
Constraint Is All You Need: Optimization-Based 3D Level
Generation with LLMs

Kaijie Xu
Mcgill University

Montréal, Quebec, Canada
kaijie.xu2@mail.mcgill.ca

Clark Verbrugge
Mcgill University

Montréal, Quebec, Canada
clump@cs.mcgill.ca

Abstract
Procedural Content Generation (PCG) has long enabled efficient
and varied game level creation. However, integrating high-level de-
sign intentions and game mechanics into complex 3D environments
remains challenging. This paper introduces a comprehensive frame-
work that transforms narrative-level descriptions into playable 3D
game levels. First, Large Language Models (LLMs) parse natural lan-
guage descriptions of game environments into a structured Game
Level Description Language (GLDL), capturing essential spatial
constraints. Next, we model level generation as a Facility Layout
Optimization problem, ensuring that facility placements and con-
figurations adhere to specified design criteria. Through comprehen-
sive experiments, including automated constraint evaluations and
agent-based simulations, our approach ensures both the feasibility
and stability of the constraints extracted from textual descriptions.
We confirm that the resulting game levels remain interactive, rea-
sonable, and controllable to their original specifications.

CCS Concepts
• Applied computing→ Computer games.

Keywords
Procedural Content Generation, Facility Layout Problem, Level
Generation, Large Language Models, Game Design

ACM Reference Format:
Kaijie Xu andClark Verbrugge. 2025. Constraint Is All YouNeed: Optimization-
Based 3D Level Generation with LLMs. In International Conference on the
Foundations of Digital Games (FDG ’25), April 15–18, 2025, Graz, Austria.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3723498.3723840

1 Introduction
Procedural Content Generation (PCG) remains a continuously re-
searched and evolving topic in both academic and industrial set-
tings, enabling the automated creation of diverse, replayable, and
contextually rich game environments, particularly in roguelikes
and open-world games. However, complex game worlds require
PCG systems that integrate high-level design intentions to ensure
narrative coherence and effective use of gameplay mechanics. In
narrative-driven level design, the spatial arrangement of objects

This work is licensed under a Creative Commons Attribution International
4.0 License.

FDG ’25, Graz, Austria
© 2025 Copyright held by the owner/author(s).
ACM ISBN /25/04
https://doi.org/10.1145/3723498.3723840

and characters must align with the overall story and gameplay
objectives. By incorporating these elements, PCG tools empower
designers to retain creative control while achieving environments
that are both functionally robust and visually cohesive.

Recent advancements in integrating Large Language Models
(LLMs) and Computer Vision (CV) techniques have confirmed sub-
stantial progress in generating visually appealing scenes [1, 5, 6,
10, 17–19, 27–29]. However, when applied to game level genera-
tion, these methods do not always sufficiently account for critical
aspects such as game logic, mechanics, and interactive elements.
Consequently, although they are effective for pure scene generation,
they may produce environments that are visually engaging but lack
the functional coherence. We therefore seek a more universally
applicable framework that supports custom asset integration while
prioritizing structural coherence and functional playability.

In this work, we propose a novel framework that leverages the ca-
pabilities of LLMs to bridge the gap between narrative descriptions
and structured level design. This approach introduces a specialized
Game Level Description Language (GLDL) that encodes essential
spatial constraints, relationships, and gameplay mechanics derived
from natural language inputs. By formulating level generation as a
Facility Layout Optimization problem—a classic challenge focused
on arranging facilities within a given space to optimize spatial ef-
ficiency and meet design constraints—the framework translates
narrative-driven specifications into precise and feasible 3D layouts.
This methodology ensures that the generated environments are not
only visually coherent but also adhere to the desired game logic
and interactive dynamics.

Key contributions of our work include:

• We describe a PCG pipeline for generating non-trivial game
levels from textual input, incorporating basic game mecha-
nisms such as lock/key or other distributed puzzles, combat,
and spatial arrangement.
• Our pipeline relies on a novel Game Level Description Lan-
guage, a specialized language inspired by Scenic [7], designed
to encode spatial constraints, relationships, and gameplay
mechanics as derived from natural language descriptions.
This facilitates the translation of narrative intents into struc-
tured level specifications.
• Translation from the GLDL into the actual level structure
is modeled as a basic facility layout optimization problem.
We explore various optimization methods, enabling the au-
tomated placement of game facilities that adhere to the nar-
rative and gameplay constraints.
• Our work is validated through a Unity3D simulation, using
a synthetic agent-based approach to ensure the playability
and coherence of the generated levels.

https://orcid.org/0009-0009-7562-4989
https://orcid.org/0000-0003-0663-7347
https://doi.org/10.1145/3723498.3723840
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3723498.3723840

FDG ’25, April 15–18, 2025, Graz, Austria Kaijie Xu and Clark Verbrugge

2 Related Work
PCG is a large and long-standing research area in game research.
Below, we summarize prior work in relation to level generation,
the facility layout problem, and the use of LLMs in PCG.

2.1 Procedural Content Generation (PCG) and
Level Generation

Procedural Content Generation (PCG) has been extensively ex-
plored in game design, emphasizing the automated creation of
game elements such as levels, maps, and scenarios. Traditional PCG
approaches include random generation, rule-based systems, and
search-based methods, each presenting unique advantages and lim-
itations [20, 24]. In recent years, there has been a significant shift
towards integrating machine learning and reinforcement learning
techniques to enhance the adaptability, complexity, and creativity
of generated content [12, 13, 22].

While substantial progress has been made in 2D, grid-based level
generation, the exploration of PCG in 3D environments remains
relatively limited. Several studies have employed reinforcement
learning techniques to construct 3D environments [11]. Addition-
ally, computer vision methods, which have demonstrated substan-
tial efficacy in their native domains, have been adapted for use in
the generation of 3D scenes [5, 6, 17–19, 28]. Our research aims to
address this gap by developing a framework that leverages large
language models and optimization algorithms to create playable,
diverse, and coherent 3D game levels.

2.2 Facility Layout Problem
The Facility Layout Problem (FLP) is a well-established optimization
challenge in operations research, focused on arranging facilities
within a given space to optimize specific criteria, such as mini-
mizing movement costs or maximizing space utilization [2, 21].
Traditionally applied in manufacturing and service industries, FLP
seeks to enhance operational efficiency and spatial organization by
determining the most effective placement of various facilities or
departments. FLP was introduced into the game field in 2006, pri-
marily focusing on generating building interiors and architectural
room layouts [8, 14, 15].

In recent years, FLP has extended its applications to domains
beyond traditional industries, including scene generation tasks such
as traffic scene generation and 2D game world generation [4, 25, 26].
By adapting FLP methodologies to these new areas, researchers can
achieve systematic and optimized placement of elements within
complex environments. Our research leverages FLP to address the
challenges inherent in 3D game level generation. By formulating
level design as an FLP, we can simulate the real constraints as
abstract numerical constraints and employ advanced optimization
algorithms to determine optimal facility placements that adhere to
both gameplay mechanics and visual design principles.

2.3 LLMs in PCG
Large Language Models (LLMs) are pre-trained with billions of
parameters to perform a wide array of tasks, including natural lan-
guage understanding and generation [30]. Recent advancements,
such as GPTs [16] and Claude [3], have demonstrated remarkable

text generation capabilities, underscoring the potential of artifi-
cial general intelligence. In the realm of Procedural Content Gen-
eration (PCG), LLMs facilitate the creation of game content by
interpreting text-based prompts to generate rules and levels [9].
LLMs offer an intuitive interface through natural language prompts,
enabling more straightforward human involvement and feedback
compared to traditional methods like player trajectories. Latest
studies [1, 10, 29] have further expanded the capabilities of LLMs
in generating complex 3D scenes and immersive indoor environ-
ments. Despite recent efforts to fine-tune LLMs for level generation
within fixed game rules and datasets [23], these approaches often
require additional training time and are susceptible to randomness
and hallucinations inherent to LLMs. In our research, we utilize
LLMs to transform game-level description texts into a specialized
Game Level Description Language (GLDL), thereby minimizing the
instability associated with direct LLM outputs and enhancing the
reliability of generated game levels.

3 Methodology
Our procedural content generation framework is designed to effi-
ciently convert natural language descriptions into playable game
levels through an integrated workflow. As illustrated in Figure 1,
the process begins with the input of high-level, human-written nar-
rative descriptions, which are then processed by an LLM to extract
keywords and constraints. These elements are converted into a
structured Game Level Description Language (GLDL), guiding the
layout optimization algorithms to generate detailed data on facility
placements within the room. This data is then used to simulate the
final game level. To ensure the quality and stability of the generated
levels, the framework includes an “LLM Stability Test,” which eval-
uates the consistency and coherence of the LLM-generated content,
as well as an “Agent Simulation Test,” which assesses the playa-
bility and user experience by simulating agent behaviors within
the generated environment. This systematic approach ensures that
the generated levels are not only contextually accurate but also
playable.

