remains empty or contains decorative objects,
houses, fences, or forests. This independent generation process al-
lows for procedural variation and ensures that each section adheres
to specific structural rules. Each section is first generated on a local
tile grid and then integrated into the global map.

Once all sections are generated, the pathfinding system connects
the house doors and the fence gates to create a road network. This
is accomplished by identifying critical endpoints and applying A*
pathfinding to compute the shortest routes between them. Kruskal’s
algorithm is then used to construct a minimum spanning tree to
prevent redundant pathways. The generator constructs a world
facts database that records the exact coordinates, spatial dimensions,
and relationships between objects (e.g., “The house is adjacent to
the fenced area”).

Once a sample tilemap and associated world facts database has
been generated, they are provided to an LLM (GPT4o-mini) that
creates at least 20 multiple choice questions per map using this
information. During question generation, the LLM only had ac-
cess to the World Facts Database and did not have access to the
images. The LLM was requested to create questions on one of the
following topics: relative spatial relationships, absolute distances
between objects, properties of objects (e.g., which house has one
window), and how to identify objects on the map. The LLM was
also given the option of creating other types of questions. Each mul-
tiple choice question had 1 correct answer and 3 distractor answers.
The resulting dataset contained questions with incorrect answers.
A manual cleanup step was performed where each question was
human-verified for correctness, with incorrect questions removed
from the dataset.

The final dataset is comprised of 31 unique maps with associated
world facts data, and a total of 642 vetted multiple choice questions.

An example entry is shown in Figure 5. The dataset is published on
HuggingFace as TinyTownQA.5

6.2 World Reasoning Evaluation
We performed experiments with varying world representations:
world facts database (Facts), tilemap image (Images), an array of tile
identifiers (Array), and combinations of these (World Facts + Images,
Array + Images) in order to evaluate the performance of LLMs when
performing world understanding tasks. In the first ("Facts"), an LLM
is provided only with the world facts database (example in Figure
5) for a level before being asked to answer a question. The second
experiment ("Facts + Images") provides the image of the tilemap
level and the world facts data, to assess whether the LLM will
improve its performance if it has two complementary sources of
information about the level. The third experiment provides just the
rendered tilemap level image, with no world facts data, to evaluate
whether the image has information content similar to the world
facts database ("Images"). Because questions often refer to structures
as "House 2" or "Forest 0", the images were supplemented with a
text-based mapping of feature names to their top left coordinate.
In the last experiment, the LLM was provided only with a base
tilemap array (an array of integer tile identifiers) and the locations
of each landmark, such as “Forest0 at (11,5)” (“Array”). The same
experiment was performed again with a rendered level Image as
well (“Array + Images”).

In each experiment, the set of questions was the same (Tiny-
TownQA) and contained 642 unique questions across 31 unique
maps. The questions were asked separately with no context other
than the prompt and the singular question, so that the questions
and answers did not have the context of each other. In all experi-
ments, the LLMs are “off-the-shelf” and have not been fine-tuned
with the TinyTownQA map data or world facts.6

The results of evaluating the TinyTownQA dataset against mul-
tiple LLMs are shown in Table 1. Overall, GPT-4o (world facts +
images) performed the best of all models, but the accuracy is similar
to that of Deepseek R1 and Gemini-Flash-2.0. Notably, all but the
5https://huggingface.co/datasets/collectioncard/TinyTownQA
6https://github.com/collectioncard/LLM-QA-Analysis



Conversational Interactions with Procedural Generators using Large Language Models FDG ’25, April 15–18, 2025, Graz, Austria

Table 1: TinyTownQA Evaluation Results

Model Name World Representation Accuracy
Qwen2.5-1.5B Facts 0.517

DeepSeek-R1-Distill-Qwen-1.5B Facts 0.586
Qwen2.5-7B Facts 0.785

Gemini-flash-2.0 Facts 0.941
Gemini-flash-2.0 Images 0.642
Gemini-flash-2.0 Array 0.669
Gemini-flash-2.0 Array + Images 0.673
GPT-4o-mini Images 0.514
GPT-4o-mini Facts 0.911
GPT-4o-mini Facts + Images 0.908

GPT-4o Facts 0.944
GPT-4o Facts + Images 0.972

Deepseek R1 Facts 0.956

largest models tested were unable to use the extra context provided
by including tilemap images. The image data typically acts as a
distractor, reducing performance, instead serving to ground model
output. Testing image data alone resulted in poor performance,
suggesting that models are not capable of reasoning about image-
represented levels. Additionally, providing models with tile arrays
seems to result in similar performance to that of just images. In
general, larger models performed much better than smaller models,
with a difference of over 40 points between our highest and lowest
scoring run. A notable exception to this is the Google Gemini flash
2.0 model, which was able to keep up with the higher performing
models despite being the smallest Gemini 2.0 model available. Fi-
nally, with Gemini flash 2.0, the performance using the tilemap
image, array of tile ids, or the ids+image was all broadly similar.

