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ABSTRACT
Quantum computation is an emerging technology that promises
to be a powerful tool in many areas. Though some years likely
still remain until significant quantum advantage is demonstrated,
the development of the technology has led to a range of valuable
resources. These include publicly available prototype quantum
hardware, advanced simulators for small quantum programs and
programming frameworks to test and develop quantum software. In
this provocation paper we seek to demonstrate that these resources
are sufficient to provide the first useful results in the field of proce-
dural generation. This is done by introducing a proof-of-principle
method: a quantum generalization of a blurring process, in which
quantum interference is used to provide a unique effect. Through
this we hope to show that further developments in the technology
are not required before it becomes useful for procedural genera-
tion. Rather, fruitful experimentation with this new technology can
begin now.
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Quantum computation is a new technology based on a radically
new form of hardware and software [4, 9, 18]. This will allow certain
problems to be solved with a significant reduction in computational
complexity in comparison with conventional digital computing [7,
17]. The resulting ‘quantum speedup’ varies from polynomial to
super-polynomial or even exponential for algorithms address a
variety of different types of problem [2, 13].

The basic unit of quantum computation is the qubit. To run most
of the algorithms developed over the past few decades, thousands
of qubits will be required. Quantum processors of this size do not
currently exist, and are still some years away. At the other extreme,
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any small scale quantum process of up to around 20 qubits can
easily be simulated by a laptop, and up to around 50 qubits can be
simulated by a supercomputer [1, 19].

Currently, most prototype quantum devices have no more than
20 qubits, and it is devices of up to this size that have been made
publicly available through cloud services [6]. These have found a
great deal of use by those seeking to test and understand quantum
processors, such as those using them as experimental hardware to
perform studies relating to the science behind the devices. How-
ever, as pieces of computational hardware, the fact of their easy
simulability by conventional computers means that they cannot
yet provide an advantage over conventional hardware.

Nevertheless, by considering the methodology required for quan-
tum computing, we can start to think about how quantum algo-
rithms can be used in different fields. For proof-of-principle cases
of up to 20 qubits, we can easily implement these methods either
by simulation or using prototype devices. For the most part, the
results of these proof-of-principle implementations are not useful
in themselves. However, in some cases we may find that they do
indeed offer a unique insight that might not have been considered
outside the context of quantum computation. Such a case would
not represent an advantage of using quantum hardware over con-
ventional hardware, since it is just as easy to use conventional
hardware in a simulation. Instead it would represent an advantage
of designing software using quantum principles.

In this paper, we suggest that procedural generation is one of the
most likely fields in which such initial advantages might be found.
The popular ‘wave function collapse’ algorithm could be thought of
as foreshadowing this [11], since it is a quantum inspired method
that has proven very useful to many practitioners of procedural
generation. However, it is not an example in itself since it was not
designed using the principles of quantum computing software.

To provide a more substantial motivating example, we must
focus on finding applications for the kind of results that quantum
computers find easiest to produce. These include simulations of
quantum dynamics, and the generation of quantum interference
effects. An example of how the former might be used in procedural
generation can be found in [31], where it was shown that quantum
simulations can provide a rudimentary AI for a Civilization-like
game. For the latter we can look to ideas such as quantumwalks [14],
which provide a generalization of familiar random walks. It is a
simple example of such a process that we will consider below, as a
unique means of providing a blur effect.

1 INTRODUCTION TO QUANTUM
COMPUTATION

Before we consider an application of quantum computing, it is first
necessary to explain the basic principles of quantum software. In
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this we will focus on the aspects that are most relevant for the
application that we will consider.

As with standard digital computers, we begin with the concept
of the ‘bit’. These are objects that are limited to two possible states,
often denoted 0 and 1. Most forms of hardware used to encode this
information are governed by the laws of classical physics, which
means that the bit value is definitely either 0 or 1. However, it is
also possible to create hardware in which the bit value is governed
by the laws of quantum physics. To describe this, it is useful to
associate the bit values with a pair of orthogonal vectors, written
as | 0⟩ and | 1⟩.