Below we first introduce the GLDL, and then describe the pro-
cess of using the LLM as a constraint generator, and the different
approaches to final layout generation we explored. The LLM Stabil-
ity and Agent Simulation tests are part of experimental validation
and are thus described in the next section.

3.1 Game Level Description Language (GLDL)
GLDL, or Game Level Description Language, is a descriptive lan-
guage, partly inspired by the more generic Scenic language [7]
but more specifically focused on systematically representing three-
dimensional game levels. By providing a structured framework for
defining facilities, spatial variables, and constraints, GLDL facili-
tates the automated creation of coherent, contextually meaningful,
and playable environments. Facilities include all objects that may
appear in a game scenario, including fundamental architectural ele-
ments, interactive features, and non-player characters (NPCs). This
section presents the core components of GLDL, clarifies the funda-
mental sentence types, categorizes constraints, and highlights the
practical advantages of adopting GLDL. A more complex language
definition is given in Appendix A.

Constraint Is All You Need: Optimization-Based 3D Level Generation with LLMs FDG ’25, April 15–18, 2025, Graz, Austria

Figure 1: Overall workflow of our Procedural Content Generation framework: a natural language paragraph describing the
target 3D environment is processed by an LLM into GLDL constraints (yellow, left); these constraints are verified via an LLM
Stability Test (blue, upper-middle), where red text highlights key components (facility names, constraint types, variable types),
and then fed into an optimization algorithm to produce the facility layout (beige, bottom-right); finally, an Agent Simulation
Test in Unity (green, upper-right) verifies that the resulting 3D level meets the intended navigability, complexity, and overall
design requirements.

3.1.1 Vocabulary and Core Components. GLDL is fundamentally
based on the concept of facilities, providing a means to describe
the constraints and requirements associated with objects, NPCs,
and other entities within a game. The language is comprised of
two primary types of sentences: definition sentences and constraint
sentences. Definition sentences are employed to declare and pa-
rameterize facilities, effectively establishing the fundamental com-
ponents of the game level. Subsequently, constraint sentences are
used to impose specific constraints and requirements on these de-
fined facilities. The typical workflow involves first defining each
object with appropriate definition sentences, followed by applying
basic constraints relevant to their individual characteristics, such
as positional requirements or spatial affiliations within a room.
When introducing new facilities that interact with existing ones,
relationship constraint sentences are added to define their inter-
dependencies and spatial relationships. This structured approach
ensures that each facility is not only accurately defined but also
coherently integrated into the overall game environment.

Definition and Constraint Sentences. GLDL specifications consist
of two primary sentence types:

• Definition Sentences: These sentences declare and param-
eterize facilities (objects or reference points), following the
format:

𝐹 = Definition(variables)

In this context, 𝐹 denotes a facility, while Definition serves as
a placeholder for a specific type of definition sentence. The
following subsections describe three variants of definition
sentences supported by GLDL:
– PredefinedFacility: A facility with a predetermined position
and orientation, serving as a stable reference point. Such
facilities are not treated as variables during optimization.

– NewFacility: A facility whose position and orientation
depend on specified constraints, enabling adaptive and
dynamic layouts. New facilities are treated as variables in
optimization.

– Points: Special facilities functioning as fixed reference an-
chors, guiding the relative placement and orientation of
other facilities.

• Constraint Sentences: These sentences impose spatial or
relational rules on facilities, using the format:

Constraint(𝐹, variables)

In this expression, 𝐹 denotes a facility, and the listed vari-
ables define how it relates to positions, other facilities, or
environmental parameters. Constraints are categorized into
two main types to streamline specification and facilitate
reasoning about facility arrangements:
– Basic Constraints: Define fundamental placement rules
relative to the environment or specified reference points.
Examples include PlaceAroundPosition, PlaceInRange, and
PlaceByWall.

– Relationship Constraints: Govern spatial and direc-
tional relationships between facilities, addressing aspects
such as proximity, visibility, and orientation. Examples in-
clude Near/Far, CanSee, Focus, and Alignment/Orientation.

Additional details and rules for different types of constraint
sentences are provided in Appendix A.

Variables. Variables represent essential attributes and parameters
that define facilities and inform their configuration (e.g., positions,
orientations, tags, numbers). They appear in both definition and
constraint sentences, ensuring flexible and scalable specifications
as the environment or design requirements change over time.

FDG ’25, April 15–18, 2025, Graz, Austria Kaijie Xu and Clark Verbrugge

3.1.2 Benefits of GLDL. GLDL offers several benefits for designers
and automated processes:

Domain-Specific Simplicity: GLDL’s constructs are designed
for typical game design scenarios, making it more direct and com-
prehensible than generic specification languages intended for com-
plex perceptual tasks.

Accessibility to Designers and LLMs:GLDL’s straightforward
components and syntax can be easily understood by designers with-
out extensive technical expertise. Moreover, LLMs can interpret
and produce GLDL code from concise prompts, thereby facilitating
rapid initial development, enabling iterative refinement, and sup-
porting collaborative design processes. While the GLDL is designed
with an accessible syntax that does not require expert knowledge
of its underlying ontology, our current evaluation assumes that
users provide free-text inputs without needing to fully understand
the detailed definitions and constraint structures. Future work will
involve user studies with a diverse group of designers to better
quantify the level of familiarity required for effective use.

3.2 LLM-Based Constraints Generation
With Large Language Models (LLMs), our approach translates nat-
ural language descriptions of game levels into GLDL. This process
involves several key steps:

3.2.1 Prompt Engineering. In designing prompts for LLM-based
constraints generation, we structure the prompts to clearly outline
the objectives, components, and specific instructions necessary for
producing GLDL-compliant syntax. This involves providing the
LLM with a concise description of the game environment, defin-
ing facility types, their properties, and the relationships between
them. By explicitly specifying the purpose of GLDL, the key com-
ponents, and the syntax for definition and constraint sentences, we
ensure that most of the generated output adheres to the required
format and accurately reflects the intended level design. For exam-
ple, when creating a game level, the prompt defines facility types
such as PredefinedFacility and NewFacility, along with their
attributes like position, orientation, and dimensions. Additionally,
the prompt includes constraint functions like PlaceByWall and
CanSee to guide the placement and relationships of these facilities.
Importantly, the initial narrative description—crafted by a human
designer (or alternatively generated by an LLM)—is provided as
input along with an instruction template, which directs the LLM to
translate the prompts into structured GLDL code.

For a concrete illustration of this prompt structure, see Appen-
dix B. The examples detail how we instruct the LLM to create a post-
apocalyptic supermarket level, enumerating facility definitions and
constraints, highlighting orientation usage without quotes, and ref-
erencing environment variables. This ensures the generated GLDL
code meets syntactical, spatial, and contextual requirements with
minimal manual intervention.

3.2.2 Validation and Refinement. To ensure the accuracy and fea-
sibility of the generated constraints, we implement a validation
and refinement process where each generated GLDL script is auto-
matically parsed and evaluated against a reference grammar and
predefined domain-specific rules to detect any syntactic or semantic
deviations. Most generated sentences are semantically reasonable

and require no adjustment; however, this only confirms their va-
lidity for level construction, not that they meet all of our design
expectations or build a fully playable level. Any discrepancies or
errors are iteratively refined through additional prompting or man-
ual adjustments to maintain the integrity of the GLDL definitions,
while the match rate metric further assesses how well the scripts
satisfy our qualitative criteria. In our experiments, less than 0.01%
of the sentences require adjustment due to syntactic error, which is
negligible.

3.2.3 Integration phase. The validated GLDL output is then inte-
grated into our optimization pipeline. This smooth transition from
natural language to structured data allows for the automated gener-
ation of complex game levels that are both diverse and contextually
appropriate.

3.3 Optimization Algorithms
The generation of coherent and playable 3D game levels, as de-
scribed by GLDL, can be formulated as a constrained optimiza-
tion problem. Each candidate solution corresponds to a specific
assignment of positional and orientational parameters for all non-
predefined facilities, while predefined facilities maintain their fixed
configurations. The optimization algorithms output detailed data
specifying the positions and orientations of each facility, which are
then imported into the game engine for simulation. The objective
is to find a configuration of facilities that minimizes a composite
metric reflecting constraints satisfaction, spatial coherence, and
environmental quality.