7 Conclusions
Our experience from creating two prototype conversational pro-
cedural generation systems shows that the tool use architecture
supports generation and retrieval tasks by focusing the range of
actions that can be taken, and providing dedicated implementations
for those actions. However, tool use has the drawback of limiting
the range of potential actions and expression supported by the
LLM. The direct manipulation architecture offers the promise of
being more expressive, but requires an LLM be capable of directly
interacting with the game world representation. We explore the
current ability of LLMs to reason about game world information
via the creation of a QA dataset based on procedurally generated
maps and world facts based on the Tiny Town tileset. This eval-
uation shows that large parameter models are capable of highly
accurate reasoning about game world information and should be
capable of supporting rich conversational interactions. Current
models are not capable of reasoning with level image data or raw
tilemap representations, an area for further exploration.

References
[1] Febri Abdullah, Pittawat Taveekitworachai, Mury F. Dewantoro, Ruck Thawon-

mas, Julian Togelius, and Jochen Renz. 2024. The First ChatGPT4PCG Compe-
tition. IEEE Transactions on Games 16, 4 (2024), 971–980. doi:10.1109/TG.2024.
3376429

[2] Asad Anjum, Yuting Li, Noelle Law, M Charity, and Julian Togelius. 2024. The
Ink Splotch Effect: A Case Study on ChatGPT as a Co-Creative Game Designer.
In Proceedings of the 19th International Conference on the Foundations of Digital
Games (Worcester, MA, USA) (FDG ’24). Association for Computing Machinery,
New York, NY, USA, Article 18, 15 pages. doi:10.1145/3649921.3650010

[3] Richard A Bolt. 1980. “Put-that-there” Voice and gesture at the graphics interface.
In Proceedings of the 7th annual conference on Computer graphics and interactive
techniques. 262–270.

[4] Sam Earle, Samyak Parajuli, and Andrzej Banburski-Fahey. 2024. Dream-
Garden: A Designer Assistant for Growing Games from a Single Prompt.
arXiv:2410.01791 [cs.HC] https://arxiv.org/abs/2410.01791

[5] Mahdi Farrokhi Maleki and Richard Zhao. 2024. Procedural Content Generation
in Games: A Survey with Insights on Emerging LLM Integration. Proceedings of
the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment
20, 1 (Nov. 2024), 167–178. doi:10.1609/aiide.v20i1.31877

[6] Binlin Feng, MingYang Su, Keyi Zeng, and Xiu Li. 2024. Player-Oriented Proce-
dural Generation: Producing Desired Game Content by Natural Language. In HCI
in Games, Xiaowen Fang (Ed.). Springer Nature Switzerland, Cham, 260–274.

[7] Roberto Gallotta, Graham Todd, Marvin Zammit, Sam Earle, Antonios Liapis,
Julian Togelius, and Georgios N. Yannakakis. 2024. Large Language Models
and Games: A Survey and Roadmap. IEEE Transactions on Games (2024), 1–18.
doi:10.1109/tg.2024.3461510

[8] Chengpeng Hu, Yunlong Zhao, and Jialin Liu. 2024. Game Generation via Large
Language Models. arXiv:2404.08706 [cs.AI] https://arxiv.org/abs/2404.08706

[9] Tomas Lawton, Francisco J Ibarrola, Dan Ventura, and Kazjon Grace. 2023. Draw-
ing with Reframer: Emergence and Control in Co-Creative AI. In Proceedings
of the 28th International Conference on Intelligent User Interfaces (Sydney, NSW,
Australia) (IUI ’23). Association for Computing Machinery, New York, NY, USA,
264–277. doi:10.1145/3581641.3584095

[10] Xinyu Mao, Wanli Yu, Kazunori D Yamada, and Michael R. Zielewski.
2024. Procedural Content Generation via Generative Artificial Intelligence.
arXiv:2407.09013 [cs.AI] https://arxiv.org/abs/2407.09013

[11] Timothy Merino, Roman Negri, Dipika Rajesh, M Charity, and Julian Togelius.
2023. The Five-Dollar Model: Generating Game Maps and Sprites from Sentence
Embeddings. Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment 19, 1 (Oct. 2023), 107–115. doi:10.1609/aiide.
v19i1.27506

[12] Afshin Mobramaein. 2020. Natural Language Interfaces for Procedural Content
Generation in Games. PhD Thesis. University of California, Santa Cruz.