When we read out the bit value from such a quantum bit or
‘qubit’, the states | 0⟩ and | 1⟩ will behave as one would expect: from
| 0⟩ we read out 0, and from | 1⟩ we read out 1. However, quantum
physics also allows states of the form

c0 | 0⟩ + c1 | 1⟩ ,

where the so-called ‘amplitudes’ c0 and c1 are arbitrary complex
numbers that satisfy |c0 |2 + |c1 |2 = 1. Such states are known as
‘superposition states’.

Reading out the bit value from a qubit in a superposition state
will still result in a simple 0 or 1. However, the output will be
random in this case. Specifically, 0 will occur with probability |c0 |2

and 1 with probability |c1 |2. Once the bit value has been read out,
the superposition state ‘collapses’ to the corresponding state | 0⟩
or | 1⟩. For example, after obtaining the output 0, the qubit will no
longer be in a superposition state but instead will be in the simple
state | 0⟩. This effect means that keeping track of the bit value is
not a passive process, as it is in the classical case. Instead it has the
ability to change the state of the qubit. As such, we must be careful
to specify exactly when we want such readout events, known as
measurements, to occur.

Superposition states are more than simply a source of random-
ness. They allow a wider variety of methods to manipulate the bit.
Classically, there is a very limited set of operations that can be
performed on just a single bit: set it to 0, set it to 1 or flip the value
with a NOT gate. In the quantum case, however, we can perform
any of an infinite set of parameterised operations. All of these can
be generated by the operations Rx (θ ) and Ry (θ ), which have the
following effect.

Rx (θ ) | 0⟩ = i cos
θ

2
| 0⟩ + sin

θ

2
| 1⟩ ,

Rx (θ ) | 1⟩ = sin
θ

2
| 0⟩ + i cos

θ

2
| 1⟩ ,

Ry (θ ) | 0⟩ = cos
θ

2
| 0⟩ + sin

θ

2
| 1⟩ ,

Ry (θ ) | 1⟩ = − sin
θ

2
| 0⟩ + cos

θ

2
| 1⟩ .

Note that Rx (π ) has the effect | 0⟩ ↔ | 1⟩. The Rx operation
therefore reproduces and generalizes the effect of the NOT gate.
Similarly, Ry (π/2) has the effect | 0⟩ → | 1⟩ and | 1⟩ → − | 0⟩. The
factor of −1 in the latter has no effect on the probabilities for the
results of a measurement, and so Ry also reproduces and generalizes
the effect of the NOT gate, but in a different way to that done by Rx .

We have now seen that the quantum implementation of bits
allows a greater variety of possible manipulations. However, we
have not yet seen any example of why this may be advantageous.
All such examples require the use of more than just one qubit. For
two qubits, the possible states take the form

c00 | 00⟩ + c10 | 10⟩ + c01 | 01⟩ + c11 | 11⟩

The probability of obtaining the outcome described by each two bit
string b1b0 is |cb1b0 |

2, and the complex numbers cb1b0 must obey
the restriction

∑
b1b0 |cb1b0 |

2 = 1. For n qubits the states take a
corresponding form using n-bit strings.

So far we have introduced only single qubit manipulations. These
must be supplemented with multi-qubit operations in order to
perform computation. The most important of these is the so-called
‘controlled-NOT’ or cx gate, which acts on a given pair of qubits.
The effect is not symmetric, and so one qubit is designated the
‘control’, and the other is the ‘target’. The effect is as follows, with
the control in these examples written on the left.

cx | 00⟩ = | 00⟩ , cx | 01⟩ = | 01⟩ ,
cx | 10⟩ = | 11⟩ , cx | 11⟩ = | 10⟩ .