3.3.1 Problem Formulation. At the core of our optimization is an
objective function that incorporates multiple criteria:

• Spatial Constraint Satisfaction: Penalties are applied for
violating GLDL-defined constraints, such as placing facilities
outside the environment’s bounds, overlapping objects, mis-
alignments, incorrect orientations, and deviations from de-
sired proximity or visibility conditions. These penalty terms
are grouped together as spatial penalty P and ensure that
the resulting layout adheres closely to the specified design
rules.
• Clustering and SparsityMeasures: Beyond raw constraint
satisfaction, we incorporate metrics that reflect the structural
qualities of the environment. For instance, a cluster degree
metric C may penalize excessively dense placements, while
a sparsity metric S encourages a balanced distribution of
facilities. By weighting these metrics alongside the penalty
terms, we guide the optimization process to produce not only
feasible but also aesthetically and functionally appealing
layouts.

Our goal is to find the optimal positions and orientations of the
facilities that minimize the total metric. The final objective function
aggregates these terms into a weighted sum:

TotalMetric = 𝑤𝑝 · 𝑃 +𝑤𝑐 ·𝐶 +𝑤𝑠 · 𝑆

where𝑤𝑝 ,𝑤𝑐 , and𝑤𝑠 are weights for the penalty, cluster degree,
and sparsity metrics, respectively; 𝑃 represents the total penalty, 𝐶
the cluster degree, and 𝑆 the sparsity metric:

Constraint Is All You Need: Optimization-Based 3D Level Generation with LLMs FDG ’25, April 15–18, 2025, Graz, Austria

• 𝑃 (TotalSpatialPenalty): 𝑃 is the cumulative sum of all
penalties resulting from the violation of GLDL constraints.
These penalties (detailed in Appendix D) include but are not
limited to placing facilities outside the designated bounds,
overlapping multiple facilities, misaligning facility orienta-
tions, and failing tomeet proximity or visibility requirements.
Formally, it can be expressed as:

𝑃 =
∑︁

constraints
PenaltyTerm

Each PenaltyTerm quantifies the degree of violation for a
specific constraint, weighted appropriately to reflect its im-
portance in the overall layout quality. 𝑃 ensures adherence
to GLDL constraints by penalizing any violations, thereby
maintaining the structural and functional integrity of the
layout. For additional details on the penalty term, please
refer to Appendix D.
• 𝐶 (ClusterDegree): 𝐶 quantifies the degree of clustering
among facilities within the environment. For every unique
pair of placed facilities (𝑓𝑖 , 𝑓𝑗), it calculates the inverse of
their Euclidean distance, summing these values to obtain the
clustering degree:

𝐶 =
∑︁
𝑖< 𝑗

1
dist(𝑓𝑖 , 𝑓𝑗) + 𝜀

where dist(𝑓𝑖 , 𝑓𝑗) is the Euclidean distance between facilities
𝑓𝑖 and 𝑓𝑗 , and 𝜀 is a small constant to prevent division by
zero. A higher 𝐶 indicates tighter clustering, which may be
undesirable depending on the design goals. 𝐶 discourages
excessive clustering of facilities, promoting a more uniform
and balanced distribution across the environment.
• 𝑆 (SparsityMetric): 𝑆 measures the extent of empty space
within the environment by evaluating the distribution of
facilities. The environment is sampled at discrete grid points,
and for each grid point 𝑔𝑝 , the minimum distance to any
facility is computed. The sparsity metric is then defined as
the maximum of these minimum distances:

𝑆 = max
grid point 𝑔𝑝

(
min

facilities 𝑓
dist(𝑔𝑝, 𝑓)

)
Here, dist(𝑔𝑝, 𝑓) represents the Euclidean distance from grid
point 𝑔𝑝 to facility 𝑓 . A lower 𝑆 value suggests a more uni-
formly distributed set of facilities with fewer large empty
regions. We selected our sparsity metric over well-known
spatial entropy due to its computational efficiency for large-
scale 3D optimization and intuitive interpretability of results
as maximum void distances. 𝑆 prevents the existence of large
vacant areas by encouraging facilities to occupy the space
evenly, ensuring spatial balance and enhancing navigability.

By adjusting the weights 𝑤𝑝 , 𝑤𝑐 , and 𝑤𝑠 , designers and auto-
mated pipelines can prioritize different aspects of the level de-
sign. The optimization process seeks to minimize the TotalMetric,
thereby achieving a layout that satisfies constraints, avoids over-
crowding, and maintains an even distribution of facilities within the
environment. Notably, TotalMetric’s clustering penalties are tuned
for our survival-horror design context, where a dense grouping of

items enhances the tension. However, the modular framework al-
lows designers to adjust these weights—for instance, reducing clus-
tering penalties for RPG resource hubs—or even introduce new met-
rics, such as loot distribution fairness for MMOs or narrative item
proximity for story-driven games, to better match genre-specific
priorities.

3.3.2 Optimization Methods. We employ three optimization algo-
rithms and select the most effective one during the testing phase to
design facility layouts that minimize TotalMetric while adhering
to spatial constraints:

• Simulated Annealing: Simulated Annealing (SA) optimizes
facility layouts by emulating the physical annealing process.
Starting with an initial layout, SA iteratively modifies facil-
ity positions and orientations to minimize the TotalMetric.
At each step, it evaluates the new configuration and prob-
abilistically accepts changes that may increase the metric,
controlled by a temperature parameter. This approach allows
SA to escape local minima, progressively refining the layout
towards a configuration that balances constraint satisfaction
(𝑃), clustering avoidance (𝐶), and spatial balance (𝑆).
• Genetic Algorithms: Genetic Algorithms (GA) approach
layout optimization through an evolutionary framework.
Each candidate layout is encoded as a chromosome, with
genes representing facility parameters. GA operates over
generations, applying selection, crossover, and mutation to
evolve layouts that minimize the TotalMetric. By evaluating
fitness based on penalties, GA effectively explores diverse
solutions and converges towards high-quality layouts that
satisfy constraints and maintain spatial coherence.
• Greedy Methods: Greedy Methods construct facility lay-
outs incrementally by making the locally optimal choice at
each placement step. When positioning a facility, the algo-
rithm selects the location and orientation that immediately
reduces the TotalMetric, focusing on minimizing penalties
based on the current partial layout. While not guarantee-
ing a global optimum, Greedy Methods offer computational
efficiency, making them suitable for rapid layout genera-
tion or as initial solutions and baseline models for further
optimization by SA or GA.

4 Experiments & Analysis
This section presents a series of experiments designed to validate
LLM-generated GLDL data, assess the effectiveness of our opti-
mization algorithms, and verify the playability of generated levels
through Unity-based simulations. The experiments are organized
into three main stages:

(1) LLM Stability Validation Test
(2) Optimization Test
(3) Unity Simulation Test

4.1 LLM Stability Validation Test
This experiment evaluates the consistency and reliability of LLM-
generated GLDL scripts.We focus on five distinct scene descriptions
based on the background settings of "The Last of Us" and "Left 4

FDG ’25, April 15–18, 2025, Graz, Austria Kaijie Xu and Clark Verbrugge

Dead 2": one baseline scenario (a supermarket environment manu-
ally designed by us) and four additional scenes (Bank Lobby, Hotel
Lobby, Abandoned Church, and Music Festival) that were fully gen-
erated by the LLM. Each scene description was used to produce
1,000 GLDL scripts via the given prompt, resulting in a total of 5,000
generated scripts using the GPT-4o-mini model. To further validate
the robustness and consistency of our method across different LLM
capabilities, we conducted two additional experiments: generating
1000 supermarket scenes using the o1-mini model and another 1000
scenes using the GPT-4o model.

4.1.1 LLM Prompts and Scenes. We provided the LLM with a struc-
tured prompt outlining GLDL syntax, rules, and example sentences
in Appendix B. The LLM was then given five different scene de-
scriptions—one baseline (supermarket) and four generated by the
LLM itself (bank lobby, hotel lobby, abandoned church, music festi-
val)—and instructed to produce 1,000 scripts per scene. For example
baseline scene descriptions, please refer to Appendix C.

4.1.2 Metrics and Similarity Assessment. To evaluate the generated
scripts, we employed a custom Python tool that:

(1) Classifies each sentence into one of three categories: Defini-
tions (facility declarations), Basic Constraints (e.g., PlaceBy-
Wall, PlaceInRange, PlaceAroundPosition), and Relationship
Constraints (e.g., Near, CanSee, Focus, Alignment).

(2) Parses and normalizes sentences to extract key components
(facility names, constraint types).

(3) Measures sentence-level similarity by comparing structure
and key elements with a ground truth script for the base-
line scenario. The baseline ground truth script (supermarket
scenario) was human-curated through iterative designer ad-
justments to ensure narrative and gameplay alignment, while
other scenes’ ground truth specifications were programmati-
cally selected from LLM-generated candidates via automated
filtering based on structural diversity and constraint com-
pleteness metrics, followed by manual review and viability
testing through agent simulations to validate playability and
logical consistency.

(4) Computes appearing frequencies and match rates for each
category. Match Rate quantifies the percentage of generated
sentences that structurally and semantically align with the
ground truth GLDL, by ensuring that each sentence uses
the correct constraint type, valid facility references, and
parameter values within 20% of the expected ranges (Match
Rate = Matching Sentences / Total Sentences × 100%).