[13] Afshin Mobramaein, Morteza Behrooz, and Jim Whitehead. 2018. CADI—A
Conversational Assistive Design Interface for Discovering Pong Variants. Pro-
ceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment 14, 1 (Sep. 2018), 194–200. doi:10.1609/aiide.v14i1.13042

[14] Muhammad Umair Nasir, Steven James, and Julian Togelius. 2024. GameTraver-
salBenchmark: Evaluating Planning Abilities Of Large Language Models Through
Traversing 2D Game Maps. arXiv:2410.07765 [cs.CL] https://arxiv.org/abs/2410.
07765

[15] Muhammad U. Nasir, Steven James, and Julian Togelius. 2024. Word2World:
Generating Stories and Worlds through Large Language Models.
arXiv:2405.06686 [cs.CL] https://arxiv.org/abs/2405.06686

[16] Muhammad U Nasir and Julian Togelius. 2023. Practical PCG Through Large
Language Models. In 2023 IEEE Conference on Games (CoG). 1–4. doi:10.1109/
CoG57401.2023.10333197

[17] Nicholas Negroponte. 1976. Soft Architecture Machines. The MIT Press. doi:10.
7551/mitpress/6317.001.0001

[18] Shyam Sudhakaran, Miguel González-Duque, Matthias Freiberger, Claire
Glanois, Elias Najarro, and Sebastian Risi. 2023. MarioGPT: Open-Ended
Text2Level Generation through Large Language Models. In Advances in
Neural Information Processing Systems, A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine (Eds.), Vol. 36. Curran Associates,
Inc., 54213–54227. https://proceedings.neurips.cc/paper_files/paper/2023/file/
a9bbeb2858dfbdbd4c19814e5d80ec60-Paper-Conference.pdf

[19] Tsunehiko Tanaka and Edgar Simo-Serra. 2024. Grammar-based Game Descrip-
tion Generation using Large Language Models. IEEE Transactions on Games
(2024), 1–14. doi:10.1109/TG.2024.3520214

[20] Pittawat Taveekitworachai, Febri Abdullah, Mury F. Dewantoro, Yi Xia, Pratch
Suntichaikul, Ruck Thawonmas, Julian Togelius, and Jochen Renz. 2024. Chat-
GPT4PCG 2 Competition: Prompt Engineering for Science Birds Level Generation.
arXiv:2403.02610 [cs.AI] https://arxiv.org/abs/2403.02610

[21] Graham Todd, Sam Earle, Muhammad Umair Nasir, Michael Cerny Green, and
Julian Togelius. 2023. Level Generation Through Large Language Models. In
Proceedings of the 18th International Conference on the Foundations of Digital
Games (Lisbon, Portugal) (FDG ’23). Association for Computing Machinery, New
York, NY, USA, Article 70, 8 pages. doi:10.1145/3582437.3587211

[22] Daijin Yang, Erica Kleinman, and Casper Harteveld. 2024. GPT for Games: An
Updated Scoping Review (2020-2024). arXiv:2411.00308 [cs.AI] https://arxiv.org/
abs/2411.00308

https://doi.org/10.1109/TG.2024.3376429
https://doi.org/10.1109/TG.2024.3376429
https://doi.org/10.1145/3649921.3650010
https://arxiv.org/abs/2410.01791
https://arxiv.org/abs/2410.01791
https://doi.org/10.1609/aiide.v20i1.31877
https://doi.org/10.1109/tg.2024.3461510
https://arxiv.org/abs/2404.08706
https://arxiv.org/abs/2404.08706
https://doi.org/10.1145/3581641.3584095
https://arxiv.org/abs/2407.09013
https://arxiv.org/abs/2407.09013
https://doi.org/10.1609/aiide.v19i1.27506
https://doi.org/10.1609/aiide.v19i1.27506
https://doi.org/10.1609/aiide.v14i1.13042
https://arxiv.org/abs/2410.07765
https://arxiv.org/abs/2410.07765
https://arxiv.org/abs/2410.07765
https://arxiv.org/abs/2405.06686
https://arxiv.org/abs/2405.06686
https://doi.org/10.1109/CoG57401.2023.10333197
https://doi.org/10.1109/CoG57401.2023.10333197
https://doi.org/10.7551/mitpress/6317.001.0001
https://doi.org/10.7551/mitpress/6317.001.0001
https://proceedings.neurips.cc/paper_files/paper/2023/file/a9bbeb2858dfbdbd4c19814e5d80ec60-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a9bbeb2858dfbdbd4c19814e5d80ec60-Paper-Conference.pdf
https://doi.org/10.1109/TG.2024.3520214
https://arxiv.org/abs/2403.02610
https://arxiv.org/abs/2403.02610
https://doi.org/10.1145/3582437.3587211
https://arxiv.org/abs/2411.00308
https://arxiv.org/abs/2411.00308
https://arxiv.org/abs/2411.00308

	Abstract
	1 Introduction
	2 Background
	3 Communicating with the Game World
	4 Representing the Game World
	4.1 Internal and External Representations
	4.2 World Facts Database

	5 Manipulating the Game World
	6 Understanding the Game World
	6.1 TinyTownQA Dataset
	6.2 World Reasoning Evaluation

	7 Conclusions
	References