We can think of this operation as performing a NOT on the target
qubit iff the control qubit is in state | 1⟩. Alternatively, we can think
of it as overwriting the target qubit state with the XOR of the inputs.
In this sense it is a quantum (and reversible) implementation of the
classical XOR gate.

Given just the ability to perform the Rx , Ry and cx gates on
all qubits, it is possible to transform any multi-qubit state into
any other. In fact, it is possible to implement any mapping from
a set of input bit strings to output bit strings, and so to reproduce
any classical computation. However, this does not just provide an
alternative form of hardware on which to implement the same
algorithms as for digital computers. Instead, it provides a unique
way of manipulating information 1, leading to a variety of unique
algorithms that can be implemented with quantum computation [2].

By considering the ‘textbook’ quantum algorithms developed
over the past few decades [13], we can begin to speculate on how
they will be used in procedural generation. In particular the re-
duced computational complexity for constraint satisfiability prob-
lems could be useful in searching the probability space (for exam-
ple [23, 24]), and speed-ups for graph-theoretic analysis could help
to find useful properties of problems expressed as networks (for
example [15]). However, the usefulness of these algorithms will de-
pend on exactly what time and resources are required [5]. This will
not be fully known until the scalable and fault-tolerant quantum
hardware required to run these algorithms has been built, which is
still some years away. However, these potential opportunities show
that quantum computation will be useful for procedural generation
in the long-term, which provides motivation to explore applications
in the near-term.
1As a quick plausibility argument for this, note that a NAND gate cannot be constructed
in the Boolean circuit model using NOT and XOR gates alone. However, this can be
achieved in the quantum circuit model using only the quantum generalizations of the
NOT and XOR gates. This is a simple example of a computational task that quantum
computaters can achieve in a way that standard digital computers cannot.
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2 ENCODING IMAGES IN QUANTUM STATES
Using the concepts introduced in the last section, we will introduce
a method to encode and manipulate images using multiqubit states.
Specifically, the manipulation will be to implement a blur like effect
using quantum interference. We will consider grayscale images, in
which the brightness of a pixel corresponds to a value from 0 to 1.
We can equivalently consider these images to be height maps, and
will sometimes refer to them as such.

Code snippets are provided to show explicitly how the method
can be generated. These are in Python, and will use the Qiskit
framework for handling quantum circuits [21]. First we begin by
importing the necessary tools.

import numpy as np
from math import pi
from qiskit import QuantumCircuit, quantum_info as qi

For other languages, note that MicroQiskit could be used [30].
This is a minimal reimplementation of Qiskit, designed to facilitate
ports to other programming languages. The following methods can
be used in MicroQiskit with almost identical syntax.

2.1 Converting images to quantum states
Though we are focussing on small-scale quantum processes of up to
around 20 qubits, we will want to use them to generate images with
thousands of points. Clearly there is a difference of scale between
the two. However, as we saw above, the state ofn qubits is described
by a set of 2n amplitudes: one for each possible output bit string. We
can therefore close the gap by making use of all of these amplitudes,
or alternatively the corresponding probabilities.

When using a real quantum processor, the state cannot be ac-
cessed directly. Instead we need to estimate the probabilities for
each of the 2n possible output bit strings. This can be done by re-
peating a circuit many times to sample from the output. Specifically,
using shots = 4n samples should be adequate to estimate the prob-
abilities with sufficient accuracy. However, this number of samples
carries a computational complexity that is greater than the O(2n )
required to directly access the probabilities when a simulation is
used. The method we will develop is therefore one for which the
use of a simulator is in fact advantageous over the use of a real
quantum device: the reverse of what is normally found in quantum
computing.

Our first task is to find a mapping between the numbers that
describe an image (brightness values for each coordinate) and the
numbers that describe a quantum state (amplitudes for each output
bit string). Themost important element of this is to define amapping
between the coordinates and the bit strings.