This method ensures a quantitative assessment of how accu-
rately the LLM replicates the structure and semantics of the GLDL
specification. It is important to note that higher match rates primar-
ily reflect the LLM’s ability to consistently reproduce the expected
GLDL structure, which is crucial for automated parsing and down-
stream optimization. However, because constraints may sometimes
conflict, match rates are not taken as a sole indicator of quality but
are used in conjunction with qualitative assessments and simulation
tests to evaluate the overall level of coherence and playability.

4.1.3 Results and Analysis. Table 1 summarizes the average match
rates for each category across all five scenes. Notably, the super-
market (baseline) scenario revealed the highest overall similarity,

Table 1: LLM Stability Validation Results for Each Scene

Scene Definition (%) Basic (%) Rel. (%)

Supermarket (Baseline) 91.77 51.03 54.30
Bank Lobby 73.69 52.63 18.09
Hotel Lobby 93.40 55.02 16.87
Abandoned Church 82.89 64.83 17.71
Music Festival 69.14 63.38 8.09

Baseline (o1-mini) 98.75 56.00 80.71
Basline (4o) 94.58 53.33 71.43

while scenes entirely generated by the LLM showed more variabil-
ity in basic and relationship constraints. To ensure the robustness
and consistency of our experiments, we incorporated additional
validation tests using different versions of the LLM. The initial
dataset comprised 5,000 scripts generated by GPT-4o-mini, a model
known for its limitations in handling complex instructions. The
supplementary experiments aimed to demonstrate that even with
less capable models, our framework maintains a reasonable level of
accuracy, and with more advanced models, performance is expected
to improve, thereby ensuring the consistency and robustness of our
optimization framework.

We further aggregated sentence frequencies from all 5,000 scripts,
as summarized in Table 2. Definitions were the most prevalent,
while relationship constraints, though fewer, exhibited lower match
rates due to their inherent complexity. In aggregate, definitions
ranged from 23,000 to 34,000 instances, basic constraints from 15,000
to 31,000, and relationship constraints from 7,000 to 19,000. These
aggregated results indicate that essential foundational sentences
are generated with high consistency, ensuring that critical elements
are rarely missed. Meanwhile, the more varied match rates for rela-
tionship constraints meet our expectations by introducing diversity
into the levels while maintaining a consistent core framework.

Table 2: Aggregated Sentence Frequencies Across All 5,000
Scripts (Not Including Extra Baseline Tests)

Sentence Type Frequency Avg Match Rate (%)

Definition 131000 82.36
Basic Constraint 131000 57.77
Relationship Constraint 55000 25.38

Overall, our results confirm that LLMs reliably reproduce facility
definitions with high consistency, while complex relational con-
straints exhibit greater creativity and diversity. This consistency
validates our approach, and future improvements may involve ad-
vanced models or a hybrid method that integrates automated gen-
eration with targeted manual refinement.

4.2 Optimization Test
After selecting a baseline GLDL script generated from the LLM
outputs, we integrated it into the optimization pipeline to produce
10,000 final layout configurations for each optimization method.
These configurations were generated by applying the previously

Constraint Is All You Need: Optimization-Based 3D Level Generation with LLMs FDG ’25, April 15–18, 2025, Graz, Austria

introduced optimization algorithms under the chosen parameters
and weights, ensuring that each resulting layout was guided by the
defined constraints and environmental conditions. For constraints-
based optimization, we tested the Simulated Annealing algorithm,
Genetic Algorithm, and Greedy method, subsequently selecting the
method with the best performance for further tasks.

4.2.1 Parameters and Weights. We adopted environment dimen-
sions representative of a supermarket setting (𝑊 = 20𝑚, 𝐿 =

30𝑚,𝐻 = 6𝑚) and set the near/far thresholds (5m and 10m, re-
spectively) to ensure appropriate facility spacing. Penalty weights
were assigned to various constraints (e.g., overlaps, boundary viola-
tions, and misalignments), balancing their relative importance. The
overall metric weights (𝑤𝑝 for penalty,𝑤𝑐 for cluster degree, and𝑤𝑠

for sparsity) were chosen to maintain an equilibrium between strict
constraint adherence and spatial quality. Comprehensive details on
the calculation of penalties are provided in Appendix D.

4.2.2 Results and Analysis. We began by fine-tuning the penalty
and metrics weights to ensure that the optimization process would
provide desirable results. After selecting weights (shown in Ta-
ble 4), which generally produced stable numerical outcomes and
visually coherent layouts, we evaluated the performance of three op-
timization methods—Simulated Annealing, Genetic Algorithm, and
Greedy heuristic—by generating 10,000 layouts for each method to
determine the most effective approach for our constraints-based op-
timization task. Table 3 presents the average total weighted metric
values and their standard deviations for each method.

Table 3: Total Weighted Metric for Different Optimization
Methods. Values normalized to [0,1] scale relative to max-
imum observed metric. Abbreviations: SA = Simulated An-
nealing, GA = Genetic Algorithm, Greedy = Greedy Method

Method Total Metric Norm. Metric Std. Dev.

SA 35337.70 0.56 2912.642
Greedy 58947.89 0.94 13079.87
GA 62600.97 1.00 3948.396

SA achieved the lowest total weighted metric (35,337.7), followed
by the Greedy method (58,947.9), with GA yielding the highest val-
ues (62,600.9). While Greedy outperformed others in computational
speed, its higher standard deviation (13,079 vs. SA’s 3,948) indicates
less stable solutions compared to SA. In contrast, SA maintained a
good balance between numerical performance and visual quality,
making it the most dependable choice for this scenario. Therefore,
we selected SA for further experimentation and analysis.

Focusing on SA, we evaluated 10,000 generated layouts using
our chosen penalty and metric weighting scheme. As shown in
Table 4, the proximity constraints (penalty_near and penalty_far)
contributed 31.70% and 26.20% of the total weighted metric despite
moderate weights (10 and 15), highlighting their key role in shaping
spatial relationships while allowing controlled flexibility in facility
placement. In contrast, the high weights assigned to penalty_overlap

Table 4: Penalty Weights and Average Metrics from 10,000
Generated Layouts with Weighted Averages.

Metric Weight Avg. Value Weighted Avg.

penalty_xy 18 75.39 1357.02 (3.84%)
penalty_z 20 49.06 981.20 (2.78%)
penalty_near 10 1120.33 11203.30 (31.70%)
penalty_far 15 616.95 9254.25 (26.20%)
penalty_can_see 2 4.79 9.58 (0.03%)
penalty_overlap 30 0.59 17.70 (0.05%)
penalty_bounds 30 0.04 1.20 (0.003%)
penalty_alignment 15 31.31 469.65 (1.33%)
penalty_orientation 20 31.97 639.40 (1.81%)
penalty_focus 10 9.42 94.20 (0.27%)

total_penalty 1 24027.48 24027.48 (67.99%)
cluster_degree 100.0 77.57 7757.00 (21.95%)
sparsity_metric 500.0 7.11 3555.00 (10.07%)

total_weighted_metric 35337.70 (100%)

(30) and penalty_bounds (30) effectively enforced collision-free lay-
outs within environmental boundaries, as evidenced by their negli-
gible weighted contributions (0.05% and 0.003%). Meanwhile, verti-
cal placement constraints (penalty_z) and orientation requirements
contributed modestly (2.78% and 1.81%), reflecting minor but con-
sistent deviations from ideal configurations.

The cluster degree metric (𝑤𝑐 = 100.0) contributed 21.95% by
discouraging excessive facility density, while the sparsity metric
(𝑤𝑠 = 500.0) accounted for 10.07%, thereby ensuring a balanced
spatial distribution. Notably, the aggregate of all penalty terms
amounted to 67.99% of the total weighted metric, which validates
our constraint-driven optimization approach. These results indi-
cate that constraints with lower weights but higher frequencies of
violation (such as proximity rules) naturally emerge as dominant
cost drivers, whereas high-weight penalties (such as overlaps) serve
as strict guardrails with minimal impact on the overall cost due to
their near-zero incidence of violation.

The successful alignment between penalty weights and average
metrics confirms that our optimization approach is both proper and
valid for generating game level layouts. Prioritizing high-weight
constraints ensured collision-free, boundary-compliant designs,
while balanced cluster and sparsity weights promoted navigable
environments. Future work could explore adaptive weighting strate-
gies based on layout complexity or playtesting feedback, alongside
enhanced penalties and spatial metrics to improve proximity ad-
herence and spatial coherence.