The ideal mapping for our purposes would be one that maps
neighbouring coordinates to neighbouring bit strings. For example,
if we map some (x ,y) to 0000, a good choice for neighbouring
points would be

(x + 1,y) → 1000

(x − 1,y) → 0100,

(x ,y + 1) → 0010,

(x ,y − 1) → 0001.

Here the Manhattan distance between any two points is equal
to the Hamming distance between the corresponding bit strings.

In general, this will not be a perfectmapping.We usually consider
images based on 2D square lattices, whereas the structure formed
by the Hamming distance between n-bit strings is an n-dimensional
hypercube. This will mean that there will always have to be non-
neighbouring coordinates (on the lattice) whose bit strings are
neighbours (in the hypercube). However, we can at least ensure that
neighbouring coordinates always have neighbouring bit strings.

This is done using repeated applications of a process in which
we take such a list for n-bit strings and use it to create a list with
doubled length for (n+1)-bit strings. This process starts by creating
two altered copies of the original list. For the first copy, we simply
add a 0 to the end of each bit string. For the second we reverse the
order and then add a 1 to the end of each bit string. Finally, these
two lists are concatenated.

For example, starting with [0, 1] we get [00, 10] for the original
list with appended 0, and [11, 01] for the reversed list with appended
1. These combine to form [00, 10, 11, 01]. By repeating the process,
we can obtain a list of length 2n for n-bit strings for any desired n.

The process can be applied by the following Python function.
Given a desired length for the list, this returns a list of at least that
length.

def make_line ( length ):
n = int(np.ceil(np.log(length)/np.log(2)))
line = ['0','1']
for j in range(n-1):

cp0 = []
for string in line:

cp0.append (string+'0')
cp1 = []
for string in line[::-1]:

cp1.append (string+'1')
line = cp0+cp1

return line

With this, we can combine the xth and yth elements of two such
lists to define a unique string for each coordinate (x ,y) of a grid. The
following function, make_grid runs through all the coordinates
of an L × L grid, calculates the corresponding bit string, and then
outputs all the results. This is done as a Python dictionary, with bit
strings as keys and the corresponding coordinates as values.

def make_grid(L):
line = make_line( L )
grid = {}
for x in range(L):

for y in range(L):
grid[ line[x]+line[y] ] = (x,y)

return grid
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Now we have figured out what to do with the coordinates in
an image, it is time to focus on the brightness values themselves.
To do this, we will assume that each value h exists in the range
0 ≤ h ≤ 1, and that the largest of all the heights is equal to exactly
1. This assumption is without loss of generality, since any set of
values can be shifted and rescaled into this form.

We then define a quantum state for which the probability of a
bit string b is proportional to the brightness of the corresponding
point grid[b],

pb′

pb
=

hgrid[b′]

hgrid[b]
The reason why we cannot simply set pb = hgrid[b] is because

probabilities must always sum to 1. To achieve this we simply
renormalize using

pb =
hgrid[b]

H
, H =

∑
b

hgrid[b].

Now we have the probabilities, we need corresponding ampli-
tudes for the basis states. When we restrict to the case that these
amplitudes are real numbers, they are related to the probability by
the simple relation cb =

√
pb . The state we require to encode our

image is then

1
√
H

∑
b

√
hb |b⟩

Now we can construct a function to create this state for any
given image. This means that we need to create a ‘quantum cir-
cuit’, a set of operations for a suitable number of qubits which will
prepare the required state from the default initial |00 . . . 00⟩ state.
Rather than dwell on the details of this at an abstract level, we can
simply use Qiskit in which quantum circuits are defined within
a QuantumCircuit class, which includes an initialize method
that can be used to set desired initial states.

The images that we will manipulate in the following will be ex-
pressed in the form of Python dictionaries, with coordinates as keys
and the corresponding brightness as values. Absent coordinates are
assumed to correspond to a value of 0. Here is an example of such
an image.

height = {}
for pos in [(2,5),(2,6),(5,6),(5,5),(2,1),\

(3,1),(4,1),(5,1),(1,2),(6,2)]:
height[pos] = 1

The following function allows us to convert a given image to a
quantum circuit.

def height2circuit(height):
# determine grid size
L = max(max(height))+1
# make grid
grid = make_grid(L)
# determine required qubit number
n = 2*int(np.ceil(np.log(L)/np.log(2)))
# create empty state
state = [0]*(2**n)

# fill state with required amplitudes
H = 0
for bit string in grid:

(x,y) = grid[bit string]
if (x,y) in height:

h = height[x,y]
state[ int(bit string,2) ] = np.sqrt( h )
H += h

# normalize state
for j,amp in enumerate(state):

state[ j ] = amp/np.sqrt(H)
# define and initialize quantum circuit
qc = QuantumCircuit(n,n)
qc.initialize(state,range(n))
# for standard Qiskit, use
# qc.initialize( state, qc.qregs[0])
return qc

2.2 Converting quantum states to images
The next job is to implement the opposite process: to turn a quantum
circuit into an image. For this we must determine the probability
pb for each possible output bit string b. In the case that we are
simulating the process we can keep track of the entire quantum
state. The probabilities pb can then be extracted directly, as in the
circuit2height function below.

def circuit2height(qc):
# get the number of qubits from the circuit
n = qc.num_qubits
grid = make_grid(int(2**(n/2)))
# get the initial state from the circuit
ket = qi.Statevector(qc.data[0][0].params)
qc.data.pop(0)
# evolve this by the rest of the circuit
ket = ket.evolve(qc)
# extract the output probabilities
p = ket.probabilities_dict()
# determine maximum probs value for rescaling
max_h = max( p.values() )
# set height to rescaled probs value
height = {}
for bit string in p:

if bit string in grid:
height[grid[bit string]] = p[bit string]/max_h

return height

If we were instead to use real quantum hardware, the process
would be slightly more involved. Firstly, to obtain the output bit
string wewould need to measure the qubits. The measurement of all
qubits can be done by adding measurements to the end of the circuit
using qc.measure_all(). Each run of the circuit then returns a
bit string b, drawn from the probability distribution described by
the probabilities pb . To estimate these probabilities we must then
run the circuit for many samples, and count the number of runs
that give each output. These results can be expressed as a so-called
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counts dictionary, for which counts[b] represents the number of
samples for the bit string b. This is done with

result = execute(qc, backend, shots=shots).result()
counts = result.get_counts()

where backend describes the device on which the circuit qc, and
shots is the number of samples for which the process is repeated.

By dividing each of the counts values by shots, which specifies
the total number of runs, we obtain an estimation of the probabil-
ities. However, since we must rescale these values in any case to
regain the original image (to ensure that the maximum value is
equal to 1), we can simply use the counts values directly instead of
the probabilities. Note that, as mentioned earlier, the overhead of
sampling shots times means that running on real quantum hard-
ware is less efficient for this specific application.

Howeverwe run the process in circuit2height, in combination
with height2circuit we can now implement the simple process
of encoding and then recovering the example image height.

qc = height2circuit(height)
new_height = circuit2height(qc,backend)

More interesting is to manipulate the image by adding quantum
gates to the circuit. Though there are many possible choices we
could make of what gates to apply, we consider something very
straightforward: simply applying Ry to all qubits by a given angle
θ . The results are shown in Fig. 1. Note that the effect appears very
slight, due to the blurring occurring with an exponential distri-
bution. The effect can be seen more clearly when the values are
plotted logarithmically.

The fact that the blur effect is due to an interference process can
be most easily seen when large angles are used. This is shown in
Fig. 2, where the initial two-pixel images represents the so-called
GHZ state [8].