4.3 Unity Simulation Test
Experiment Settings. To evaluate the playability and coherence

of the generated layouts, we imported 10,000 optimized configura-
tions into a Unity environment to simulate real-time gameplay. An
AI agent, designed to mimic human exploration and interaction,
navigates each level—which contains various interactive elements
and enemies—with the goal of collecting all scattered keys, gath-
ering items, and unlocking the exit to complete the level. Our AI

FDG ’25, April 15–18, 2025, Graz, Austria Kaijie Xu and Clark Verbrugge

Figure 2: Overview of key simulation metrics. The boxplots of completion time (top-left) and final health (bottom-middle)
reflect the overall difficulty, while the histograms of elements collected (top-middle), zombies encountered (top-right), and grids
explored (bottom-left) indicate the usage and impact of the level’s designed features. The scatterplot (bottom-right) combines
completion time, health, and enemy encounters, revealing how difficulty and content utilization intersect within the simulated
environment.

logic (see Algorithm 1) works as follows: when the agent finds a
key, it records the location and prioritizes the nearest key; if an
enemy is encountered, the agent stops to engage; if items are within
reach, they are collected; and if no keys are visible, the agent moves
toward areas with the most unexplored grid cells:

𝑃∗ = argmax
𝑃

∑︁
(𝑖, 𝑗) ∈Grid

⊮Unseen(𝑖, 𝑗) · 𝑒−𝛽 ·dist(𝑃,(𝑖, 𝑗))

where ⊮Unseen(𝑖, 𝑗) equals 1 if a grid cell is unseen and 0 otherwise,
𝛽 is a decay factor that prioritizes nearby cells, and dist(𝑃, (𝑖, 𝑗)) is
the Euclidean distance between 𝑃 and grid cell (𝑖, 𝑗).

Enemies were assigned distinct properties and parameters, re-
acting by pursuing and attacking the agent upon entering their
detection range. A level was deemed failed if the agent lost all HP,
any of the keys became unreachable, or if certain paths were invalid,
impeding level completion. Detailed parameter configurations are
provided in Appendix E.

In addition to evaluating our framework on the 10,000 main
configuration dataset, we conducted two sub-tests of 1,000 simula-
tions each to demonstrate tunability and controllability. In the first
sub-test (Combat Density Test), the LLM was prompted to create
a scenario with more frequent enemy encounters. In the second
sub-test (Task Duration Test), the LLM was instructed to generate a

level configuration likely to prolong the agent’s overall completion
time. Both sub-tests followed the framework pipeline described
earlier, resulting in the same Unity simulation test with identical
agent logic and environment parameters.

Results and Analysis. Figure 2 shows key gameplay metrics from
10,000 main simulations. Completion times generally range from
10 to 25 seconds (17%–42%), with some outliers over 50 seconds.
The number of collected elements typically falls between 5 and
7 (average 5.38, 54%), and zombie encounters average 3.25 (54%).
Most simulations explore between 300 and 450 grids (55%–82%),
and agent health usually remains above 90%. The scatterplot further
indicates that longer completion times are associated with lower
health and higher enemy encounters.

Table 5 summarizes the average metrics for the three test con-
ditions, with each raw value accompanied by its corresponding
normalized percentage. For example, under the default configura-
tion, the AI agent completes levels in an average of 18.58 seconds
(31%), collects 5.38 elements (54%), encounters 3.25 zombies (54%),
explores 382.07 grids (70%), and retains 92.43% health.

For tunability, two additional GLDL scripts were generated. The
Combat Test, which increases enemy density and complexity, leads
to a modest increase in completion time and a significant rise in

Constraint Is All You Need: Optimization-Based 3D Level Generation with LLMs FDG ’25, April 15–18, 2025, Graz, Austria

Table 5: Unity Simulation Test Results

Metric (Max) Default Generation Combat Density Test Task Duration Test

Number of Simulations 10,000 1,000 1,000

Average Time Taken (s) (60) 18.58 (31.0%) 20.32 (33.9%) 25.13 (41.9%)
Min Time (s) (60) 8.14 (13.6%) 10.04 (16.7%) 14.53 (24.2%)
Max Time (s) (60) 51.55 (85.9%) 42.14 (70.2%) 55.42 (92.4%)
Average Elements Collected (10) 5.38 (53.8%) 5.47 (54.7%) 5.74 (57.4%)
Average Zombies Encountered (6) 3.25 (54.2%) 3.89 (64.8%) 3.83 (63.8%)
Average Grids Explored (550) 382.07 (69.5%) 408.37 (74.3%) 398.31 (72.4%)
Average Health Left (%) (100) 92.43 (92.4%) 85.54 (85.5%) 91.05 (91.1%)

Invalid Levels

Time Exceeded 228 (2.28%) 12 (1.2%) 19 (1.9%)
Unreachable Keys 950 (9.5%) 78 (7.8%) 47 (4.7%)

Environment Details

Width (m) 20 20 20
Length (m) 30 30 30
Height (m) 6 6 6
Interaction Elements 10 10 10
Enemies 5 5 5
AI Agent Health 100 100 100
Time Threshold 60s 60s 60s

Algorithm 1 AI Agent Navigation and Interaction Logic
1: Initialize: Memory← ∅
2: while GameRunning do
3: K ← DetectKeys()
4: E ← DetectEnemies()
5: I ← DetectInteractionElements()
6: Memory← Memory ∪ K
7: if E ≠ ∅ then
8: EngageEnemy(E)
9: else if ∃𝑖 ∈ I : distance(𝑖) ≤ collectRange then
10: MoveToAndCollect(𝑖)
11: else if Memory ≠ ∅ then
12: 𝑘∗ = argmin𝑘∈Memory distance(𝑘)
13: MoveTo(𝑘∗)
14: CollectKey(𝑘∗)
15: Memory← Memory \ {𝑘∗}
16: if AllKeysCollected ∧ ExitReachable then
17: MoveToExit()
18: end if
19: else
20: 𝑃∗ = argmax

𝑃

∑︁
(𝑖, 𝑗) ∈Grid

⊮Unseen(𝑖, 𝑗)𝑒
−𝛽 ·dist(𝑃,(𝑖, 𝑗))

21: MoveTo(𝑃∗)
22: end if
23: end while

zombie encounters (from 54% to 65%), with final health dropping to
85.5%. In contrast, the Task Test, which spaces key objectives further
apart, extends the average completion time to 25.13 seconds (42%)

and slightly increases the average elements collected to 5.74 (57%).
These results demonstrate that the framework can be effectively
tuned to produce distinct gameplay profiles by modifying LLM
prompts or directly adjusting facility constraints.

Furthermore, the 228 levels that exceeded the time threshold
and the 950 levels with unreachable keys highlight specific areas
for future optimization. Overall, the system achieved an 88.22%
validity rate, indicating that the majority of generated levels are
both playable and compliant with essential design constraints. Fu-
ture work will involve human playtesting to further validate these
automated assessments.

5 Conclusion
In this study, we presented a framework that integrates Large Lan-
guage Models, a specialized Game Level Description Language, and
facility layout optimization to generate coherent, playable 3D game
levels automatically. Starting from narrative-level descriptions, the
approach produces layouts that reflect intended spatial constraints
and gameplay mechanics. Agent-based simulations confirm that
these environments are not only navigable and engaging but also
maintain structural coherence and controllability.

Nonetheless, the current framework has limitations.While GLDL
effectively encodes basic constraints, it does not capture the full
range of complex constraints that game designersmay require—some
of which necessitate combinations of multiple sentences and ad-
ditional manual fine-tuning. Similarly, the simplified assumption
that both rooms and objects can be represented as cubes oversim-
plifies many real-world scenarios. Potential improvements include
approximating irregular shapes with minimal encompassing cubes,
using predefined facilities for filler regions, or employing meshes

FDG ’25, April 15–18, 2025, Graz, Austria Kaijie Xu and Clark Verbrugge

and advanced geometric representations, even if these methods
increase computational overhead. Additionally, the current vali-
dation is limited to a single game genre (survival-horror) and a
single AI agent playstyle, which may not fully capture the diverse
requirements of other game types.

Future work includes extending this framework to larger-scale
scenes, incorporating temporal dimensions, and introducing more
game mechanics and logical elements to support dynamic scenar-
ios that consider game flow and narrative progression. Testing
the framework across multiple game genres (e.g., RPGs, strategy
games) with genre-specific facilities and constraints would fur-
ther validate its generalizability. Employing diverse AI agents with
varying behavior profiles (e.g., stealth-based navigation vs. combat-
oriented strategies) would ensure robustness against overfitting
to a single playstyle and enhance the framework’s adaptability to
heterogeneous player interactions. By building facility data locally,
the framework can be adapted to operate entirely offline, reducing
reliance on online services. By addressing these challenges and
leveraging local assets, the approach can evolve to design dynamic
environments that better accommodate the complex needs of con-
temporary game development.

Acknowledgments
This research was supported by NSERC Discovery Grant RGPIN-
2019-05213. We acknowledge that parts of the manuscript text were
modified using generative AI, with all changes reviewed by authors.

References
[1] Rio Aguina-Kang, Maxim Gumin, Do Heon Han, Stewart Morris, Seung Jean Yoo,

Aditya Ganeshan, R. Kenny Jones, Qiuhong Anna Wei, Kailiang Fu, and Daniel
Ritchie. 2024. Open-Universe Indoor Scene Generation using LLM Program
Synthesis and Uncurated Object Databases. arXiv:2403.09675 [cs.CV] https:
//arxiv.org/abs/2403.09675

[2] Abbas Ahmadi, Mir Saman Pishvaee, and Mohammad Reza Akbari Jokar. 2017. A
survey onmulti-floor facility layout problems. Computers & Industrial Engineering
107 (2017), 158–170. https://doi.org/10.1016/j.cie.2017.03.015

[3] anthropic. 2024. Introducing the next generation of Claude. https://www.
anthropic.com/news/claude-3-family

[4] Aren A. Babikian, Oszkár Semeráth, and Dániel Varró. 2024. Concretization of
Abstract Traffic Scene Specifications Using Metaheuristic Search. IEEE Transac-
tions on Software Engineering 50, 1 (2024), 48–68. https://doi.org/10.1109/TSE.
2023.3331254

[5] Dave Epstein, Ben Poole, Ben Mildenhall, Alexei A. Efros, and Aleksander Holyn-
ski. 2025. Disentangled 3D scene generation with layout learning. In Proceedings
of the 41st International Conference on Machine Learning (ICML’24). JMLR.org,
Vienna, Austria, Article 500, 13 pages.

[6] Chuan Fang, Yuan Dong, Kunming Luo, Xiaotao Hu, Rakesh Shrestha, and Ping
Tan. 2024. Ctrl-Room: Controllable Text-to-3D Room Meshes Generation with
Layout Constraints. arXiv:2310.03602 [cs.CV] https://arxiv.org/abs/2310.03602

[7] Daniel J. Fremont, Tommaso Dreossi, Shromona Ghosh, Xiangyu Yue, Alberto L.
Sangiovanni-Vincentelli, and Sanjit A. Seshia. 2019. Scenic: a language for sce-
nario specification and scene generation. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation (Phoenix, AZ,
USA) (PLDI 2019). Association for Computing Machinery, New York, NY, USA,
63—-78. https://doi.org/10.1145/3314221.3314633

[8] Evan Hahn, Prosenjit Bose, and Anthony Whitehead. 2006. Persistent realtime
building interior generation. In Proceedings of the 2006 ACM SIGGRAPH Sym-
posium on Videogames (Boston, Massachusetts) (Sandbox ’06). Association for
Computing Machinery, New York, NY, USA, 179—-186.

[9] Chengpeng Hu, Yunlong Zhao, and Jialin Liu. 2024. Game Generation via Large
Language Models. In 2024 IEEE Conference on Games (CoG). 1–4. https://doi.org/
10.1109/CoG60054.2024.10645597

[10] Ziniu Hu, Ahmet Iscen, Aashi Jain, Thomas Kipf, Yisong Yue, David A Ross,
Cordelia Schmid, and Alireza Fathi. 2024. SceneCraft: an LLM agent for syn-
thesizing 3D scenes as blender code. In Proceedings of the 41st International
Conference on Machine Learning (Vienna, Austria) (ICML’24). JMLR.org, Article
776, 31 pages.

[11] Zehua Jiang, Sam Earle, Michael Green, and Julian Togelius. 2022. Learning Con-
trollable 3D Level Generators. In Proceedings of the 17th International Conference
on the Foundations of Digital Games (Athens, Greece) (FDG ’22). Association for
Computing Machinery, New York, NY, USA, Article 71, 9 pages.

[12] Ahmed Khalifa, Philip Bontrager, Sam Earle, and Julian Togelius. 2020. PCGRL:
Procedural Content Generation via Reinforcement Learning. Proceedings of the
AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment
16, 1 (Oct. 2020), 95–101. https://doi.org/10.1609/aiide.v16i1.7416

[13] Jialin Liu, Sam Snodgrass, Ahmed Khalifa, Sebastian Risi, Georgios N. Yannakakis,
and Julian Togelius. 2021. Deep learning for procedural content generation.
Neural Computing and Applications 33, 1 (Jan. 2021), 19–37. https://doi.org/10.
1007/s00521-020-05383-8

[14] Riccardo Lopes, Tim Tutenel, Ruben M. Smelik, Klaas Jan de Kraker, and Rafael
Bidarra. 2010. A Constrained Growth Method for Procedural Floor Plan Genera-
tion. In Proceedings of the 11th International Conference on Intelligent Games and
Simulation (GAMEON 2010). Leicester, United Kingdom, 13–20.

[15] Jess Martin. 2006. Procedural House Generation: A Method for Dynamically
Generating Floor Plans. In Proceedings of the Symposium on Interactive Computer
Graphics and Games.

[16] OpenAI. 2024. Learning to Reason with LLMs. https://openai.com/index/
learning-to-reason-with-llms/

[17] Ryan Po and Gordon Wetzstein. 2024. Compositional 3D Scene Generation using
Locally Conditioned Diffusion. In 2024 International Conference on 3D Vision
(3DV). 651–663. https://doi.org/10.1109/3DV62453.2024.00026

[18] Xuanchi Ren, Jiahui Huang, Xiaohui Zeng, Ken Museth, Sanja Fidler, and Francis
Williams. 2024. XCube: Large-Scale 3D Generative Modeling using Sparse Voxel
Hierarchies. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 4209–4219.

[19] Jonas Schult, Sam Tsai, Lukas Höllein, Bichen Wu, Jialiang Wang, Chih-Yao
Ma, Kunpeng Li, Xiaofang Wang, Felix Wimbauer, Zijian He, Peizhao Zhang,
Bastian Leibe, Peter Vajda, and Ji Hou. 2024. ControlRoom3D: Room Generation
using Semantic Proxy Rooms. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 6201–6210.

[20] Noor Shaker, Julian Togelius, and Mark Nelson. 2016. Procedural Content Genera-
tion in Games. Springer. https://doi.org/10.1007/978-3-319-42716-4

[21] S. P. Singh and R. R. K. Sharma. 2006. A Review of Different Approaches to the
Facility Layout Problems. Int J Adv Manuf Technol 30 (2006), 425–433. https:
//doi.org/10.1007/s00170-005-0087-9

[22] Adam Summerville, Sam Snodgrass, Matthew Guzdial, Christoffer Holmgård,
Amy K. Hoover, Aaron Isaksen, Andy Nealen, and Julian Togelius. 2018. Proce-
dural Content Generation via Machine Learning (PCGML). IEEE Transactions on
Games 10, 3 (2018), 257–270. https://doi.org/10.1109/TG.2018.2846639

[23] Graham Todd, Sam Earle, Muhammad Umair Nasir, Michael Cerny Green, and
Julian Togelius. 2023. Level Generation Through Large Language Models. In
Proceedings of the 18th International Conference on the Foundations of Digital
Games (Lisbon, Portugal) (FDG ’23). Association for Computing Machinery, New
York, NY, USA, Article 70, 8 pages. https://doi.org/10.1145/3582437.3587211

[24] Julian Togelius, Georgios N. Yannakakis, Kenneth O. Stanley, and Cameron
Browne. 2011. Search-Based Procedural Content Generation: A Taxonomy and
Survey. IEEE Transactions on Computational Intelligence and AI in Games 3, 3
(2011), 172–186. https://doi.org/10.1109/TCIAIG.2011.2148116

[25] Yi Wang, Jieliang Luo, Adam Gaier, Evan Atherton, and Hilmar Koch. 2024.
PlotMap: Automated Layout Design for Building Game Worlds. In 2024 IEEE Con-
ference on Games (CoG). 1–8. https://doi.org/10.1109/CoG60054.2024.10645627

[26] Jim Whitehead. 2020. Spatial Layout of Procedural Dungeons Using Linear
Constraints and SMT Solvers. In Proceedings of the 15th International Conference
on the Foundations of Digital Games (Bugibba, Malta) (FDG ’20). Association for
Computing Machinery, New York, NY, USA, Article 101, 9 pages.