Here the small angles show a relatively simple blurring effect.
However, rather than simply blurring out into a uniform distribu-
tion, the interference effects at θ = 0.5π create a checkerboard
pattern. Larger angles would see the original points reform, leading
to the original image at θ = π . The interference pattern at θ = 0.5π
depends strongly on the initial state, and so would be different if
other pixels were chosen in the original image.

2.3 Applications of the method
The quantum blur method presented has been developed and tested
during projects for various game jams. It was primarily used to
procedurally generate textures from simple seed images. Some of
these applications are outlined below.

The first use in a game jam was for PyWeek 27 in which it was
used as the basis for an art toy: the ‘Quantograph’ [28]. This al-
lowed users to choose a seed image as well as set of parameters.
Multiple quantum circuits based on these parameters were then im-
plemented, each slightly different from the last, to create successive
frames for an animation. This provided a visualization of quantum
interference effects distorting the seed image. In this project, the
method presented in the previous sections was adapted to allow
for colour images. This was done simply by running three different

(a)

(b) (c)

Figure 1: (a) A simple face encoded in and then recovered
from a quantum circuit. (b) The image after an Ry (π/10) gate
on all qubits. (c) The same image as in (b), but with values
plotted logarithmically.

quantum processes, with one for each rgb colour channel. Similar
animations were also used in a game for the GMTK Game Jam
2019 [26]. In this case it served as a transition animation, where the
screen was scrambled and unscrambled by the quantum process
when transitioning between levels.

As an extension of this idea, transitions between two seed im-
ages can be achieved using a teleportation-like effect. Specifically
using the SWAP gate, which acts on two equal sized registers of
qubits, and simply swaps their states. Just as Rx and Ry can be
viewed as fractional forms of the NOT gate, so too can we define
fractional forms of the SWAP gate. By encoding two different images
in different registers of qubits, and then applying different fractions
of the SWAP gate to generate images for different frames, we can
visualize the intermediate states of this quantum SWAP operation,
creating an animation of a teleportation-like effect. An example of
this for few-pixel images is shown in Fig. 3.

In Ludum Dare 44 [27], the quantum blur effect was used to
generate maps on which a simple game was played. An example
of the method used is depicted in Fig. 4. Specifically, the 16 × 16
patch of texture in Fig. 4 (b) is created from the randomly generated
seed image of Fig. 4 (a). Hundreds of random variants of this are
then created by a shuffling process, in which alternative mappings
between bit strings and coordinates are randomly generated and
the corresponding images are constructed using the same set of
probabilities each time. This generates hundreds of textures while
only using the quantum process once, with an entire time taken
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(a) (b)

(c) (d)

(e) (f)

Figure 2: An Rx rotation of the GHZ state by (a) θ = 0, (b)
θ = 0.1π , (c) θ = 0.2π , (d) θ = 0.3π , (e) θ = 0.4π , (f) θ = 0.5π , all
plotted logarithmically.

of less than 10 seconds on a laptop. These textures are then ran-
domly placed onto a 200 × 200 pixel image, where the probability
of placement at at given point is governed by the height of a pre-
determined simple layout. The 10 × 10 pixel layout in Fig. 4 (c) is
used in the example (stretched out to the required size). With this
whole process the island of Fig. 4 (c) was generated, where colours
represent the type of terrain at different heights.

During PROCJAM 2019 [29], the above method was adapted to
create islands suitable to be rendered in 3D, as shown in Fig. 5. This
was done using a voxel based game engine, meaning that the height
was rounded down at each point. This left a value 0 ≤ r < 1 at
each point as the difference between the true and rounded values.
These values were used to decide the position of objects such as
trees. This method was subsequently used in the educational game
QiskitBlocks [25].

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3: Transition between a plumber and a flower. The
small size of these images is not a limitation of the method,
but was chosen in line with the theme of a game jam.

The method has also been applied to other forms of discrete data,
using the results of make_line as a starting point for the mapping.
For example, we can consider a given musical note to be located
in a 3D space consisting of coordinates describing which bar it
is in, placement within that bar, and its octave. Each coordinate
corresponds to a line of bit strings of suitable length, and the total
coordinate corresponds to the combination of these bit strings.With
this we can then convert music to and from quantum states, and the
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(a) (b)

(c) (d)

Figure 4: (a) A randomly chosen 16× 16 pixel seed image. (b)
The seed image with θ = 0.15π , plotted logarithmically. (c) A
simple 10× 10 pixel layout for an island. (d) A 200× 200 pixel
island with texture generated by random placement of the
manipulated seed image over the simple island layout.

Figure 5: An island generated using the quantum blur effect,
and rendered in 3D in QiskitBlocks.

‘blurring’ effect of quantum gates will cause notes to bleed across
bars, and between different bars and octaves.

3 COMPARISON TO OTHER METHODS
When comparing to other methods, the most obvious comparison
is to the box blur. For an L × L image, a blur of any radius r , can

be done with just O(L2) complexity [12]: linear in the number of
points.

The quantum blur presented here uses the simulation of n =⌈
log2(L2)

⌉
qubits, which requires manipulation of a vector of length

2n . The blur effect is provided by performing a rotation gate on all
qubits. Doing these individually would result in a total complexity
of O(n2n ) = O(L2 logL). This is not significantly worse than the
box blur, and methods could be found to improve the complexity.
Nevertheless, the quantum method cannot beat the complexity of
the standard box blur.

Furthermore, content generated by the quantum method has
artefacts that result from quantum interference effects and the way
that large images are squeezed into a small number of qubits (pri-
marily the effects of non-neighbouring points having neighbouring
bit strings). Such artefacts, which make it obvious that the content
was generated algorithmically and which provide noticeable traces
of the algorithm used, are usually regarded as being problematic
in procedural generation [3]. Significant efforts are therefore typ-
ically made to avoid such effects. However, these artefacts might
actually prove useful in the quantum case. This is because quantum
computing is an area which is of interest to many people, not just
because of the results that it will provide but also because of the
connection that the hardware and software have to the science of
quantum physics. Since quantum physics is a popular topic used (or
misused) in science fiction, artefacts which provide a signature of
a quantum origin could help to build a desired aesthetic in a sci-fi
context, or provide the player with the sense of a more genuine
sci-fi experience.

The idea that quantum artefacts may be beneficial for some use
cases is inspired by the way that external parties have already been
using the method proposed here. Nevertheless, this idea is primarily
speculation at this stage. Studies into the public perception of pro-
cedurally generated content has so far only been done for standard
computational methods [16]. However, it might now be timely to
perform similar studies into the perception of quantum results.

Nevertheless, it is not the intent in this paper to propose amethod
suitable solely for sci-fi projects, as the examples shown in the last
section should demonstrate. However, this may well be a niche for
which quantumly generated content can excel within the near-term.

4 CONCLUSIONS
For many applications, the usefulness of quantum computing will
begin once the hardware is able to implement the thousands of
qubits needed for standard textbook algorithms [2, 10, 22]. For
other applications, a quantum advantage will be found for nearer
term devices with hundreds of qubits [20]. For a few applications,
however, designing algorithms using the principles of quantum
computing could be a useful venture even while those algorithms
can be run more easily on conventional computers than quantum
hardware. In these cases, the design of immediately useful quantum
methods can begin now, and will only grow in usefulness and
sophistication as ever more powerful quantum hardware emerges.

The quantum blur effect presented here shows that procedural
generation is such a case. It is targeted specifically at using sim-
ulators or currently available prototype quantum hardware, and
uses quantum operations to create an effect that could be useful
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for various tasks within procedural generation. It is clearly a very
simple tool, and is not expected to become the first ‘killer app’ of
the quantum era in itself. Nevertheless, it shows the potential that
quantum computing can have even with current computational
resources, and will hopefully inspire others to investigate what
quantum computing can do for them.
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