[27] Zhennan Wu, Yang Li, Han Yan, Taizhang Shang, Weixuan Sun, Senbo Wang,
Ruikai Cui, Weizhe Liu, Hiroyuki Sato, Hongdong Li, and Pan Ji. 2024. BlockFu-
sion: Expandable 3D Scene Generation using Latent Tri-plane Extrapolation. ACM
Transactions on Graphics 43, 4 (2024), 17 pages. https://doi.org/10.1145/3658188

[28] Yongzhi Xu, Yonhon Ng, Yifu Wang, Inkyu Sa, Yunfei Duan, Yang Li, Pan Ji,
and Hongdong Li. 2024. Sketch2Scene: Automatic Generation of Interactive 3D
Game Scenes from User’s Casual Sketches. arXiv:2408.04567 [cs.CV] https:
//arxiv.org/abs/2408.04567

[29] Yue Yang, Fan-Yun Sun, Luca Weihs, Eli VanderBilt, Alvaro Herrasti, Winson
Han, Jiajun Wu, Nick Haber, Ranjay Krishna, Lingjie Liu, Chris Callison-Burch,
Mark Yatskar, Aniruddha Kembhavi, and Christopher Clark. 2024. Holodeck:
Language Guided Generation of 3D Embodied AI Environments. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
16227–16237.

[30] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou,
Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang,
Yushuo Chen, Zhipeng Chen, Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang,
Zikang Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. 2024. A Survey of Large
Language Models. arXiv:2303.18223 [cs.CL] https://arxiv.org/abs/2303.18223

https://arxiv.org/abs/2403.09675
https://arxiv.org/abs/2403.09675
https://arxiv.org/abs/2403.09675
https://doi.org/10.1016/j.cie.2017.03.015
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://doi.org/10.1109/TSE.2023.3331254
https://doi.org/10.1109/TSE.2023.3331254
https://arxiv.org/abs/2310.03602
https://arxiv.org/abs/2310.03602
https://doi.org/10.1145/3314221.3314633
https://doi.org/10.1109/CoG60054.2024.10645597
https://doi.org/10.1109/CoG60054.2024.10645597
https://doi.org/10.1609/aiide.v16i1.7416
https://doi.org/10.1007/s00521-020-05383-8
https://doi.org/10.1007/s00521-020-05383-8
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://doi.org/10.1109/3DV62453.2024.00026
https://doi.org/10.1007/978-3-319-42716-4
https://doi.org/10.1007/s00170-005-0087-9
https://doi.org/10.1007/s00170-005-0087-9
https://doi.org/10.1109/TG.2018.2846639
https://doi.org/10.1145/3582437.3587211
https://doi.org/10.1109/TCIAIG.2011.2148116
https://doi.org/10.1109/CoG60054.2024.10645627
https://doi.org/10.1145/3658188
https://arxiv.org/abs/2408.04567
https://arxiv.org/abs/2408.04567
https://arxiv.org/abs/2408.04567
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2303.18223

Constraint Is All You Need: Optimization-Based 3D Level Generation with LLMs FDG ’25, April 15–18, 2025, Graz, Austria

A GLDL Specification Details
This appendix provides a detailed reference for the syntax and
format of the Game Level Description Language (GLDL) used in
the main text.

A.1 Definition Sentences
Definition sentences are used to declare and parameterize the facil-
ities (objects or reference points) that make up the game level. The
general syntax is:

[𝐹 = Definition(variables)]
Where 𝐹 represents the facility being defined, and the Definition

keyword can take one of three forms:

A.1.1 PredefinedFacility.

• Format: 𝐹 = PredefinedFacility(𝑃,𝑂, 𝑁,𝑇)
• Arguments:
– 𝑃 (Position): The fixed position of the facility
– 𝑂 (Orientation): The facing direction of the facility
– 𝑁 (Number): The number of instances
– 𝑇 (Tags): A list of tags associated with the facility

A.1.2 NewFacility.

• Format: 𝐹 = NewFacility(𝑁,𝑇)
• Arguments:
– 𝑁 (Number): The number of instances
– 𝑇 (Tags): A list of tags associated with the facility

A.1.3 NewPoint.

• Format: 𝐹 = NewPoint(𝑃)
• Arguments:
– 𝑃 (Position): The fixed position of the point

A.2 Constraint Sentences
Constraint sentences impose spatial or relational rules on the facil-
ities within the game level. The general syntax is:

[Constraint(𝐹, variables)]
Where 𝐹 represents the facility being constrained, and the Constraint

keyword can take various forms, such as:

A.2.1 Basic Constraints.

• PlaceAroundPosition: Places a facility near a specified
position 𝑃 .
Format: PlaceAroundPosition(𝐹, 𝑃)
• PlaceInRange: Confines a facility’s placement within a
bounding box defined by positions 𝑃1 and 𝑃2.
Format: PlaceInRange(𝐹, 𝑃1, 𝑃2)
• PlaceByWall: Requires a facility to be placed adjacent to a
wall, with an optional orientation 𝑂 .
Format: PlaceByWall(𝐹,𝑂)

A.2.2 Relationship Constraints.

• Near: Specifies that two facilities 𝐹1 and 𝐹2 should be close
to each other.
Format: Near(𝐹1, 𝐹2)

• Far: Specifies that two facilities 𝐹1 and 𝐹2 should be distant
from each other.
Format: Far(𝐹1, 𝐹2)
• CanSee: Ensures a clear line of sight between two facilities
𝐹1 and 𝐹2.
Format: CanSee(𝐹1, 𝐹2)
• Focus: Orients one facility 𝐹1 towards another facility 𝐹2
or position 𝑃 .
Format: Focus(𝐹1, 𝐹2) or Focus(𝐹, 𝑃)
• Alignment: Aligns two facilities 𝐹1 and 𝐹2 along one or
more axes.
Format: Alignment(𝐹1, 𝐹2) or Alignment(𝐹1, 𝐹2,Axis)
• Orientation: Matches the orientation of two facilities 𝐹1
and 𝐹2.
Format: Orientation(𝐹1, 𝐹2)
• OnTheSide: Places one facility 𝐹1 beside another facility
𝐹2, relative to their orientations.
Format: OnTheSide(𝐹1, 𝐹2)
• Front: Combines focus, orientation, and alignment to place
one facility 𝐹1 in front of another facility 𝐹2.
Format: Front(𝐹1, 𝐹2)
• Group: Defines a parent-child relationship between two
facilities 𝐹1 and 𝐹2, with a relative position 𝑃 and orientation
𝑂 .
Format: Group(𝐹1, 𝐹2, 𝑃,𝑂)

B Prompt for LLM-Based Constraints
Generation

This appendix presents the structured prompt used for LLM-based
constraints generation:

You are a game level designer creating a detailed level for a
3D game set in a supermarket environment. Use the Game Level
Description Language (GLDL) to define facilities, specify their prop-
erties, and apply constraints systematically. Follow these guidelines
to ensure valid GLDL output:

1. Purpose of GLDL:
• Control facility placement, orientation, and relationships to
create interactive environments.

2. Key Components:
• Facilities: PredefinedFacility, NewFacility, Points.
• Variables: Use W, L, H for environment dimensions.
• Positions: Tuples (x, y, z); use None for unconstrained
axes.

3. Definition Sentences:
• PredefinedFacility:
facility_name = PredefinedFacility(

P=(x, y, z),
O=Orientation,
N=number,
T=[tags],
dimensions=(width, length, height)

)

• NewFacility:
facility_name = NewFacility(

FDG ’25, April 15–18, 2025, Graz, Austria Kaijie Xu and Clark Verbrugge

N=number,
T=[tags],
dimensions=(width, length, height)

)

• Points:
point_name = NewPoint(P=(x, y, z))

4. Constraint Sentences:
• Placement:
– PlaceByWall(facility, Orientation)
– PlaceInRange(facility, pos1, pos2)
– PlaceAroundPosition(facility, position)
• Relationships:
– Near(facility1, facility2)
– CanSee(facility1, facility2)
– Focus(facility, target)

5. Specific Instructions:
• Do not use quotes for orientation values (e.g., use X instead
of ’X’).
• Apply Z-axis constraints with PlaceAroundPosition using
None for unconstrained axes.
• Define each constraint on a separate line.
• Ensure all referenced facilities and points are previously
defined.

6. Output Format:
• One sentence per line for definitions and constraints.
• Exclude definitions of W, L, H.
• Adhere strictly to GLDL syntax for automated parsing.

Generate a GLDL file that includes all facility definitions and con-
straints based on the above guidelines, ensuring logical consistency
and adherence to the specified game environment.

C Prompt for Game Level Description
(Post-Apocalyptic Supermarket)

The level is set in a post-apocalyptic supermarket inspired by The
Last of Us. The Main Entrance at the front is the primary way
in for players, and an Emergency Exit at the back can serve as a
possible escape. Near the entrance, several Checkout Counters line
the wall, acting as both obstacles and reminders of the store’s old
daily operations. In the middle of the store, multiple Shelf Rows are
neatly arranged, still holding some goods, and scattered Shopping
Carts stand nearby. A notable Product Display sits near the center,
highlighting featured items, while a Security Camera high on a
wall keeps watch on both the Main Entrance and the Checkout
Counters.

A Fire Alarm is located in the center of the store, and a Trash Bin
is set up near the Checkout Counters. Along the walls, a Vending
Machine and a Water Dispenser provide small sources of supplies.
Lighting Fixtures are spaced across the store, and a small Restroom
sits against one wall near the entrance. Ammo Packs, Healing Packs,
and Documents appear on the shelves, each placed apart to encour-
age some searching. Several zombies now roam these aisles, each
near important items or places, adding a serious threat to anyone
who enters.

Freezer Displays and Refrigerated Displays stand near the center,
in line with the Shelf Rows, while Stock Bags lie close by. All of
these elements remain within the supermarket’s walls, arranged in
ways that create a tight, challenging experience for the player.

D Penalty Computation Details
This appendix provides detailed explanations of how penalties are
derived. Each penalty type is computed by evaluating facility place-
ments against specific constraints. The following provides detailed
explanations of how each penalty is derived, incorporating mathe-
matical formulations where applicable:

D.1 Penalty_x and Penalty_z
These penalties measure deviations from desired positions along the
X and Z axes, respectively. For a facility positioned at coordinates
(𝑥, 𝑧), the penalties are calculated as the squared difference between
the current position and the target position:

penalty_x = 𝑤𝑥 · (𝑥current − 𝑥target)2

penalty_z = 𝑤𝑧 · (𝑧current − 𝑧target)2

where𝑤𝑥 and𝑤𝑧 are the weights assigned to these penalties.

D.2 Penalty_near and Penalty_far
These penalties address the maintenance of specified proximity
thresholds between pairs of facilities. For each pair of facilities
(𝑓𝑖 , 𝑓𝑗), the Euclidean distance 𝑑𝑖 𝑗 is computed:

𝑑𝑖 𝑗 =

√︃
(𝑥𝑖 − 𝑥 𝑗)2 + (𝑧𝑖 − 𝑧 𝑗)2

- **Penalty_near**: Applied when 𝑑𝑖 𝑗 < 𝑑min, where 𝑑min is the
minimum allowed distance.

penalty_near+ = 𝑤near · (𝑑min − 𝑑𝑖 𝑗)2 if 𝑑𝑖 𝑗 < 𝑑min

- **Penalty_far**: Applied when 𝑑𝑖 𝑗 > 𝑑max, where 𝑑max is the
maximum allowed distance.

penalty_far+ = 𝑤far · (𝑑𝑖 𝑗 − 𝑑max)2 if 𝑑𝑖 𝑗 > 𝑑max

where𝑤near and𝑤far are the respective weights.

D.3 Penalty_can_see
This penalty ensures a clear line of sight between two facilities. A
ray is cast from the center of one facility to the other. If the ray
intersects any other facility, the penalty is incremented:

penalty_can_see+ = 𝑤can_see · ⊮obstructed
where𝑤can_see is the weight and ⊮obstructed is an indicator function
that is 1 if the line of sight is obstructed and 0 otherwise.

D.4 Penalty_overlap
Overlap penalties are incurred when facilities intersect in space.
The volume of overlap 𝑉overlap between two facilities is calculated,
and the penalty is proportional to this volume:

penalty_overlap+ = 𝑤overlap ·𝑉overlap
where𝑤overlap is the assigned weight.

Constraint Is All You Need: Optimization-Based 3D Level Generation with LLMs FDG ’25, April 15–18, 2025, Graz, Austria

D.5 Penalty_bounds
This penalty enforces that all facilities remain within the defined en-
vironment boundaries. For a facility extending beyond the bounds,
the squared distance 𝑑bound from the facility’s position to the near-
est boundary is calculated:

penalty_bounds+ = 𝑤bounds · 𝑑2bound if out_of_bounds

where𝑤bounds is the weight and out_of_bounds is a condition in-
dicating boundary violation.

D.6 Penalty_alignment and Penalty_orientation
These penalties assess how well facilities align with designated
axes or share the same orientation. For alignment along an axis,
the deviation 𝜃 from the desired alignment angle is measured:

penalty_alignment+ = 𝑤alignment · 𝜃2

Similarly, for orientation consistency:

penalty_orientation+ = 𝑤orientation · 𝜃2orientation
where𝑤alignment and𝑤orientation are the respective weights.

D.7 Penalty_focus
The focus penalty considers the angle between a facility’s facing
direction and a target direction. If this angle 𝜙 exceeds a threshold
𝜙threshold, the penalty increases quadratically with the deviation:

penalty_focus+ =
{
𝑤focus · (𝜙 − 𝜙threshold)2 if 𝜙 > 𝜙threshold
0 otherwise

where𝑤focus is the weight.

D.8 Aggregating Penalties
The final objective function aggregates all penalty terms into a
weighted sum:

TotalMetric = 𝑤𝑝 · 𝑃 +𝑤𝑐 ·𝐶 +𝑤𝑠 · 𝑆
where:
• 𝑃 =

∑
PenaltyTerms represents the total spatial penalty.

• 𝐶 is the cluster degree.
• 𝑆 is the sparsity metric.
• 𝑤𝑝 , 𝑤𝑐 , and 𝑤𝑠 are the weights for penalty, cluster degree,
and sparsity metrics, respectively.

Adjusting these weights allows designers to prioritize different
aspects of the level layout, ensuring that the optimization process
aligns with desired design goals.

These penalty computations collectively shape the final facility
layout. By adjusting penalty weights and constraints, designers
can steer the optimization towards layouts that prioritize certain
aspects (e.g., minimizing overlaps, ensuring focus, or maintaining
proper alignment) over others, resulting in a more tailored and
coherent 3D game level environment.

E Simulation Parameters
This appendix provides detailed parameter configurations used in
the Unity Simulation Test. The parameters are categorized into
Zombie Types, NavMesh Agent Default Settings, and AI Agent
Settings to ensure clarity and ease of reference.

Table 6: Zombie Types and Their Parameters. Abbreviations:
BZ = Bloater Zombie, CZ = Crawler Zombie, CKZ = Clicker
Zombie, GZ = Guard Zombie, RZ = Runner Zombie

Parameter BZ CZ CKZ GZ RZ

Detection Range (m) 10 20 10 20 20
Field of View (°) 360 120 360 180 120
Attack Range (m) 4 3 3 3 3
Attack Damage 20 10 15 10 5
Attack Cooldown (s) 2 1 2 1 1
Move Speed (m/s) 2.5 4 3 4 6
Raycast Spread (°) 30 30 30 30 30

Table 7: NavMesh Agent Default Settings for AI Agent and
Zombies

Parameter Value

Speed (m/s) 3.5
Angular Speed (°/s) 120
Acceleration (m/s2) 8
Stopping Distance (m) 0
Obstacle Avoidance Radius (m) 0.5
Obstacle Avoidance Height (m) 2

Table 8: AI Agent Settings

Parameter Value

Max Health 100
Shooting Interval (s) 1.5
Zombie Detection Range (m) 3
Object Collection Range (m) 4
Projectile Speed (m/s) 5
Projectile Damage 50

• Zombie Types: Defines the characteristics of different zom-
bie variants, including their detection capabilities, attack
mechanics, movement speed, and sensory parameters.
• NavMesh Agent Default Settings: Standard settings ap-
plied to all NavMesh agents, both AI agents and zombies,
governing their navigation and obstacle avoidance behav-
iors.
• AI Agent Settings: Specific configurations for the AI agent
responsible for simulating human-like exploration and in-
teraction within the game levels, including health, combat
capabilities, and interaction ranges.

These parameter configurations were meticulously selected to
ensure that the AI agent behaves in a manner consistent with
human players, effectively navigating the environment, interacting
with elements, and responding to enemies. The diversity in zombie
types introduces varied challenges, requiring the AI agent to adapt
its strategies accordingly. The NavMesh settings facilitate realistic
movement and obstacle avoidance, while the AI agent settings
balance survivability with effectiveness in achieving objectives.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Procedural Content Generation (PCG) and Level Generation
	2.2 Facility Layout Problem
	2.3 LLMs in PCG

	3 Methodology
	3.1 Game Level Description Language (GLDL)
	3.2 LLM-Based Constraints Generation
	3.3 Optimization Algorithms

	4 Experiments & Analysis
	4.1 LLM Stability Validation Test
	4.2 Optimization Test
	4.3 Unity Simulation Test

	5 Conclusion
	Acknowledgments
	References
	A GLDL Specification Details
	A.1 Definition Sentences
	A.2 Constraint Sentences

	B Prompt for LLM-Based Constraints Generation
	C Prompt for Game Level Description (Post-Apocalyptic Supermarket)
	D Penalty Computation Details
	D.1 Penalty_x and Penalty_z
	D.2 Penalty_near and Penalty_far
	D.3 Penalty_can_see
	D.4 Penalty_overlap
	D.5 Penalty_bounds
	D.6 Penalty_alignment and Penalty_orientation
	D.7 Penalty_focus
	D.8 Aggregating Penalties

	E Simulation Parameters

